187 lines
4.6 KiB
C++
187 lines
4.6 KiB
C++
///////////////////////////////////////////////////////////////////////////////////
|
|
/// OpenGL Mathematics (glm.g-truc.net)
|
|
///
|
|
/// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
|
|
/// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
/// of this software and associated documentation files (the "Software"), to deal
|
|
/// in the Software without restriction, including without limitation the rights
|
|
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
/// copies of the Software, and to permit persons to whom the Software is
|
|
/// furnished to do so, subject to the following conditions:
|
|
///
|
|
/// The above copyright notice and this permission notice shall be included in
|
|
/// all copies or substantial portions of the Software.
|
|
///
|
|
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
/// THE SOFTWARE.
|
|
///
|
|
/// @ref gtx_constants
|
|
/// @file glm/gtx/constants.inl
|
|
/// @date 2011-10-14 / 2012-01-25
|
|
/// @author Christophe Riccio
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace glm
|
|
{
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType epsilon()
|
|
{
|
|
return std::numeric_limits<genType>::epsilon();
|
|
}
|
|
|
|
template <>
|
|
GLM_FUNC_QUALIFIER half epsilon()
|
|
{
|
|
return half(1.19209290e-007);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType zero()
|
|
{
|
|
return genType(0);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType one()
|
|
{
|
|
return genType(1);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType pi()
|
|
{
|
|
return genType(3.14159265358979323846264338327950288);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType root_pi()
|
|
{
|
|
return genType(1.772453850905516027);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType half_pi()
|
|
{
|
|
return genType(1.57079632679489661923132169163975144);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType quarter_pi()
|
|
{
|
|
return genType(0.785398163397448309615660845819875721);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType one_over_pi()
|
|
{
|
|
return genType(0.318309886183790671537767526745028724);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType two_over_pi()
|
|
{
|
|
return genType(0.636619772367581343075535053490057448);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType two_over_root_pi()
|
|
{
|
|
return genType(1.12837916709551257389615890312154517);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType one_over_root_two()
|
|
{
|
|
return genType(0.707106781186547524400844362104849039);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType root_half_pi()
|
|
{
|
|
return genType(1.253314137315500251);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType root_two_pi()
|
|
{
|
|
return genType(2.506628274631000502);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType root_ln_four()
|
|
{
|
|
return genType(1.17741002251547469);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType e()
|
|
{
|
|
return genType(2.71828182845904523536);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType euler()
|
|
{
|
|
return genType(0.577215664901532860606);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType root_two()
|
|
{
|
|
return genType(1.41421356237309504880168872420969808);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType root_three()
|
|
{
|
|
return genType(1.73205080756887729352744634150587236);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType root_five()
|
|
{
|
|
return genType(2.23606797749978969640917366873127623);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType ln_two()
|
|
{
|
|
return genType(0.693147180559945309417232121458176568);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType ln_ten()
|
|
{
|
|
return genType(2.30258509299404568401799145468436421);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType ln_ln_two()
|
|
{
|
|
return genType(-0.3665129205816643);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType third()
|
|
{
|
|
return genType(0.3333333333333333333333333333333333333333);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType two_thirds()
|
|
{
|
|
return genType(0.666666666666666666666666666666666666667);
|
|
}
|
|
|
|
template <typename genType>
|
|
GLM_FUNC_QUALIFIER genType golden_ratio()
|
|
{
|
|
return genType(1.61803398874989484820458683436563811);
|
|
}
|
|
} //namespace glm
|