kicad/pcbnew/class_board.cpp

763 lines
23 KiB
C++

/*******************************************/
/* class_board.cpp - BOARD class functions */
/*******************************************/
#include "fctsys.h"
#include "common.h"
#include "pcbnew.h"
#include "bitmaps.h"
/*****************/
/* Class BOARD: */
/*****************/
/* Constructor */
BOARD::BOARD( EDA_BaseStruct* parent, WinEDA_BasePcbFrame* frame ) :
BOARD_ITEM( (BOARD_ITEM*) parent, TYPEPCB )
{
m_PcbFrame = frame;
m_Status_Pcb = 0; // Mot d'etat: Bit 1 = Chevelu calcule
m_NbNets = 0; // Nombre de nets (equipotentielles)
m_BoardSettings = &g_DesignSettings;
m_NbPads = 0; // nombre total de pads
m_NbNodes = 0; // nombre de pads connectes
m_NbLinks = 0; // nombre de chevelus (donc aussi nombre
// minimal de pistes a tracer
m_NbSegmTrack = 0; // nombre d'elements de type segments de piste
m_NbSegmZone = 0; // nombre d'elements de type segments de zone
m_NbNoconnect = 0; // nombre de chevelus actifs
m_NbLoclinks = 0; // nb ratsnest local
m_Drawings = NULL; // pointeur sur liste drawings
m_Modules = NULL; // pointeur sur liste zone modules
m_Equipots = NULL; // pointeur liste zone equipot
m_Track = NULL; // pointeur relatif zone piste
m_Zone = NULL; // pointeur tableau zone zones de cuivre
m_Pads = NULL; // pointeur liste d'acces aux pads
m_Ratsnest = NULL; // pointeur liste rats
m_LocalRatsnest = NULL; // pointeur liste rats local
m_CurrentLimitZone = NULL; // pointeur liste des EDEGE_ZONES
// de determination des contours de zone
}
/***************/
/* Destructeur */
/***************/
BOARD::~BOARD()
{
m_Drawings->DeleteStructList();
m_Drawings = 0;
m_Modules->DeleteStructList();
m_Modules = 0;
m_Equipots->DeleteStructList();
m_Equipots = 0;
m_Track->DeleteStructList();
m_Track = 0;
m_Zone->DeleteStructList();
m_Zone = 0;
m_CurrentLimitZone->DeleteStructList();
m_CurrentLimitZone = 0;
MyFree( m_Pads );
m_Pads = 0;
MyFree( m_Ratsnest );
m_Ratsnest = 0;
MyFree( m_LocalRatsnest );
m_LocalRatsnest = 0;
}
void BOARD::UnLink()
{
/* Modification du chainage arriere */
if( Pback )
{
if( Pback->Type() == TYPEPCB )
{
Pback->Pnext = Pnext;
}
else /* Le chainage arriere pointe sur la structure "Pere" */
{
// Pback-> = Pnext;
}
}
/* Modification du chainage avant */
if( Pnext )
Pnext->Pback = Pback;
Pnext = Pback = NULL;
}
/* Routines de calcul des nombres de segments pistes et zones */
int BOARD::GetNumSegmTrack()
{
TRACK* CurTrack = m_Track;
int ii = 0;
for( ; CurTrack != NULL; CurTrack = (TRACK*) CurTrack->Pnext )
ii++;
m_NbSegmTrack = ii;
return ii;
}
int BOARD::GetNumSegmZone()
{
TRACK* CurTrack = m_Zone;
int ii = 0;
for( ; CurTrack != NULL; CurTrack = (TRACK*) CurTrack->Pnext )
ii++;
m_NbSegmZone = ii;
return ii;
}
// retourne le nombre de connexions manquantes
int BOARD::GetNumNoconnect()
{
return m_NbNoconnect;
}
// retourne le nombre de chevelus
int BOARD::GetNumRatsnests()
{
return m_NbLinks;
}
// retourne le nombre de pads a netcode > 0
int BOARD::GetNumNodes()
{
return m_NbNodes;
}
/***********************************/
bool BOARD::ComputeBoundaryBox()
/***********************************/
/* Determine le rectangle d'encadrement du pcb
* Ce rectangle englobe les contours pcb, pads , vias et piste
* Sortie:
* m_PcbBox
*
* retourne:
* 0 si aucun element utile
* 1 sinon
*/
{
int rayon, cx, cy, d, xmin, ymin, xmax, ymax;
bool Has_Items = FALSE;
EDA_BaseStruct* PtStruct;
DRAWSEGMENT* ptr;
TRACK* Track;
xmin = ymin = 0x7FFFFFFFl;
xmax = ymax = -0x7FFFFFFFl;
/* Analyse des Contours PCB */
PtStruct = m_Drawings;
for( ; PtStruct != NULL; PtStruct = PtStruct->Pnext )
{
if( PtStruct->Type() != TYPEDRAWSEGMENT )
continue;
ptr = (DRAWSEGMENT*) PtStruct;
d = (ptr->m_Width / 2) + 1;
if( ptr->m_Shape == S_CIRCLE )
{
cx = ptr->m_Start.x; cy = ptr->m_Start.y;
rayon = (int) hypot( (double) (ptr->m_End.x - cx), (double) (ptr->m_End.y - cy) );
rayon += d;
xmin = MIN( xmin, cx - rayon );
ymin = MIN( ymin, cy - rayon );
xmax = MAX( xmax, cx + rayon );
ymax = MAX( ymax, cy + rayon );
Has_Items = TRUE;
}
else
{
cx = MIN( ptr->m_Start.x, ptr->m_End.x );
cy = MIN( ptr->m_Start.y, ptr->m_End.y );
xmin = MIN( xmin, cx - d );
ymin = MIN( ymin, cy - d );
cx = MAX( ptr->m_Start.x, ptr->m_End.x );
cy = MAX( ptr->m_Start.y, ptr->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
Has_Items = TRUE;
}
}
/* Analyse des Modules */
MODULE* module = m_Modules;
for( ; module != NULL; module = (MODULE*) module->Pnext )
{
Has_Items = TRUE;
xmin = MIN( xmin, ( module->m_Pos.x + module->m_BoundaryBox.GetX() ) );
ymin = MIN( ymin, ( module->m_Pos.y + module->m_BoundaryBox.GetY() ) );
xmax = MAX( xmax, module->m_Pos.x + module->m_BoundaryBox.GetRight() );
ymax = MAX( ymax, module->m_Pos.y + module->m_BoundaryBox.GetBottom() );
D_PAD* pt_pad = module->m_Pads;
for( ; pt_pad != NULL; pt_pad = (D_PAD*) pt_pad->Pnext )
{
d = pt_pad->m_Rayon;
xmin = MIN( xmin, pt_pad->m_Pos.x - d );
ymin = MIN( ymin, pt_pad->m_Pos.y - d );
xmax = MAX( xmax, pt_pad->m_Pos.x + d );
ymax = MAX( ymax, pt_pad->m_Pos.y + d );
}
}
/* Analyse des segments de piste et zone*/
for( Track = m_Track; Track != NULL; Track = (TRACK*) Track->Pnext )
{
d = (Track->m_Width / 2) + 1;
cx = MIN( Track->m_Start.x, Track->m_End.x );
cy = MIN( Track->m_Start.y, Track->m_End.y );
xmin = MIN( xmin, cx - d );
ymin = MIN( ymin, cy - d );
cx = MAX( Track->m_Start.x, Track->m_End.x );
cy = MAX( Track->m_Start.y, Track->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
Has_Items = TRUE;
}
for( Track = m_Zone; Track != NULL; Track = (TRACK*) Track->Pnext )
{
d = (Track->m_Width / 2) + 1;
cx = MIN( Track->m_Start.x, Track->m_End.x );
cy = MIN( Track->m_Start.y, Track->m_End.y );
xmin = MIN( xmin, cx - d );
ymin = MIN( ymin, cy - d );
cx = MAX( Track->m_Start.x, Track->m_End.x );
cy = MAX( Track->m_Start.y, Track->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
Has_Items = TRUE;
}
if( !Has_Items && m_PcbFrame )
{
if( m_PcbFrame->m_Draw_Sheet_Ref )
{
xmin = ymin = 0;
xmax = m_PcbFrame->m_CurrentScreen->ReturnPageSize().x;
ymax = m_PcbFrame->m_CurrentScreen->ReturnPageSize().y;
}
else
{
xmin = -m_PcbFrame->m_CurrentScreen->ReturnPageSize().x / 2;
ymin = -m_PcbFrame->m_CurrentScreen->ReturnPageSize().y / 2;
xmax = m_PcbFrame->m_CurrentScreen->ReturnPageSize().x / 2;
ymax = m_PcbFrame->m_CurrentScreen->ReturnPageSize().y / 2;
}
}
m_BoundaryBox.SetX( xmin );
m_BoundaryBox.SetY( ymin );
m_BoundaryBox.SetWidth( xmax - xmin );
m_BoundaryBox.SetHeight( ymax - ymin );
return Has_Items;
}
// virtual, see pcbstruct.h
void BOARD::Display_Infos( WinEDA_DrawFrame* frame )
{
/* Affiche l'etat du PCB : nb de pads, nets , connexions.. */
#define POS_AFF_NBPADS 1
#define POS_AFF_NBVIAS 8
#define POS_AFF_NBNODES 16
#define POS_AFF_NBLINKS 24
#define POS_AFF_NBNETS 32
#define POS_AFF_NBCONNECT 40
#define POS_AFF_NBNOCONNECT 48
int nb_vias = 0, ii;
EDA_BaseStruct* Struct;
wxString txt;
frame->MsgPanel->EraseMsgBox();
txt.Printf( wxT( "%d" ), m_NbPads );
Affiche_1_Parametre( frame, POS_AFF_NBPADS, _( "Pads" ), txt, DARKGREEN );
for( ii = 0, Struct = m_Track; Struct != NULL; Struct = Struct->Pnext )
{
ii++;
if( Struct->Type() == TYPEVIA )
nb_vias++;
}
txt.Printf( wxT( "%d" ), nb_vias );
Affiche_1_Parametre( frame, POS_AFF_NBVIAS, _( "Vias" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNumNodes() );
Affiche_1_Parametre( frame, POS_AFF_NBNODES, _( "Nodes" ), txt, DARKCYAN );
txt.Printf( wxT( "%d" ), m_NbLinks );
Affiche_1_Parametre( frame, POS_AFF_NBLINKS, _( "Links" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), m_NbNets );
Affiche_1_Parametre( frame, POS_AFF_NBNETS, _( "Nets" ), txt, RED );
txt.Printf( wxT( "%d" ), m_NbLinks - GetNumNoconnect() );
Affiche_1_Parametre( frame, POS_AFF_NBCONNECT, _( "Connect" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNumNoconnect() );
Affiche_1_Parametre( frame, POS_AFF_NBNOCONNECT, _( "NoConn" ), txt, BLUE );
}
// virtual, see pcbstruct.h
SEARCH_RESULT BOARD::Visit( INSPECTOR* inspector, const void* testData,
const KICAD_T scanTypes[] )
{
KICAD_T stype;
SEARCH_RESULT result = SEARCH_CONTINUE;
const KICAD_T* p = scanTypes;
bool done=false;
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' ';
#endif
while( !done )
{
stype = *p;
switch( stype )
{
case TYPEPCB:
result = inspector->Inspect( this, testData ); // inspect me
// skip over any types handled in the above call.
++p;
break;
/* Instances of the requested KICAD_T live in a list, either one
that I manage, or that my modules manage. If it's a type managed
by class MODULE, then simply pass it on to each module's
MODULE::Visit() function by way of the
IterateForward( m_Modules, ... ) call.
*/
case TYPEMODULE:
case TYPEPAD:
case TYPETEXTEMODULE:
case TYPEEDGEMODULE:
// this calls MODULE::Visit() on each module.
result = IterateForward( m_Modules, inspector, testData, p );
// skip over any types handled in the above call.
for(;;)
{
switch( stype = *++p )
{
case TYPEMODULE:
case TYPEPAD:
case TYPETEXTEMODULE:
case TYPEEDGEMODULE:
continue;
default:;
}
break;
}
break;
case TYPEDRAWSEGMENT:
case TYPETEXTE:
case TYPEMARQUEUR:
case TYPECOTATION:
case TYPEMIRE:
result = IterateForward( m_Drawings, inspector, testData, p );
// skip over any types handled in the above call.
for(;;)
{
switch( stype = *++p )
{
case TYPEDRAWSEGMENT:
case TYPETEXTE:
case TYPEMARQUEUR:
case TYPECOTATION:
case TYPEMIRE:
continue;
default:;
}
break;
}
;
break;
#if 0 // both these are on same list, so we must scan it twice in order to get VIA priority,
// using new #else code below.
// But we are not using separte lists for TRACKs and SEGVIAs, because items are ordered (sortered) in the linked
// list by netcode AND by physical distance:
// when created, if a track or via is connected to an existing track or via, it is put in linked list
// after this existing track or via
// So usually, connected tracks or vias are grouped in this list
// So the algorithm (used in rastnest computations) which computes the track connectivity is faster (more than 100 time regarding to
// a non ordered list) because when it searchs for a connexion, first it tests the near (near in term of linked list) 50 items
// from the current item (track or via) in test.
// Usually, because of this sort, a connected item (if exists) is found.
// If not found (and only in this case) an exhaustive (and time consumming) search is made,
// but this case is statistically rare.
case TYPEVIA:
case TYPETRACK:
result = IterateForward( m_Track, inspector, testData, p );
// skip over any types handled in the above call.
for(;;)
{
switch( stype = *++p )
{
case TYPEVIA:
case TYPETRACK:
continue;
default:;
}
break;
}
break;
#else
case TYPEVIA:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
case TYPETRACK:
result = IterateForward( m_Track, inspector, testData, p );
++p;
break;
#endif
case PCB_EQUIPOT_STRUCT_TYPE:
result = IterateForward( m_Equipots, inspector, testData, p );
++p;
break;
case TYPEZONE:
result = IterateForward( m_Zone, inspector, testData, p );
++p;
break;
case TYPEEDGEZONE:
result = IterateForward( m_CurrentLimitZone, inspector, testData, p );
++p;
break;
default: // catch EOT or ANY OTHER type here and return.
done = true;
break;
}
if( result == SEARCH_QUIT )
break;
}
return result;
}
/* now using PcbGeneralLocateAndDisplay()
// see pcbstruct.h
BOARD_ITEM* BOARD::FindPadOrModule( const wxPoint& refPos, int layer )
{
class PadOrModule : public INSPECTOR
{
public:
BOARD_ITEM* found;
int layer;
int layer_mask;
PadOrModule( int alayer ) :
found(0), layer(alayer), layer_mask( g_TabOneLayerMask[alayer] )
{}
SEARCH_RESULT Inspect( EDA_BaseStruct* testItem, const void* testData )
{
BOARD_ITEM* item = (BOARD_ITEM*) testItem;
const wxPoint& refPos = *(const wxPoint*) testData;
if( item->Type() == TYPEPAD )
{
D_PAD* pad = (D_PAD*) item;
if( pad->HitTest( refPos ) )
{
if( layer_mask & pad->m_Masque_Layer )
{
found = item;
return SEARCH_QUIT;
}
else if( !found )
{
MODULE* parent = (MODULE*) pad->m_Parent;
if( IsModuleLayerVisible( parent->GetLayer() ) )
found = item;
}
}
}
else if( item->Type() == TYPEMODULE )
{
MODULE* module = (MODULE*) item;
// consider only visible modules
if( IsModuleLayerVisible( module->GetLayer() ) )
{
if( module->HitTest( refPos ) )
{
if( layer == module->GetLayer() )
{
found = item;
return SEARCH_QUIT;
}
// layer mismatch, save in case we don't find a
// future layer match hit.
if( !found )
found = item;
}
}
}
return SEARCH_CONTINUE;
}
};
PadOrModule inspector( layer );
// search only for PADs first, then MODULES, and preferably a layer match
static const KICAD_T scanTypes[] = { TYPEPAD, TYPEMODULE, EOT };
// visit this BOARD with the above inspector
Visit( &inspector, &refPos, scanTypes );
return inspector.found;
}
*/
/**
* Function FindNet
* searches for a net with the given netcode.
* @param anetcode The netcode to search for.
* @return EQUIPOT* - the net or NULL if not found.
*/
EQUIPOT* BOARD::FindNet( int anetcode ) const
{
// the first valid netcode is 1.
// zero is reserved for "no connection" and is not used.
if( anetcode > 0 )
{
for( EQUIPOT* net = m_Equipots; net; net=net->Next() )
{
if( net->GetNet() == anetcode )
return net;
}
}
return NULL;
}
bool BOARD::Save( FILE* aFile ) const
{
bool rc = false;
BOARD_ITEM* item;
// save the nets
for( item = m_Equipots; item; item=item->Next() )
if( !item->Save( aFile ) )
goto out;
// save the modules
for( item = m_Modules; item; item=item->Next() )
if( !item->Save( aFile ) )
goto out;
for( item = m_Drawings; item; item=item->Next() )
{
switch( item->Type() )
{
case TYPETEXTE:
case TYPEDRAWSEGMENT:
case TYPEMIRE:
case TYPECOTATION:
if( !item->Save( aFile ) )
goto out;
break;
case TYPEMARQUEUR: // do not save MARKERs, they can be regenerated easily
break;
default:
// future: throw exception here
#if defined(DEBUG)
printf( "BOARD::Save() ignoring m_Drawings type %d\n", item->Type() );
#endif
break;
}
}
// save the tracks & vias
fprintf( aFile, "$TRACK\n" );
for( item = m_Track; item; item=item->Next() )
if( !item->Save( aFile ) )
goto out;
fprintf( aFile, "$EndTRACK\n" );
// save the zones
fprintf( aFile, "$ZONE\n" );
for( item = m_Zone; item; item=item->Next() )
if( !item->Save( aFile ) )
goto out;
fprintf( aFile, "$EndZONE\n" );
// save the zone edges
/*
if( m_CurrentLimitZone )
{
fprintf( aFile, "$ZONE_EDGE\n" );
for( item = m_CurrentLimitZone; item; item=item->Next() )
if( !item->Save( aFile ) )
goto out;
fprintf( aFile, "$EndZONE_EDGE\n" );
}
*/
if( fprintf( aFile, "$EndBOARD\n" ) != sizeof("$EndBOARD\n")-1 )
goto out;
rc = true; // wrote all OK
out:
return rc;
}
#if defined(DEBUG)
/**
* Function Show
* is used to output the object tree, currently for debugging only.
* @param nestLevel An aid to prettier tree indenting, and is the level
* of nesting of this object within the overall tree.
* @param os The ostream& to output to.
*/
void BOARD::Show( int nestLevel, std::ostream& os )
{
EDA_BaseStruct* p;
// for now, make it look like XML:
NestedSpace( nestLevel, os ) << '<' << GetClass().Lower().mb_str() << ">\n";
// specialization of the output:
NestedSpace( nestLevel+1, os ) << "<modules>\n";
p = m_Modules;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</modules>\n";
NestedSpace( nestLevel+1, os ) << "<pdrawings>\n";
p = m_Drawings;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</pdrawings>\n";
NestedSpace( nestLevel+1, os ) << "<nets>\n";
p = m_Equipots;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</nets>\n";
NestedSpace( nestLevel+1, os ) << "<tracks>\n";
p = m_Track;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</tracks>\n";
NestedSpace( nestLevel+1, os ) << "<zones>\n";
p = m_Zone;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</zones>\n";
NestedSpace( nestLevel+1, os ) << "<zoneedges>\n";
p = m_CurrentLimitZone;
for( ; p; p = p->Pnext )
p->Show( nestLevel+2, os );
NestedSpace( nestLevel+1, os ) << "</zoneedges>\n";
p = m_Son;
for( ; p; p = p->Pnext )
{
p->Show( nestLevel+1, os );
}
NestedSpace( nestLevel, os ) << "</" << GetClass().Lower().mb_str() << ">\n";
}
/* wrote this before discovering ReturnPcbLayerName()
const char* BOARD::ShowLayer( int aLayer )
{
const char* rs;
switch( aLayer )
{
case LAYER_COPPER_LAYER_N: rs = "cu"; break;
case LAYER_N_2: rs = "layer2"; break;
case LAYER_N_3: rs = "layer3"; break;
case LAYER_N_4: rs = "layer4"; break;
case LAYER_N_5: rs = "layer5"; break;
case LAYER_N_6: rs = "layer6"; break;
case LAYER_N_7: rs = "layer7"; break;
case LAYER_N_8: rs = "layer8"; break;
case LAYER_N_9: rs = "layer9"; break;
case LAYER_N_10: rs = "layer10"; break;
case LAYER_N_11: rs = "layer11"; break;
case LAYER_N_12: rs = "layer12"; break;
case LAYER_N_13: rs = "layer13"; break;
case LAYER_N_14: rs = "layer14"; break;
case LAYER_N_15: rs = "layer15"; break;
case LAYER_CMP_N: rs = "cmp"; break;
case ADHESIVE_N_CU: rs = "cu/adhesive"; break;
case ADHESIVE_N_CMP: rs = "cmp/adhesive"; break;
case SOLDERPASTE_N_CU: rs = "cu/sldrpaste"; break;
case SOLDERPASTE_N_CMP: rs = "cmp/sldrpaste"; break;
case SILKSCREEN_N_CU: rs = "cu/silkscreen"; break;
case SILKSCREEN_N_CMP: rs = "cmp/silkscreen"; break;
case SOLDERMASK_N_CU: rs = "cu/sldrmask"; break;
case SOLDERMASK_N_CMP: rs = "cmp/sldrmask"; break;
case DRAW_N: rs = "drawing"; break;
case COMMENT_N: rs = "comment"; break;
case ECO1_N: rs = "eco_1"; break;
case ECO2_N: rs = "eco_2"; break;
case EDGE_N: rs = "edge"; break;
default: rs = "???"; break;
}
return rs;
}
*/
#endif