kicad/pcbnew/drc/drc_rtree.h

586 lines
18 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2020-2022 KiCad Developers, see AUTHORS.txt for contributors.
* Copyright (C) 2020 CERN
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef DRC_RTREE_H_
#define DRC_RTREE_H_
#include <board_item.h>
#include <pad.h>
#include <pcb_text.h>
#include <memory>
#include <unordered_set>
#include <set>
#include <vector>
#include <geometry/rtree.h>
#include <geometry/shape.h>
#include <geometry/shape_segment.h>
#include <math/vector2d.h>
#include "geometry/shape_null.h"
#include "board.h"
/**
* Implement an R-tree for fast spatial and layer indexing of connectable items.
* Non-owning.
*/
class DRC_RTREE
{
public:
struct ITEM_WITH_SHAPE
{
ITEM_WITH_SHAPE( BOARD_ITEM *aParent, const SHAPE* aShape,
std::shared_ptr<SHAPE> aParentShape = nullptr ) :
parent( aParent ),
shape( aShape ),
shapeStorage( nullptr ),
parentShape( aParentShape )
{};
ITEM_WITH_SHAPE( BOARD_ITEM *aParent, std::shared_ptr<SHAPE> aShape,
std::shared_ptr<SHAPE> aParentShape = nullptr ) :
parent( aParent ),
shape( aShape.get() ),
shapeStorage( aShape ),
parentShape( aParentShape )
{};
BOARD_ITEM* parent;
const SHAPE* shape;
std::shared_ptr<SHAPE> shapeStorage;
std::shared_ptr<SHAPE> parentShape;
};
private:
using drc_rtree = RTree<ITEM_WITH_SHAPE*, int, 2, double>;
public:
DRC_RTREE()
{
for( int layer : LSET::AllLayersMask().Seq() )
m_tree[layer] = new drc_rtree();
m_count = 0;
}
~DRC_RTREE()
{
for( drc_rtree* tree : m_tree )
{
for( DRC_RTREE::ITEM_WITH_SHAPE* el : *tree )
delete el;
delete tree;
}
}
/**
* Insert an item into the tree on a particular layer with an optional worst clearance.
*/
void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer, int aWorstClearance = 0 )
{
Insert( aItem, aLayer, aLayer, aWorstClearance );
}
/**
* Insert an item into the tree on a particular layer with a worst clearance. Allows the
* source layer to be different from the tree layer.
*/
void Insert( BOARD_ITEM* aItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer,
int aWorstClearance )
{
wxCHECK( aTargetLayer != UNDEFINED_LAYER, /* void */ );
if( aItem->Type() == PCB_TEXT_T && !static_cast<PCB_TEXT*>( aItem )->IsVisible() )
return;
std::vector<const SHAPE*> subshapes;
std::shared_ptr<SHAPE> shape = aItem->GetEffectiveShape( aRefLayer );
if( shape->HasIndexableSubshapes() )
shape->GetIndexableSubshapes( subshapes );
else
subshapes.push_back( shape.get() );
for( const SHAPE* subshape : subshapes )
{
if( dynamic_cast<const SHAPE_NULL*>( subshape ) )
continue;
BOX2I bbox = subshape->BBox();
bbox.Inflate( aWorstClearance );
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, subshape, shape );
m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape );
m_count++;
}
if( aItem->Type() == PCB_PAD_T && aItem->HasHole() )
{
std::shared_ptr<SHAPE_SEGMENT> hole = aItem->GetEffectiveHoleShape();
BOX2I bbox = hole->BBox();
bbox.Inflate( aWorstClearance );
const int mmin[2] = { bbox.GetX(), bbox.GetY() };
const int mmax[2] = { bbox.GetRight(), bbox.GetBottom() };
ITEM_WITH_SHAPE* itemShape = new ITEM_WITH_SHAPE( aItem, hole, shape );
m_tree[aTargetLayer]->Insert( mmin, mmax, itemShape );
m_count++;
}
}
/**
* Remove all items from the RTree.
*/
void clear()
{
for( auto tree : m_tree )
tree->RemoveAll();
m_count = 0;
}
bool CheckColliding( SHAPE* aRefShape, PCB_LAYER_ID aTargetLayer, int aClearance = 0,
std::function<bool( BOARD_ITEM*)> aFilter = nullptr ) const
{
BOX2I box = aRefShape->BBox();
box.Inflate( aClearance );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
int count = 0;
auto visit =
[&] ( ITEM_WITH_SHAPE* aItem ) -> bool
{
if( !aFilter || aFilter( aItem->parent ) )
{
int actual;
if( aRefShape->Collide( aItem->shape, aClearance, &actual ) )
{
count++;
return false;
}
}
return true;
};
this->m_tree[aTargetLayer]->Search( min, max, visit );
return count > 0;
}
/**
* This is a fast test which essentially does bounding-box overlap given a worst-case
* clearance. It's used when looking up the specific item-to-item clearance might be
* expensive and should be deferred till we know we have a possible hit.
*/
int QueryColliding( BOARD_ITEM* aRefItem, PCB_LAYER_ID aRefLayer, PCB_LAYER_ID aTargetLayer,
std::function<bool( BOARD_ITEM* )> aFilter = nullptr,
std::function<bool( BOARD_ITEM* )> aVisitor = nullptr,
int aClearance = 0 ) const
{
// keep track of BOARD_ITEMs that have already been found to collide (some items might
// be built of COMPOUND/triangulated shapes and a single subshape collision means we have
// a hit)
std::unordered_set<BOARD_ITEM*> collidingCompounds;
// keep track of results of client filter so we don't ask more than once for compound
// shapes
std::unordered_map<BOARD_ITEM*, bool> filterResults;
BOX2I box = aRefItem->GetBoundingBox();
box.Inflate( aClearance );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
std::shared_ptr<SHAPE> refShape = aRefItem->GetEffectiveShape( aRefLayer );
int count = 0;
auto visit =
[&]( ITEM_WITH_SHAPE* aItem ) -> bool
{
if( aItem->parent == aRefItem )
return true;
if( collidingCompounds.find( aItem->parent ) != collidingCompounds.end() )
return true;
bool filtered;
auto it = filterResults.find( aItem->parent );
if( it == filterResults.end() )
{
filtered = aFilter && !aFilter( aItem->parent );
filterResults[ aItem->parent ] = filtered;
}
else
{
filtered = it->second;
}
if( filtered )
return true;
if( refShape->Collide( aItem->shape, aClearance ) )
{
collidingCompounds.insert( aItem->parent );
count++;
if( aVisitor )
return aVisitor( aItem->parent );
}
return true;
};
this->m_tree[aTargetLayer]->Search( min, max, visit );
return count;
}
/**
* This one is for tessellated items. (All shapes in the tree will be from a single
* BOARD_ITEM.)
* It checks all items in the bbox overlap to find the minimal actual distance and
* position.
*/
bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer, int aClearance,
int* aActual, VECTOR2I* aPos ) const
{
BOX2I bbox = aBox;
bbox.Inflate( aClearance );
int min[2] = { bbox.GetX(), bbox.GetY() };
int max[2] = { bbox.GetRight(), bbox.GetBottom() };
bool collision = false;
int actual = INT_MAX;
VECTOR2I pos;
auto visit =
[&]( ITEM_WITH_SHAPE* aItem ) -> bool
{
int curActual;
VECTOR2I curPos;
if( aRefShape->Collide( aItem->shape, aClearance, &curActual, &curPos ) )
{
collision = true;
if( curActual < actual )
{
actual = curActual;
pos = curPos;
}
// Stop looking after we have a true collision
if( actual <= 0 )
return false;
}
return true;
};
this->m_tree[aLayer]->Search( min, max, visit );
if( collision )
{
if( aActual )
*aActual = std::max( 0, actual );
if( aPos )
*aPos = pos;
return true;
}
return false;
}
/**
* Quicker version of above that just reports a raw yes/no.
*/
bool QueryColliding( const BOX2I& aBox, SHAPE* aRefShape, PCB_LAYER_ID aLayer ) const
{
SHAPE_POLY_SET* poly = dynamic_cast<SHAPE_POLY_SET*>( aRefShape );
int min[2] = { aBox.GetX(), aBox.GetY() };
int max[2] = { aBox.GetRight(), aBox.GetBottom() };
bool collision = false;
// Special case the polygon case. Otherwise we'll call its Collide() method which will
// triangulate it as well and then do triangle/triangle collisions. This ends up being
// *much* slower than 3 segment Collide()s and a PointInside().
auto polyVisitor =
[&]( ITEM_WITH_SHAPE* aItem ) -> bool
{
const SHAPE* shape = aItem->shape;
wxASSERT( dynamic_cast<const SHAPE_POLY_SET::TRIANGULATED_POLYGON::TRI*>( shape ) );
auto tri = static_cast<const SHAPE_POLY_SET::TRIANGULATED_POLYGON::TRI*>( shape );
const SHAPE_LINE_CHAIN& outline = poly->Outline( 0 );
for( int ii = 0; ii < (int) tri->GetSegmentCount(); ++ii )
{
if( outline.Collide( tri->GetSegment( ii ) ) )
{
collision = true;
return false;
}
}
// Also must check for poly being completely inside the triangle
if( tri->PointInside( outline.CPoint( 0 ) ) )
{
collision = true;
return false;
}
return true;
};
auto visitor =
[&]( ITEM_WITH_SHAPE* aItem ) -> bool
{
if( aRefShape->Collide( aItem->shape, 0 ) )
{
collision = true;
return false;
}
return true;
};
if( poly && poly->OutlineCount() == 1 && poly->HoleCount( 0 ) == 0 )
this->m_tree[aLayer]->Search( min, max, polyVisitor );
else
this->m_tree[aLayer]->Search( min, max, visitor );
return collision;
}
/**
* Gets the BOARD_ITEMs that overlap the specified point/layer
* @param aPt Position on the tree
* @param aLayer Layer to search
* @return vector of overlapping BOARD_ITEMS*
*/
std::unordered_set<BOARD_ITEM*> GetObjectsAt( const VECTOR2I& aPt, PCB_LAYER_ID aLayer,
int aClearance = 0 )
{
std::unordered_set<BOARD_ITEM*> retval;
int min[2] = { aPt.x - aClearance, aPt.y - aClearance };
int max[2] = { aPt.x + aClearance, aPt.y + aClearance };
auto visitor =
[&]( ITEM_WITH_SHAPE* aItem ) -> bool
{
retval.insert( aItem->parent );
return true;
};
m_tree[aLayer]->Search( min, max, visitor );
return retval;
}
typedef std::pair<PCB_LAYER_ID, PCB_LAYER_ID> LAYER_PAIR;
struct PAIR_INFO
{
PAIR_INFO( LAYER_PAIR aPair, ITEM_WITH_SHAPE* aRef, ITEM_WITH_SHAPE* aTest ) :
layerPair( aPair ),
refItem( aRef ),
testItem( aTest )
{ };
LAYER_PAIR layerPair;
ITEM_WITH_SHAPE* refItem;
ITEM_WITH_SHAPE* testItem;
};
int QueryCollidingPairs( DRC_RTREE* aRefTree, std::vector<LAYER_PAIR> aLayerPairs,
std::function<bool( const LAYER_PAIR&, ITEM_WITH_SHAPE*,
ITEM_WITH_SHAPE*, bool* aCollision )> aVisitor,
int aMaxClearance,
std::function<bool(int, int )> aProgressReporter ) const
{
std::vector<PAIR_INFO> pairsToVisit;
for( LAYER_PAIR& layerPair : aLayerPairs )
{
const PCB_LAYER_ID refLayer = layerPair.first;
const PCB_LAYER_ID targetLayer = layerPair.second;
for( ITEM_WITH_SHAPE* refItem : aRefTree->OnLayer( refLayer ) )
{
BOX2I box = refItem->shape->BBox();
box.Inflate( aMaxClearance );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
auto visit =
[&]( ITEM_WITH_SHAPE* aItemToTest ) -> bool
{
// don't collide items against themselves
if( aItemToTest->parent == refItem->parent )
return true;
pairsToVisit.emplace_back( layerPair, refItem, aItemToTest );
return true;
};
this->m_tree[targetLayer]->Search( min, max, visit );
};
}
// keep track of BOARD_ITEMs pairs that have been already found to collide (some items
// might be build of COMPOUND/triangulated shapes and a single subshape collision
// means we have a hit)
std::unordered_map<PTR_PTR_CACHE_KEY, int> collidingCompounds;
int progress = 0;
int count = pairsToVisit.size();
for( const PAIR_INFO& pair : pairsToVisit )
{
if( !aProgressReporter( progress++, count ) )
break;
BOARD_ITEM* a = pair.refItem->parent;
BOARD_ITEM* b = pair.testItem->parent;
// store canonical order so we don't collide in both directions (a:b and b:a)
if( static_cast<void*>( a ) > static_cast<void*>( b ) )
std::swap( a, b );
// don't report multiple collisions for compound or triangulated shapes
if( collidingCompounds.count( { a, b } ) )
continue;
bool collisionDetected = false;
if( !aVisitor( pair.layerPair, pair.refItem, pair.testItem, &collisionDetected ) )
break;
if( collisionDetected )
collidingCompounds[ { a, b } ] = 1;
}
return 0;
}
/**
* Return the number of items in the tree.
*
* @return number of elements in the tree.
*/
size_t size() const
{
return m_count;
}
bool empty() const
{
return m_count == 0;
}
using iterator = typename drc_rtree::Iterator;
/**
* The DRC_LAYER struct provides a layer-specific auto-range iterator to the RTree. Using
* this struct, one can write lines like:
*
* for( auto item : rtree.OnLayer( In1_Cu ) )
*
* and iterate over only the RTree items that are on In1
*/
struct DRC_LAYER
{
DRC_LAYER( drc_rtree* aTree ) : layer_tree( aTree )
{
m_rect = { { INT_MIN, INT_MIN }, { INT_MAX, INT_MAX } };
};
DRC_LAYER( drc_rtree* aTree, const BOX2I& aRect ) : layer_tree( aTree )
{
m_rect = { { aRect.GetX(), aRect.GetY() },
{ aRect.GetRight(), aRect.GetBottom() } };
};
drc_rtree::Rect m_rect;
drc_rtree* layer_tree;
iterator begin()
{
return layer_tree->begin( m_rect );
}
iterator end()
{
return layer_tree->end( m_rect );
}
};
DRC_LAYER OnLayer( PCB_LAYER_ID aLayer ) const
{
return DRC_LAYER( m_tree[int( aLayer )] );
}
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const VECTOR2I& aPoint, int aAccuracy = 0 ) const
{
BOX2I rect( aPoint, VECTOR2I( 0, 0 ) );
rect.Inflate( aAccuracy );
return DRC_LAYER( m_tree[int( aLayer )], rect );
}
DRC_LAYER Overlapping( PCB_LAYER_ID aLayer, const BOX2I& aRect ) const
{
return DRC_LAYER( m_tree[int( aLayer )], aRect );
}
private:
drc_rtree* m_tree[PCB_LAYER_ID_COUNT];
size_t m_count;
};
#endif /* DRC_RTREE_H_ */