kicad/pcbnew/class_pad.cpp

1410 lines
42 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file class_pad.cpp
* D_PAD class implementation.
*/
#include <fctsys.h>
#include <trigo.h>
#include <macros.h>
#include <msgpanel.h>
#include <base_units.h>
#include <bitmaps.h>
#include <math/util.h> // for KiROUND
#include <eda_draw_frame.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_compound.h>
#include <pcbnew.h>
#include <view/view.h>
#include <class_board.h>
#include <class_module.h>
#include <class_drawsegment.h>
#include <connectivity/connectivity_data.h>
#include <geometry/polygon_test_point_inside.h>
#include <convert_to_biu.h>
#include <convert_basic_shapes_to_polygon.h>
#include <memory>
D_PAD::D_PAD( MODULE* parent ) :
BOARD_CONNECTED_ITEM( parent, PCB_PAD_T )
{
m_size.x = m_size.y = Mils2iu( 60 ); // Default pad size 60 mils.
m_drill.x = m_drill.y = Mils2iu( 30 ); // Default drill size 30 mils.
m_orient = 0; // Pad rotation in 1/10 degrees.
m_lengthPadToDie = 0;
if( m_Parent && m_Parent->Type() == PCB_MODULE_T )
{
m_pos = GetParent()->GetPosition();
}
SetShape( PAD_SHAPE_CIRCLE ); // Default pad shape is PAD_CIRCLE.
SetAnchorPadShape( PAD_SHAPE_CIRCLE ); // Default shape for custom shaped pads
// is PAD_CIRCLE.
SetDrillShape( PAD_DRILL_SHAPE_CIRCLE ); // Default pad drill shape is a circle.
m_attribute = PAD_ATTRIB_STANDARD; // Default pad type is NORMAL (thru hole)
SetProperty( PAD_PROP_NONE ); // no special fabrication property
m_localClearance = 0;
m_localSolderMaskMargin = 0;
m_localSolderPasteMargin = 0;
m_localSolderPasteMarginRatio = 0.0;
// Parameters for round rect only:
m_roundedCornerScale = 0.25; // from IPC-7351C standard
// Parameters for chamfered rect only:
m_chamferScale = 0.2; // Size of chamfer: ratio of smallest of X,Y size
m_chamferPositions = RECT_NO_CHAMFER; // No chamfered corner
m_zoneConnection = ZONE_CONNECTION::INHERITED; // Use parent setting by default
m_thermalWidth = 0; // Use parent setting by default
m_thermalGap = 0; // Use parent setting by default
m_customShapeClearanceArea = CUST_PAD_SHAPE_IN_ZONE_OUTLINE;
// Set layers mask to default for a standard thru hole pad.
m_layerMask = StandardMask();
SetSubRatsnest( 0 ); // used in ratsnest calculations
m_shapesDirty = true;
m_effectiveBoundingRadius = 0;
m_removeUnconnectedLayer = false;
m_keepTopBottomLayer = true;
}
D_PAD::D_PAD( const D_PAD& aOther ) :
BOARD_CONNECTED_ITEM( aOther.GetParent(), PCB_PAD_T )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
ImportSettingsFrom( aOther );
SetPadToDieLength( aOther.GetPadToDieLength() );
SetPosition( aOther.GetPosition() );
SetPos0( aOther.GetPos0() );
SetName( aOther.GetName() );
SetPinFunction( aOther.GetPinFunction() );
SetSubRatsnest( aOther.GetSubRatsnest() );
m_effectiveBoundingRadius = aOther.m_effectiveBoundingRadius;
m_removeUnconnectedLayer = aOther.m_removeUnconnectedLayer;
m_keepTopBottomLayer = aOther.m_keepTopBottomLayer;
const_cast<KIID&>( m_Uuid ) = aOther.m_Uuid;
}
D_PAD& D_PAD::operator=( const D_PAD &aOther )
{
BOARD_CONNECTED_ITEM::operator=( aOther );
ImportSettingsFrom( aOther );
SetPadToDieLength( aOther.GetPadToDieLength() );
SetPosition( aOther.GetPosition() );
SetPos0( aOther.GetPos0() );
SetName( aOther.GetName() );
SetPinFunction( aOther.GetPinFunction() );
SetSubRatsnest( aOther.GetSubRatsnest() );
m_effectiveBoundingRadius = aOther.m_effectiveBoundingRadius;
m_removeUnconnectedLayer = aOther.m_removeUnconnectedLayer;
m_keepTopBottomLayer = aOther.m_keepTopBottomLayer;
return *this;
}
LSET D_PAD::StandardMask()
{
static LSET saved = LSET::AllCuMask() | LSET( 2, F_Mask, B_Mask );
return saved;
}
LSET D_PAD::SMDMask()
{
static LSET saved( 3, F_Cu, F_Paste, F_Mask );
return saved;
}
LSET D_PAD::ConnSMDMask()
{
static LSET saved( 2, F_Cu, F_Mask );
return saved;
}
LSET D_PAD::UnplatedHoleMask()
{
static LSET saved = LSET( 4, F_Cu, B_Cu, F_Mask, B_Mask );
return saved;
}
LSET D_PAD::ApertureMask()
{
static LSET saved( 1, F_Paste );
return saved;
}
bool D_PAD::IsFlipped() const
{
if( GetParent() && GetParent()->GetLayer() == B_Cu )
return true;
return false;
}
bool D_PAD::IsPadOnLayer( LSET aLayers ) const
{
for( auto layer : aLayers.Seq() )
{
if( IsPadOnLayer( layer ) )
return true;
}
return false;
}
bool D_PAD::IsPadOnLayer( int aLayer ) const
{
BOARD* board = GetBoard();
if( !board )
return false;
/// We don't remove the copper from non-PTH pads
if( GetAttribute() != PAD_ATTRIB_STANDARD )
return IsOnLayer( static_cast<PCB_LAYER_ID>( aLayer ) );
/// Heatsink pads always get copper
if( GetProperty() == PAD_PROP_HEATSINK )
return IsOnLayer( static_cast<PCB_LAYER_ID>( aLayer ) );
if( !m_removeUnconnectedLayer )
return IsOnLayer( static_cast<PCB_LAYER_ID>( aLayer ) );
/// Plated through hole pads need copper on the top/bottom layers for proper soldering
/// Unless the user has removed them in the pad dialog
if( aLayer == F_Cu || aLayer == B_Cu )
return IsOnLayer( static_cast<PCB_LAYER_ID>( aLayer ) );
return board->GetConnectivity()->IsConnectedOnLayer( this, static_cast<int>( aLayer ),
{ PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T } );
}
int D_PAD::GetRoundRectCornerRadius() const
{
return KiROUND( std::min( m_size.x, m_size.y ) * m_roundedCornerScale );
}
void D_PAD::SetRoundRectCornerRadius( double aRadius )
{
int min_r = std::min( m_size.x, m_size.y );
if( min_r > 0 )
SetRoundRectRadiusRatio( aRadius / min_r );
}
void D_PAD::SetRoundRectRadiusRatio( double aRadiusScale )
{
m_roundedCornerScale = std::max( 0.0, std::min( aRadiusScale, 0.5 ) );
m_shapesDirty = true;
}
void D_PAD::SetChamferRectRatio( double aChamferScale )
{
m_chamferScale = std::max( 0.0, std::min( aChamferScale, 0.5 ) );
m_shapesDirty = true;
}
const std::shared_ptr<SHAPE_POLY_SET>& D_PAD::GetEffectivePolygon( PCB_LAYER_ID aLayer ) const
{
if( m_shapesDirty )
BuildEffectiveShapes( aLayer );
return m_effectivePolygon;
}
std::shared_ptr<SHAPE> D_PAD::GetEffectiveShape( PCB_LAYER_ID aLayer ) const
{
if( m_shapesDirty )
BuildEffectiveShapes( aLayer );
return m_effectiveShape;
}
const SHAPE_SEGMENT* D_PAD::GetEffectiveHoleShape() const
{
if( m_shapesDirty )
BuildEffectiveShapes( UNDEFINED_LAYER );
return m_effectiveHoleShape.get();
}
int D_PAD::GetBoundingRadius() const
{
if( m_shapesDirty )
BuildEffectiveShapes( UNDEFINED_LAYER );
return m_effectiveBoundingRadius;
}
void D_PAD::BuildEffectiveShapes( PCB_LAYER_ID aLayer ) const
{
m_effectiveShape = std::make_shared<SHAPE_COMPOUND>();
m_effectiveHoleShape = nullptr;
auto add = [this]( SHAPE* aShape )
{
m_effectiveShape->AddShape( aShape );
};
wxPoint shapePos = ShapePos(); // Fetch only once; rotation involves trig
PAD_SHAPE_T effectiveShape = GetShape();
if( GetShape() == PAD_SHAPE_CUSTOM )
effectiveShape = GetAnchorPadShape();
switch( effectiveShape )
{
case PAD_SHAPE_CIRCLE:
add( new SHAPE_CIRCLE( shapePos, m_size.x / 2 ) );
break;
case PAD_SHAPE_OVAL:
if( m_size.x == m_size.y ) // the oval pad is in fact a circle
add( new SHAPE_CIRCLE( shapePos, m_size.x / 2 ) );
else
{
wxSize half_size = m_size / 2;
int half_width = std::min( half_size.x, half_size.y );
wxPoint half_len( half_size.x - half_width, half_size.y - half_width );
RotatePoint( &half_len, m_orient );
add( new SHAPE_SEGMENT( shapePos - half_len, shapePos + half_len, half_width * 2 ) );
}
break;
case PAD_SHAPE_RECT:
if( m_orient == 0 || m_orient == 1800 )
{
add( new SHAPE_RECT( shapePos - m_size / 2, m_size.x, m_size.y ) );
break;
}
else if( m_orient == 900 || m_orient == -900 )
{
wxSize rot_size( m_size.y, m_size.x );
add( new SHAPE_RECT( shapePos - rot_size / 2, rot_size.x, rot_size.y ) );
break;
}
// Not at a cartesian angle; fall through to general case
KI_FALLTHROUGH;
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_ROUNDRECT:
{
int r = GetRoundRectCornerRadius();
wxPoint half_size( m_size.x / 2, m_size.y / 2 );
wxSize trap_delta( 0, 0 );
if( effectiveShape == PAD_SHAPE_ROUNDRECT )
{
half_size -= wxPoint( r, r );
// Avoid degenerated shapes (0 length segments) that always create issues
// For roundrect pad very near a circle, use only a circle
const int min_len = Millimeter2iu( 0.0001);
if( half_size.x < min_len && half_size.y < min_len )
{
add( new SHAPE_CIRCLE( shapePos, r ) );
break;
}
}
else if( effectiveShape == PAD_SHAPE_TRAPEZOID )
trap_delta = m_deltaSize / 2;
SHAPE_LINE_CHAIN corners;
corners.Append( -half_size.x - trap_delta.y, half_size.y + trap_delta.x );
corners.Append( half_size.x + trap_delta.y, half_size.y - trap_delta.x );
corners.Append( half_size.x - trap_delta.y, -half_size.y + trap_delta.x );
corners.Append( -half_size.x + trap_delta.y, -half_size.y - trap_delta.x );
corners.Rotate( -DECIDEG2RAD( m_orient ) );
corners.Move( shapePos );
add( new SHAPE_SIMPLE( corners ) );
if( effectiveShape == PAD_SHAPE_ROUNDRECT )
{
add( new SHAPE_SEGMENT( corners.CPoint( 0 ), corners.CPoint( 1 ), r * 2 ) );
add( new SHAPE_SEGMENT( corners.CPoint( 1 ), corners.CPoint( 2 ), r * 2 ) );
add( new SHAPE_SEGMENT( corners.CPoint( 2 ), corners.CPoint( 3 ), r * 2 ) );
add( new SHAPE_SEGMENT( corners.CPoint( 3 ), corners.CPoint( 0 ), r * 2 ) );
}
}
break;
case PAD_SHAPE_CHAMFERED_RECT:
{
SHAPE_POLY_SET outline;
auto board = GetBoard();
int maxError = ARC_HIGH_DEF;
if( board )
maxError = board->GetDesignSettings().m_MaxError;
TransformRoundChamferedRectToPolygon( outline, shapePos, GetSize(), m_orient,
GetRoundRectCornerRadius(), GetChamferRectRatio(),
GetChamferPositions(), maxError );
add( new SHAPE_SIMPLE( outline.COutline( 0 ) ) );
}
break;
default:
wxFAIL_MSG( "D_PAD::buildEffectiveShapes: Unsupported pad shape: "
+ PAD_SHAPE_T_asString( effectiveShape ) );
break;
}
if( GetShape() == PAD_SHAPE_CUSTOM )
{
for( const std::shared_ptr<DRAWSEGMENT>& primitive : m_editPrimitives )
{
for( SHAPE* shape : primitive->MakeEffectiveShapes() )
{
shape->Rotate( -DECIDEG2RAD( m_orient ) );
shape->Move( shapePos );
add( shape );
}
}
}
// Polygon
//
m_effectivePolygon = std::make_shared<SHAPE_POLY_SET>();
TransformShapeWithClearanceToPolygon( *m_effectivePolygon, aLayer, 0 );
// Bounding box and radius
//
// PADSTACKS TODO: these will both need to cycle through all layers to get the largest
// values....
//
m_effectiveBoundingRadius = 0;
for( int cnt = 0; cnt < m_effectivePolygon->OutlineCount(); ++cnt )
{
const SHAPE_LINE_CHAIN& poly = m_effectivePolygon->COutline( cnt );
for( int ii = 0; ii < poly.PointCount(); ++ii )
{
int dist = KiROUND( ( poly.CPoint( ii ) - m_pos ).EuclideanNorm() );
m_effectiveBoundingRadius = std::max( m_effectiveBoundingRadius, dist );
}
}
m_effectiveBoundingRadius += 1;
BOX2I bbox = m_effectiveShape->BBox();
m_effectiveBoundingBox = EDA_RECT( (wxPoint) bbox.GetPosition(),
wxSize( bbox.GetWidth(), bbox.GetHeight() ) );
// Hole shape
//
wxSize half_size = m_drill / 2;
int half_width = std::min( half_size.x, half_size.y );
wxPoint half_len( half_size.x - half_width, half_size.y - half_width );
RotatePoint( &half_len, m_orient );
m_effectiveHoleShape = std::make_shared<SHAPE_SEGMENT>( m_pos - half_len, m_pos + half_len,
half_width * 2 );
// All done
//
m_shapesDirty = false;
}
const EDA_RECT D_PAD::GetBoundingBox() const
{
if( m_shapesDirty )
BuildEffectiveShapes( UNDEFINED_LAYER );
return m_effectiveBoundingBox;
}
void D_PAD::SetDrawCoord()
{
MODULE* module = (MODULE*) m_Parent;
m_pos = m_pos0;
if( module == NULL )
return;
double angle = module->GetOrientation();
RotatePoint( &m_pos.x, &m_pos.y, angle );
m_pos += module->GetPosition();
m_shapesDirty = true;
}
void D_PAD::SetLocalCoord()
{
MODULE* module = (MODULE*) m_Parent;
if( module == NULL )
{
m_pos0 = m_pos;
return;
}
m_pos0 = m_pos - module->GetPosition();
RotatePoint( &m_pos0.x, &m_pos0.y, -module->GetOrientation() );
}
void D_PAD::SetAttribute( PAD_ATTR_T aAttribute )
{
m_attribute = aAttribute;
if( aAttribute == PAD_ATTRIB_SMD )
m_drill = wxSize( 0, 0 );
m_shapesDirty = true;
}
void D_PAD::SetProperty( PAD_PROP_T aProperty )
{
m_property = aProperty;
m_shapesDirty = true;
}
void D_PAD::SetOrientation( double aAngle )
{
NORMALIZE_ANGLE_POS( aAngle );
m_orient = aAngle;
m_shapesDirty = true;
}
void D_PAD::Flip( const wxPoint& aCentre, bool aFlipLeftRight )
{
if( aFlipLeftRight )
{
MIRROR( m_pos.x, aCentre.x );
MIRROR( m_pos0.x, 0 );
MIRROR( m_offset.x, 0 );
MIRROR( m_deltaSize.x, 0 );
}
else
{
MIRROR( m_pos.y, aCentre.y );
MIRROR( m_pos0.y, 0 );
MIRROR( m_offset.y, 0 );
MIRROR( m_deltaSize.y, 0 );
}
SetOrientation( -GetOrientation() );
auto mirrorBitFlags = []( int& aBitfield, int a, int b )
{
bool temp = aBitfield & a;
if( aBitfield & b )
aBitfield |= a;
else
aBitfield &= ~a;
if( temp )
aBitfield |= b;
else
aBitfield &= ~b;
};
if( aFlipLeftRight )
{
mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT );
mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_BOTTOM_LEFT, RECT_CHAMFER_BOTTOM_RIGHT );
}
else
{
mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_BOTTOM_LEFT );
mirrorBitFlags( m_chamferPositions, RECT_CHAMFER_TOP_RIGHT, RECT_CHAMFER_BOTTOM_RIGHT );
}
// flip pads layers
// PADS items are currently on all copper layers, or
// currently, only on Front or Back layers.
// So the copper layers count is not taken in account
SetLayerSet( FlipLayerMask( m_layerMask ) );
// Flip the basic shapes, in custom pads
FlipPrimitives( aFlipLeftRight );
m_shapesDirty = true;
}
// Flip (mirror) the basic shapes (primitives), in custom pads
void D_PAD::FlipPrimitives( bool aFlipLeftRight )
{
for( std::shared_ptr<DRAWSEGMENT>& primitive : m_editPrimitives )
primitive->Flip( wxPoint( 0, 0 ), aFlipLeftRight );
m_shapesDirty = true;
}
// Returns the position of the pad.
wxPoint D_PAD::ShapePos() const
{
if( m_offset.x == 0 && m_offset.y == 0 )
return m_pos;
wxPoint loc_offset = m_offset;
RotatePoint( &loc_offset, m_orient );
wxPoint shape_pos = m_pos + loc_offset;
return shape_pos;
}
int D_PAD::GetLocalClearanceOverrides( wxString* aSource ) const
{
// A pad can have specific clearance that overrides its NETCLASS clearance value
if( GetLocalClearance() )
return GetLocalClearance( aSource );
// A footprint can have a specific clearance value
if( GetParent() && GetParent()->GetLocalClearance() )
return GetParent()->GetLocalClearance( aSource );
return 0;
}
int D_PAD::GetLocalClearance( wxString* aSource ) const
{
if( aSource )
*aSource = wxString::Format( _( "pad %s" ), GetName() );
return m_localClearance;
}
// Mask margins handling:
int D_PAD::GetSolderMaskMargin() const
{
// The pad inherits the margin only to calculate a default shape,
// therefore only if it is also a copper layer
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only
bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any();
if( !isOnCopperLayer )
return 0;
int margin = m_localSolderMaskMargin;
MODULE* module = GetParent();
if( module )
{
if( margin == 0 )
{
if( module->GetLocalSolderMaskMargin() )
margin = module->GetLocalSolderMaskMargin();
}
if( margin == 0 )
{
BOARD* brd = GetBoard();
if( brd )
margin = brd->GetDesignSettings().m_SolderMaskMargin;
}
}
// ensure mask have a size always >= 0
if( margin < 0 )
{
int minsize = -std::min( m_size.x, m_size.y ) / 2;
if( margin < minsize )
margin = minsize;
}
return margin;
}
wxSize D_PAD::GetSolderPasteMargin() const
{
// The pad inherits the margin only to calculate a default shape,
// therefore only if it is also a copper layer.
// Pads defined only on mask layers (and perhaps on other tech layers) use the shape
// defined by the pad settings only
bool isOnCopperLayer = ( m_layerMask & LSET::AllCuMask() ).any();
if( !isOnCopperLayer )
return wxSize( 0, 0 );
int margin = m_localSolderPasteMargin;
double mratio = m_localSolderPasteMarginRatio;
MODULE* module = GetParent();
if( module )
{
if( margin == 0 )
margin = module->GetLocalSolderPasteMargin();
auto brd = GetBoard();
if( margin == 0 && brd )
{
margin = brd->GetDesignSettings().m_SolderPasteMargin;
}
if( mratio == 0.0 )
mratio = module->GetLocalSolderPasteMarginRatio();
if( mratio == 0.0 && brd )
{
mratio = brd->GetDesignSettings().m_SolderPasteMarginRatio;
}
}
wxSize pad_margin;
pad_margin.x = margin + KiROUND( m_size.x * mratio );
pad_margin.y = margin + KiROUND( m_size.y * mratio );
// ensure mask have a size always >= 0
if( pad_margin.x < -m_size.x / 2 )
pad_margin.x = -m_size.x / 2;
if( pad_margin.y < -m_size.y / 2 )
pad_margin.y = -m_size.y / 2;
return pad_margin;
}
ZONE_CONNECTION D_PAD::GetEffectiveZoneConnection( wxString* aSource ) const
{
MODULE* module = GetParent();
if( m_zoneConnection == ZONE_CONNECTION::INHERITED && module )
{
if( aSource )
*aSource = _( "parent footprint" );
return module->GetZoneConnection();
}
else
{
if( aSource )
*aSource = _( "pad" );
return m_zoneConnection;
}
}
int D_PAD::GetEffectiveThermalSpokeWidth( wxString* aSource ) const
{
MODULE* module = GetParent();
if( m_thermalWidth == 0 && module )
{
if( aSource )
*aSource = _( "parent footprint" );
return module->GetThermalWidth();
}
if( aSource )
*aSource = _( "pad" );
return m_thermalWidth;
}
int D_PAD::GetEffectiveThermalGap( wxString* aSource ) const
{
MODULE* module = GetParent();
if( m_thermalGap == 0 && module )
{
if( aSource )
*aSource = _( "parent footprint" );
return module->GetThermalGap();
}
if( aSource )
*aSource = _( "pad" );
return m_thermalGap;
}
void D_PAD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
EDA_UNITS units = aFrame->GetUserUnits();
wxString msg, msg2;
BOARD* board = GetBoard();
BOARD_DESIGN_SETTINGS& bds = board->GetDesignSettings();
MODULE* module = (MODULE*) m_Parent;
if( module )
aList.emplace_back( _( "Footprint" ), module->GetReference(), DARKCYAN );
aList.emplace_back( _( "Pad" ), m_name, BROWN );
if( !GetPinFunction().IsEmpty() )
aList.emplace_back( _( "Pin Name" ), GetPinFunction(), BROWN );
aList.emplace_back( _( "Net" ), UnescapeString( GetNetname() ), DARKCYAN );
// Display the netclass name (a pad having a netcode = 0 (no net) use the
// default netclass for clearance):
if( m_netinfo->GetNet() <= 0 )
msg = bds.GetDefault()->GetName();
else
msg = GetNetClassName();
aList.emplace_back( _( "NetClass" ), msg, CYAN );
aList.emplace_back( _( "Layer" ), LayerMaskDescribe(), DARKGREEN );
// Show the pad shape, attribute and property
wxString props = ShowPadAttr();
if( GetProperty() != PAD_PROP_NONE )
props += ',';
switch( GetProperty() )
{
case PAD_PROP_NONE: break;
case PAD_PROP_BGA: props += _("BGA" ); break;
case PAD_PROP_FIDUCIAL_GLBL: props += _("Fiducial global" ); break;
case PAD_PROP_FIDUCIAL_LOCAL: props += _("Fiducial local" ); break;
case PAD_PROP_TESTPOINT: props += _("Test point" ); break;
case PAD_PROP_HEATSINK: props += _("Heat sink" ); break;
case PAD_PROP_CASTELLATED: props += _("Castellated" ); break;
}
aList.emplace_back( ShowPadShape(), props, DARKGREEN );
if( (GetShape() == PAD_SHAPE_CIRCLE || GetShape() == PAD_SHAPE_OVAL )
&& m_size.x == m_size.y )
{
msg = MessageTextFromValue( units, m_size.x, true );
aList.emplace_back( _( "Diameter" ), msg, RED );
}
else
{
msg = MessageTextFromValue( units, m_size.x, true );
aList.emplace_back( _( "Width" ), msg, RED );
msg = MessageTextFromValue( units, m_size.y, true );
aList.emplace_back( _( "Height" ), msg, RED );
}
double module_orient_degrees = module ? module->GetOrientationDegrees() : 0;
double pad_orient_degrees = GetOrientationDegrees() - module_orient_degrees;
pad_orient_degrees = NormalizeAngleDegrees( pad_orient_degrees, -180.0, +180.0 );
if( module_orient_degrees != 0.0 )
msg.Printf( wxT( "%.2f(+ %.2f)" ), pad_orient_degrees, module_orient_degrees );
else
msg.Printf( wxT( "%.1f" ), GetOrientationDegrees() );
aList.push_back( MSG_PANEL_ITEM( _( "Rotation" ), msg, LIGHTBLUE ) );
if( GetPadToDieLength() )
{
msg = MessageTextFromValue(units, GetPadToDieLength(), true );
aList.emplace_back( _( "Length in Package" ), msg, CYAN );
}
msg = MessageTextFromValue( units, m_drill.x, true );
if( GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
{
aList.emplace_back( _( "Drill" ), msg, RED );
}
else
{
msg = MessageTextFromValue( units, m_drill.x, true )
+ wxT( "/" )
+ MessageTextFromValue( units, m_drill.y, true );
aList.emplace_back( _( "Drill X / Y" ), msg, RED );
}
wxString source;
int clearance = GetClearance( GetLayer(), nullptr, &source );
msg.Printf( _( "Min Clearance: %s" ), MessageTextFromValue( units, clearance, true ) );
msg2.Printf( _( "(from %s)" ), source );
aList.emplace_back( msg, msg2, BLACK );
}
bool D_PAD::HitTest( const wxPoint& aPosition, int aAccuracy ) const
{
VECTOR2I delta = aPosition - GetPosition();
int boundingRadius = GetBoundingRadius() + aAccuracy;
if( delta.SquaredEuclideanNorm() > SEG::Square( boundingRadius ) )
return false;
return GetEffectivePolygon()->Contains( aPosition, -1, aAccuracy );
}
bool D_PAD::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
auto getArea = []( const SHAPE_POLY_SET& aPoly ) -> double
{
return aPoly.OutlineCount() ? aPoly.COutline( 0 ).Area() : 0;
};
EDA_RECT arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
EDA_RECT bbox = GetBoundingBox();
if( !arect.Intersects( bbox ) )
return false;
// This covers total containment for all test cases
if( arect.Contains( bbox ) )
return true;
SHAPE_POLY_SET selRect;
selRect.NewOutline();
selRect.Append( arect.GetOrigin() );
selRect.Append( VECTOR2I( arect.GetRight(), arect.GetTop() ) );
selRect.Append( VECTOR2I( arect.GetRight(), arect.GetBottom() ) );
selRect.Append( VECTOR2I( arect.GetLeft(), arect.GetBottom() ) );
selRect.BooleanIntersection( *GetEffectivePolygon(), SHAPE_POLY_SET::PM_FAST );
double padArea = getArea( *GetEffectivePolygon() );
double intersection = getArea( selRect );
if( intersection > ( padArea * 0.99 ) )
return true;
else
return !aContained && intersection > 0;
}
int D_PAD::Compare( const D_PAD* padref, const D_PAD* padcmp )
{
int diff;
if( ( diff = padref->GetShape() - padcmp->GetShape() ) != 0 )
return diff;
if( ( diff = padref->GetDrillShape() - padcmp->GetDrillShape() ) != 0)
return diff;
if( ( diff = padref->m_drill.x - padcmp->m_drill.x ) != 0 )
return diff;
if( ( diff = padref->m_drill.y - padcmp->m_drill.y ) != 0 )
return diff;
if( ( diff = padref->m_size.x - padcmp->m_size.x ) != 0 )
return diff;
if( ( diff = padref->m_size.y - padcmp->m_size.y ) != 0 )
return diff;
if( ( diff = padref->m_offset.x - padcmp->m_offset.x ) != 0 )
return diff;
if( ( diff = padref->m_offset.y - padcmp->m_offset.y ) != 0 )
return diff;
if( ( diff = padref->m_deltaSize.x - padcmp->m_deltaSize.x ) != 0 )
return diff;
if( ( diff = padref->m_deltaSize.y - padcmp->m_deltaSize.y ) != 0 )
return diff;
// TODO: test custom shapes
// Dick: specctra_export needs this
// Lorenzo: gencad also needs it to implement padstacks!
#if __cplusplus >= 201103L
long long d = padref->m_layerMask.to_ullong() - padcmp->m_layerMask.to_ullong();
if( d < 0 )
return -1;
else if( d > 0 )
return 1;
return 0;
#else
// these strings are not typically constructed, since we don't get here often.
std::string s1 = padref->m_layerMask.to_string();
std::string s2 = padcmp->m_layerMask.to_string();
return s1.compare( s2 );
#endif
}
void D_PAD::Rotate( const wxPoint& aRotCentre, double aAngle )
{
RotatePoint( &m_pos, aRotCentre, aAngle );
m_orient = NormalizeAngle360Min( m_orient + aAngle );
SetLocalCoord();
m_shapesDirty = true;
}
wxString D_PAD::ShowPadShape() const
{
switch( GetShape() )
{
case PAD_SHAPE_CIRCLE: return _( "Circle" );
case PAD_SHAPE_OVAL: return _( "Oval" );
case PAD_SHAPE_RECT: return _( "Rect" );
case PAD_SHAPE_TRAPEZOID: return _( "Trap" );
case PAD_SHAPE_ROUNDRECT: return _( "Roundrect" );
case PAD_SHAPE_CHAMFERED_RECT: return _( "Chamferedrect" );
case PAD_SHAPE_CUSTOM: return _( "CustomShape" );
default: return wxT( "???" );
}
}
wxString D_PAD::ShowPadAttr() const
{
switch( GetAttribute() )
{
case PAD_ATTRIB_STANDARD: return _( "Std" );
case PAD_ATTRIB_SMD: return _( "SMD" );
case PAD_ATTRIB_CONN: return _( "Conn" );
case PAD_ATTRIB_HOLE_NOT_PLATED: return _( "Not Plated" );
default: return wxT( "???" );
}
}
wxString D_PAD::GetSelectMenuText( EDA_UNITS aUnits ) const
{
if( GetName().IsEmpty() )
{
return wxString::Format( _( "Pad of %s on %s" ),
GetParent()->GetReference(),
LayerMaskDescribe() );
}
else
{
return wxString::Format( _( "Pad %s of %s on %s" ),
GetName(),
GetParent()->GetReference(),
LayerMaskDescribe() );
}
}
BITMAP_DEF D_PAD::GetMenuImage() const
{
return pad_xpm;
}
EDA_ITEM* D_PAD::Clone() const
{
return new D_PAD( *this );
}
bool D_PAD::PadShouldBeNPTH() const
{
return( m_attribute == PAD_ATTRIB_STANDARD
&& m_drill.x >= m_size.x && m_drill.y >= m_size.y );
}
void D_PAD::ViewGetLayers( int aLayers[], int& aCount ) const
{
aCount = 0;
// These 2 types of pads contain a hole
if( m_attribute == PAD_ATTRIB_STANDARD )
aLayers[aCount++] = LAYER_PADS_PLATEDHOLES;
if( m_attribute == PAD_ATTRIB_HOLE_NOT_PLATED )
aLayers[aCount++] = LAYER_NON_PLATEDHOLES;
if( IsOnLayer( F_Cu ) && IsOnLayer( B_Cu ) )
{
// Multi layer pad
aLayers[aCount++] = LAYER_PADS_TH;
aLayers[aCount++] = LAYER_PADS_NETNAMES;
}
else if( IsOnLayer( F_Cu ) )
{
aLayers[aCount++] = LAYER_PAD_FR;
// Is this a PTH pad that has only front copper? If so, we need to also display the
// net name on the PTH netname layer so that it isn't blocked by the drill hole.
if( m_attribute == PAD_ATTRIB_STANDARD )
aLayers[aCount++] = LAYER_PADS_NETNAMES;
else
aLayers[aCount++] = LAYER_PAD_FR_NETNAMES;
}
else if( IsOnLayer( B_Cu ) )
{
aLayers[aCount++] = LAYER_PAD_BK;
// Is this a PTH pad that has only back copper? If so, we need to also display the
// net name on the PTH netname layer so that it isn't blocked by the drill hole.
if( m_attribute == PAD_ATTRIB_STANDARD )
aLayers[aCount++] = LAYER_PADS_NETNAMES;
else
aLayers[aCount++] = LAYER_PAD_BK_NETNAMES;
}
else
{
// Internal layers only. (Not yet supported in GUI, but is being used by Python
// footprint generators and will be needed anyway once pad stacks are supported.)
for ( int internal = In1_Cu; internal < In30_Cu; ++internal )
{
if( IsOnLayer( (PCB_LAYER_ID) internal ) )
aLayers[aCount++] = internal;
}
}
// Check non-copper layers. This list should include all the layers that the
// footprint editor allows a pad to be placed on.
static const PCB_LAYER_ID layers_mech[] = { F_Mask, B_Mask, F_Paste, B_Paste,
F_Adhes, B_Adhes, F_SilkS, B_SilkS, Dwgs_User, Eco1_User, Eco2_User };
for( PCB_LAYER_ID each_layer : layers_mech )
{
if( IsOnLayer( each_layer ) )
aLayers[aCount++] = each_layer;
}
#ifdef __WXDEBUG__
if( aCount == 0 ) // Should not occur
{
wxString msg;
msg.Printf( wxT( "footprint %s, pad %s: could not find valid layer for pad" ),
GetParent() ? GetParent()->GetReference() : "<null>",
GetName().IsEmpty() ? "(unnamed)" : GetName() );
wxLogWarning( msg );
}
#endif
}
double D_PAD::ViewGetLOD( int aLayer, KIGFX::VIEW* aView ) const
{
if( aView->GetPrintMode() > 0 ) // In printing mode the pad is always drawable
return 0.0;
constexpr double HIDE = std::numeric_limits<double>::max();
BOARD* board = GetBoard();
// Meta control for hiding all pads
if( !aView->IsLayerVisible( LAYER_PADS ) )
return HIDE;
// Handle Render tab switches
if( ( GetAttribute() == PAD_ATTRIB_STANDARD || GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED )
&& !aView->IsLayerVisible( LAYER_PADS_TH ) )
return HIDE;
if( !IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_FR ) )
return HIDE;
if( IsFlipped() && !aView->IsLayerVisible( LAYER_MOD_BK ) )
return HIDE;
if( IsFrontLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PAD_FR ) )
return HIDE;
if( IsBackLayer( (PCB_LAYER_ID) aLayer ) && !aView->IsLayerVisible( LAYER_PAD_BK ) )
return HIDE;
// Only draw the pad if at least one of the layers it crosses is being displayed
if( board && !IsPadOnLayer( board->GetVisibleLayers() ) )
return HIDE;
// Netnames will be shown only if zoom is appropriate
if( IsNetnameLayer( aLayer ) )
{
int divisor = std::min( GetBoundingBox().GetWidth(), GetBoundingBox().GetHeight() );
// Pad sizes can be zero briefly when someone is typing a number like "0.5"
// in the pad properties dialog
if( divisor == 0 )
return HIDE;
return ( double ) Millimeter2iu( 5 ) / divisor;
}
// Other layers are shown without any conditions
return 0.0;
}
const BOX2I D_PAD::ViewBBox() const
{
// Bounding box includes soldermask too. Remember mask and/or paste
// margins can be < 0
int solderMaskMargin = std::max( GetSolderMaskMargin(), 0 );
VECTOR2I solderPasteMargin = VECTOR2D( GetSolderPasteMargin() );
EDA_RECT bbox = GetBoundingBox();
// Look for the biggest possible bounding box
int xMargin = std::max( solderMaskMargin, solderPasteMargin.x );
int yMargin = std::max( solderMaskMargin, solderPasteMargin.y );
return BOX2I( VECTOR2I( bbox.GetOrigin() ) - VECTOR2I( xMargin, yMargin ),
VECTOR2I( bbox.GetSize() ) + VECTOR2I( 2 * xMargin, 2 * yMargin ) );
}
void D_PAD::ImportSettingsFrom( const D_PAD& aMasterPad )
{
SetShape( aMasterPad.GetShape() );
SetLayerSet( aMasterPad.GetLayerSet() );
SetAttribute( aMasterPad.GetAttribute() );
SetProperty( aMasterPad.GetProperty() );
// I am not sure the m_LengthPadToDie must be imported, because this is
// a parameter really specific to a given pad (JPC).
// So this is currently non imported
#if 0
SetPadToDieLength( aMasterPad.GetPadToDieLength() );
#endif
// The pad orientation, for historical reasons is the
// pad rotation + parent rotation.
// So we have to manage this parent rotation
double pad_rot = aMasterPad.GetOrientation();
if( aMasterPad.GetParent() )
pad_rot -= aMasterPad.GetParent()->GetOrientation();
if( GetParent() )
pad_rot += GetParent()->GetOrientation();
SetOrientation( pad_rot );
SetSize( aMasterPad.GetSize() );
SetDelta( wxSize( 0, 0 ) );
SetOffset( aMasterPad.GetOffset() );
SetDrillSize( aMasterPad.GetDrillSize() );
SetDrillShape( aMasterPad.GetDrillShape() );
SetRoundRectRadiusRatio( aMasterPad.GetRoundRectRadiusRatio() );
SetChamferRectRatio( aMasterPad.GetChamferRectRatio() );
SetChamferPositions( aMasterPad.GetChamferPositions() );
switch( aMasterPad.GetShape() )
{
case PAD_SHAPE_TRAPEZOID:
SetDelta( aMasterPad.GetDelta() );
break;
case PAD_SHAPE_CIRCLE:
// ensure size.y == size.x
SetSize( wxSize( GetSize().x, GetSize().x ) );
break;
default:
;
}
switch( aMasterPad.GetAttribute() )
{
case PAD_ATTRIB_SMD:
case PAD_ATTRIB_CONN:
// These pads do not have hole (they are expected to be only on one
// external copper layer)
SetDrillSize( wxSize( 0, 0 ) );
break;
default:
;
}
// copy also local settings:
SetLocalClearance( aMasterPad.GetLocalClearance() );
SetLocalSolderMaskMargin( aMasterPad.GetLocalSolderMaskMargin() );
SetLocalSolderPasteMargin( aMasterPad.GetLocalSolderPasteMargin() );
SetLocalSolderPasteMarginRatio( aMasterPad.GetLocalSolderPasteMarginRatio() );
SetZoneConnection( aMasterPad.GetEffectiveZoneConnection() );
SetThermalSpokeWidth( aMasterPad.GetThermalSpokeWidth() );
SetThermalGap( aMasterPad.GetThermalGap() );
SetCustomShapeInZoneOpt( aMasterPad.GetCustomShapeInZoneOpt() );
// Add or remove custom pad shapes:
ReplacePrimitives( aMasterPad.GetPrimitives() );
SetAnchorPadShape( aMasterPad.GetAnchorPadShape() );
m_shapesDirty = true;
}
void D_PAD::SwapData( BOARD_ITEM* aImage )
{
assert( aImage->Type() == PCB_PAD_T );
std::swap( *((MODULE*) this), *((MODULE*) aImage) );
}
static struct PAD_DESC
{
PAD_DESC()
{
ENUM_MAP<PAD_ATTR_T>::Instance()
.Map( PAD_ATTRIB_STANDARD, _( "Through-hole" ) )
.Map( PAD_ATTRIB_SMD, _( "SMD" ) )
.Map( PAD_ATTRIB_CONN, _( "Edge connector" ) )
.Map( PAD_ATTRIB_HOLE_NOT_PLATED, _( "NPTH, mechanical" ) );
ENUM_MAP<PAD_SHAPE_T>::Instance()
.Map( PAD_SHAPE_CIRCLE, _( "Circle" ) )
.Map( PAD_SHAPE_RECT, _( "Rectangle" ) )
.Map( PAD_SHAPE_OVAL, _( "Oval" ) )
.Map( PAD_SHAPE_TRAPEZOID, _( "Trapezoid" ) )
.Map( PAD_SHAPE_ROUNDRECT, _( "Rounded rectangle" ) )
.Map( PAD_SHAPE_CHAMFERED_RECT, _( "Chamfered rectangle" ) )
.Map( PAD_SHAPE_CUSTOM, _( "Custom" ) );
ENUM_MAP<PAD_PROP_T>::Instance()
.Map( PAD_PROP_NONE, _( "None" ) )
.Map( PAD_PROP_BGA, _( "BGA pad" ) )
.Map( PAD_PROP_FIDUCIAL_GLBL, _( "Fiducial, global to board" ) )
.Map( PAD_PROP_FIDUCIAL_LOCAL, _( "Fiducial, local to footprint" ) )
.Map( PAD_PROP_TESTPOINT, _( "Test point pad" ) )
.Map( PAD_PROP_HEATSINK, _( "Heatsink pad" ) )
.Map( PAD_PROP_CASTELLATED, _( "Castellated pad" ) );
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( D_PAD );
propMgr.InheritsAfter( TYPE_HASH( D_PAD ), TYPE_HASH( BOARD_CONNECTED_ITEM ) );
auto padType = new PROPERTY_ENUM<D_PAD, PAD_ATTR_T>( _( "Pad Type" ),
&D_PAD::SetAttribute, &D_PAD::GetAttribute );
propMgr.AddProperty( padType );
auto shape = new PROPERTY_ENUM<D_PAD, PAD_SHAPE_T>( _( "Shape" ),
&D_PAD::SetShape, &D_PAD::GetShape );
propMgr.AddProperty( shape );
propMgr.AddProperty( new PROPERTY<D_PAD, wxString>( _( "Name" ),
&D_PAD::SetName, &D_PAD::GetName ) );
propMgr.AddProperty( new PROPERTY<D_PAD, double>( _( "Orientation" ),
&D_PAD::SetOrientationDegrees, &D_PAD::GetOrientationDegrees,
PROPERTY_DISPLAY::DEGREE ) );
propMgr.AddProperty( new PROPERTY<D_PAD, int>( _( "Pad To Die Length" ),
&D_PAD::SetPadToDieLength, &D_PAD::GetPadToDieLength,
PROPERTY_DISPLAY::DISTANCE ) );
propMgr.AddProperty( new PROPERTY<D_PAD, int>( _( "Local Soldermask Margin" ),
&D_PAD::SetLocalSolderMaskMargin, &D_PAD::GetLocalSolderMaskMargin,
PROPERTY_DISPLAY::DISTANCE ) );
propMgr.AddProperty( new PROPERTY<D_PAD, int>( _( "Local Solderpaste Margin" ),
&D_PAD::SetLocalSolderPasteMargin, &D_PAD::GetLocalSolderPasteMargin,
PROPERTY_DISPLAY::DISTANCE ) );
propMgr.AddProperty( new PROPERTY<D_PAD, double>( _( "Local Solderpaste Margin Ratio" ),
&D_PAD::SetLocalSolderPasteMarginRatio, &D_PAD::GetLocalSolderPasteMarginRatio ) );
propMgr.AddProperty( new PROPERTY<D_PAD, int>( _( "Thermal Relief Spoke Width" ),
&D_PAD::SetThermalSpokeWidth, &D_PAD::GetThermalSpokeWidth,
PROPERTY_DISPLAY::DISTANCE ) );
propMgr.AddProperty( new PROPERTY<D_PAD, int>( _( "Thermal Relief" ),
&D_PAD::SetThermalGap, &D_PAD::GetThermalGap,
PROPERTY_DISPLAY::DISTANCE ) );
propMgr.AddProperty( new PROPERTY_ENUM<D_PAD, PAD_PROP_T>( _( "Fabrication Property" ),
&D_PAD::SetProperty, &D_PAD::GetProperty ) );
auto roundRadiusRatio = new PROPERTY<D_PAD, double>( _( "Round Radius Ratio" ),
&D_PAD::SetRoundRectRadiusRatio, &D_PAD::GetRoundRectRadiusRatio );
roundRadiusRatio->SetAvailableFunc(
[=]( INSPECTABLE* aItem ) -> bool
{
return aItem->Get( shape ) == PAD_SHAPE_ROUNDRECT;
} );
propMgr.AddProperty( roundRadiusRatio );
propMgr.AddProperty( new PROPERTY<D_PAD, int>( _( "Local Clearance" ),
&D_PAD::SetLocalClearance, &D_PAD::GetLocalClearance,
PROPERTY_DISPLAY::DISTANCE ) );
// TODO delta, size, drill size, dirill shape offset, layerset, zone connection
}
} _PAD_DESC;
ENUM_TO_WXANY( PAD_SHAPE_T );
ENUM_TO_WXANY( PAD_PROP_T );