kicad/pcbnew/router/pns_line_placer.cpp

1759 lines
44 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2017 CERN
* Copyright (C) 2016-2020 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <core/optional.h>
#include <memory>
#include "pns_arc.h"
#include "pns_debug_decorator.h"
#include "pns_line_placer.h"
#include "pns_node.h"
#include "pns_router.h"
#include "pns_shove.h"
#include "pns_solid.h"
#include "pns_topology.h"
#include "pns_walkaround.h"
namespace PNS {
LINE_PLACER::LINE_PLACER( ROUTER* aRouter ) :
PLACEMENT_ALGO( aRouter )
{
m_initial_direction = DIRECTION_45::N;
m_world = NULL;
m_shove = NULL;
m_currentNode = NULL;
m_idle = true;
// Init temporary variables (do not leave uninitialized members)
m_lastNode = NULL;
m_placingVia = false;
m_currentNet = 0;
m_currentLayer = 0;
m_currentMode = RM_MarkObstacles;
m_startItem = NULL;
m_chainedPlacement = false;
m_orthoMode = false;
m_placementCorrect = false;
}
LINE_PLACER::~LINE_PLACER()
{
}
void LINE_PLACER::setWorld( NODE* aWorld )
{
m_world = aWorld;
}
const VIA LINE_PLACER::makeVia( const VECTOR2I& aP )
{
const LAYER_RANGE layers( m_sizes.GetLayerTop(), m_sizes.GetLayerBottom() );
return VIA( aP, layers, m_sizes.ViaDiameter(), m_sizes.ViaDrill(), -1, m_sizes.ViaType() );
}
bool LINE_PLACER::ToggleVia( bool aEnabled )
{
m_placingVia = aEnabled;
if( !aEnabled )
m_head.RemoveVia();
return true;
}
void LINE_PLACER::setInitialDirection( const DIRECTION_45& aDirection )
{
m_initial_direction = aDirection;
if( m_tail.SegmentCount() == 0 )
m_direction = aDirection;
}
bool LINE_PLACER::handleSelfIntersections()
{
SHAPE_LINE_CHAIN::INTERSECTIONS ips;
SHAPE_LINE_CHAIN& head = m_head.Line();
SHAPE_LINE_CHAIN& tail = m_tail.Line();
// if there is no tail, there is nothing to intersect with
if( tail.PointCount() < 2 )
return false;
if( head.PointCount() < 2 )
return false;
// completely new head trace? chop off the tail
if( tail.CPoint(0) == head.CPoint(0) )
{
m_p_start = tail.CPoint( 0 );
m_direction = m_initial_direction;
tail.Clear();
return true;
}
tail.Intersect( head, ips );
// no intesection points - nothing to reduce
if( ips.empty() )
return false;
int n = INT_MAX;
VECTOR2I ipoint;
// if there is more than one intersection, find the one that is
// closest to the beginning of the tail.
for( const SHAPE_LINE_CHAIN::INTERSECTION& i : ips )
{
if( i.our.Index() < n )
{
n = i.our.Index();
ipoint = i.p;
}
}
// ignore the point where head and tail meet
if( ipoint == head.CPoint( 0 ) || ipoint == tail.CPoint( -1 ) )
return false;
// Intersection point is on the first or the second segment: just start routing
// from the beginning
if( n < 2 )
{
m_p_start = tail.CPoint( 0 );
m_direction = m_initial_direction;
tail.Clear();
head.Clear();
return true;
}
else
{
// Clip till the last tail segment before intersection.
// Set the direction to the one of this segment.
const SEG last = tail.CSegment( n - 1 );
m_p_start = last.A;
m_direction = DIRECTION_45( last );
tail.Remove( n, -1 );
return true;
}
return false;
}
bool LINE_PLACER::handlePullback()
{
SHAPE_LINE_CHAIN& head = m_head.Line();
SHAPE_LINE_CHAIN& tail = m_tail.Line();
if( head.PointCount() < 2 )
return false;
int n = tail.PointCount();
if( n == 0 )
{
return false;
}
else if( n == 1 )
{
m_p_start = tail.CPoint( 0 );
tail.Clear();
return true;
}
DIRECTION_45 first_head( head.CSegment( 0 ) );
DIRECTION_45 last_tail( tail.CSegment( -1 ) );
DIRECTION_45::AngleType angle = first_head.Angle( last_tail );
// case 1: we have a defined routing direction, and the currently computed
// head goes in different one.
bool pullback_1 = false; // (m_direction != DIRECTION_45::UNDEFINED && m_direction != first_head);
// case 2: regardless of the current routing direction, if the tail/head
// extremities form an acute or right angle, reduce the tail by one segment
// (and hope that further iterations) will result with a cleaner trace
bool pullback_2 = ( angle == DIRECTION_45::ANG_RIGHT || angle == DIRECTION_45::ANG_ACUTE );
if( pullback_1 || pullback_2 )
{
const SEG last = tail.CSegment( -1 );
m_direction = DIRECTION_45( last );
m_p_start = last.A;
wxLogTrace( "PNS", "Placer: pullback triggered [%d] [%s %s]",
n, last_tail.Format().c_str(), first_head.Format().c_str() );
// erase the last point in the tail, hoping that the next iteration will
// result with a head trace that starts with a segment following our
// current direction.
if( n < 2 )
tail.Clear(); // don't leave a single-point tail
else
tail.Remove( -1, -1 );
if( !tail.SegmentCount() )
m_direction = m_initial_direction;
return true;
}
return false;
}
bool LINE_PLACER::reduceTail( const VECTOR2I& aEnd )
{
SHAPE_LINE_CHAIN& head = m_head.Line();
SHAPE_LINE_CHAIN& tail = m_tail.Line();
int n = tail.SegmentCount();
if( head.SegmentCount() < 1 )
return false;
// Don't attempt this for too short tails
if( n < 2 )
return false;
// Start from the segment farthest from the end of the tail
// int start_index = std::max(n - 1 - ReductionDepth, 0);
DIRECTION_45 new_direction;
VECTOR2I new_start;
int reduce_index = -1;
for( int i = tail.SegmentCount() - 1; i >= 0; i-- )
{
const SEG s = tail.CSegment( i );
DIRECTION_45 dir( s );
// calculate a replacement route and check if it matches
// the direction of the segment to be replaced
SHAPE_LINE_CHAIN replacement = dir.BuildInitialTrace( s.A, aEnd );
if( replacement.SegmentCount() < 1 )
continue;
LINE tmp( m_tail, replacement );
if( m_currentNode->CheckColliding( &tmp, ITEM::ANY_T ) )
break;
if( DIRECTION_45( replacement.CSegment( 0 ) ) == dir )
{
new_start = s.A;
new_direction = dir;
reduce_index = i;
}
}
if( reduce_index >= 0 )
{
wxLogTrace( "PNS", "Placer: reducing tail: %d", reduce_index );
SHAPE_LINE_CHAIN reducedLine = new_direction.BuildInitialTrace( new_start, aEnd );
m_p_start = new_start;
m_direction = new_direction;
tail.Remove( reduce_index + 1, -1 );
head.Clear();
return true;
}
if( !tail.SegmentCount() )
m_direction = m_initial_direction;
return false;
}
bool LINE_PLACER::checkObtusity( const SEG& aA, const SEG& aB ) const
{
const DIRECTION_45 dir_a( aA );
const DIRECTION_45 dir_b( aB );
return dir_a.IsObtuse( dir_b ) || dir_a == dir_b;
}
bool LINE_PLACER::mergeHead()
{
SHAPE_LINE_CHAIN& head = m_head.Line();
SHAPE_LINE_CHAIN& tail = m_tail.Line();
const int ForbiddenAngles = DIRECTION_45::ANG_ACUTE
| DIRECTION_45::ANG_HALF_FULL
| DIRECTION_45::ANG_UNDEFINED;
head.Simplify();
tail.Simplify();
int n_head = head.SegmentCount();
int n_tail = tail.SegmentCount();
if( n_head < 3 )
{
wxLogTrace( "PNS", "Merge failed: not enough head segs." );
return false;
}
if( n_tail && head.CPoint( 0 ) != tail.CPoint( -1 ) )
{
wxLogTrace( "PNS", "Merge failed: head and tail discontinuous." );
return false;
}
if( m_head.CountCorners( ForbiddenAngles ) != 0 )
return false;
DIRECTION_45 dir_tail, dir_head;
dir_head = DIRECTION_45( head.CSegment( 0 ) );
if( n_tail )
{
dir_tail = DIRECTION_45( tail.CSegment( -1 ) );
if( dir_head.Angle( dir_tail ) & ForbiddenAngles )
return false;
}
tail.Append( head );
tail.Remove( -1 );
tail.Simplify();
SEG last = tail.CSegment( -1 );
m_p_start = last.B;
m_direction = DIRECTION_45( last ).Right();
head.Remove( 0, -1 );
wxLogTrace( "PNS", "Placer: merge %d, new direction: %s", n_head, m_direction.Format().c_str() );
head.Simplify();
tail.Simplify();
return true;
}
VECTOR2I closestProjectedPoint( const SHAPE_LINE_CHAIN& line, const VECTOR2I& p )
{
int min_dist = INT_MAX;
VECTOR2I closest;
for(int i = 0; i < line.SegmentCount(); i++ )
{
const auto& s = line.CSegment(i);
auto a = s.NearestPoint( p );
auto d = (a - p).EuclideanNorm();
if( d < min_dist )
{
min_dist = d;
closest = a;
}
}
return closest;
}
bool LINE_PLACER::rhWalkOnly( const VECTOR2I& aP, LINE& aNewHead )
{
LINE initTrack( m_head );
LINE walkFull( m_head );
int effort = 0;
bool rv = true, viaOk;
viaOk = buildInitialLine( aP, initTrack );
WALKAROUND walkaround( m_currentNode, Router() );
walkaround.SetSolidsOnly( false );
walkaround.SetDebugDecorator( Dbg() );
walkaround.SetLogger( Logger() );
walkaround.SetIterationLimit( Settings().WalkaroundIterationLimit() );
WALKAROUND::RESULT wr = walkaround.Route( initTrack );
//WALKAROUND::WALKAROUND_STATUS wf = walkaround.Route( initTrack, walkFull, false );
auto l_cw = wr.lineCw.CLine();
auto l_ccw = wr.lineCcw.CLine();
if( wr.statusCcw == WALKAROUND::ALMOST_DONE || wr.statusCw == WALKAROUND::ALMOST_DONE )
{
auto p_cw = closestProjectedPoint( l_cw, aP );
auto p_ccw = closestProjectedPoint( l_ccw, aP );
int idx_cw = l_cw.Split( p_cw );
int idx_ccw = l_ccw.Split( p_ccw );
l_cw = l_cw.Slice( 0, idx_cw );
l_ccw = l_ccw.Slice( 0, idx_ccw );
//Dbg()->AddLine( wr.lineCw.CLine(), 3, 40000 );
//Dbg()->AddPoint( p_cw, 4 );
//Dbg()->AddPoint( p_ccw, 5 );
Dbg()->AddLine( wr.lineCw.CLine(), 4, 1000 );
Dbg()->AddLine( wr.lineCcw.CLine(), 5, 1000 );
}
walkFull.SetShape( l_ccw.Length() < l_cw.Length() ? l_ccw : l_cw );
Dbg()->AddLine( walkFull.CLine(), 2, 100000, "walk-full" );
switch( Settings().OptimizerEffort() )
{
case OE_LOW:
effort = 0;
break;
case OE_MEDIUM:
case OE_FULL:
effort = OPTIMIZER::MERGE_SEGMENTS;
break;
}
if( Settings().SmartPads() )
effort |= OPTIMIZER::SMART_PADS;
if( wr.statusCw == WALKAROUND::STUCK || wr.statusCcw == WALKAROUND::STUCK )
{
walkFull = walkFull.ClipToNearestObstacle( m_currentNode );
rv = true;
}
else if( m_placingVia && viaOk )
{
walkFull.AppendVia( makeVia( walkFull.CPoint( -1 ) ) );
}
OPTIMIZER::Optimize( &walkFull, effort, m_currentNode );
if( m_currentNode->CheckColliding( &walkFull ) )
{
aNewHead = m_head;
return false;
}
m_head = walkFull;
aNewHead = walkFull;
return rv;
}
bool LINE_PLACER::rhMarkObstacles( const VECTOR2I& aP, LINE& aNewHead )
{
buildInitialLine( aP, m_head );
// If we are enforcing DRC violations, push back to the hull
if( !Settings().CanViolateDRC() )
{
NODE::OPT_OBSTACLE obs = m_currentNode->NearestObstacle( &m_head );
if( obs && obs->m_distFirst != INT_MAX )
buildInitialLine( obs->m_ipFirst, m_head );
}
aNewHead = m_head;
return static_cast<bool>( m_currentNode->CheckColliding( &m_head ) );
}
const LINE LINE_PLACER::reduceToNearestObstacle( const LINE& aOriginalLine )
{
const auto& l0 = aOriginalLine.CLine();
if ( !l0.PointCount() )
return aOriginalLine;
int l = l0.Length();
int step = l / 2;
VECTOR2I target;
LINE l_test( aOriginalLine );
while( step > 0 )
{
target = l0.PointAlong( l );
SHAPE_LINE_CHAIN l_cur( l0 );
int index = l_cur.Split( target );
l_test.SetShape( l_cur.Slice( 0, index ) );
if ( m_currentNode->CheckColliding( &l_test ) )
l -= step;
else
l += step;
step /= 2;
}
l = l_test.CLine().Length();
while( m_currentNode->CheckColliding( &l_test ) && l > 0 )
{
l--;
target = l0.PointAlong( l );
SHAPE_LINE_CHAIN l_cur( l0 );
int index = l_cur.Split( target );
l_test.SetShape( l_cur.Slice( 0, index ) );
}
return l_test;
}
bool LINE_PLACER::rhStopAtNearestObstacle( const VECTOR2I& aP, LINE& aNewHead )
{
LINE l0;
l0 = m_head;
buildInitialLine( aP, l0 );
LINE l_cur = reduceToNearestObstacle( l0 );
const SHAPE_LINE_CHAIN l_shape = l_cur.CLine();
if( l_shape.SegmentCount() == 0 )
return false;
if( l_shape.SegmentCount() == 1 )
{
SEG s = l_shape.CSegment( 0 );
VECTOR2I dL( DIRECTION_45( s ).Left().ToVector() );
VECTOR2I dR( DIRECTION_45( s ).Right().ToVector() );
SEG leadL( s.B, s.B + dL );
SEG leadR( s.B, s.B + dR );
SEG segL( s.B, leadL.LineProject( aP ) );
SEG segR( s.B, leadR.LineProject( aP ) );
LINE finishL( l0, SHAPE_LINE_CHAIN( { segL.A, segL.B } ) );
LINE finishR( l0, SHAPE_LINE_CHAIN( { segR.A, segR.B } ) );
LINE reducedL = reduceToNearestObstacle( finishL );
LINE reducedR = reduceToNearestObstacle( finishR );
int lL = reducedL.CLine().Length();
int lR = reducedR.CLine().Length();
if( lL > lR )
l_cur.Line().Append( reducedL.CLine() );
else
l_cur.Line().Append( reducedR.CLine() );
l_cur.Line().Simplify();
}
m_head = l_cur;
aNewHead = m_head;
return true;
}
bool LINE_PLACER::rhShoveOnly( const VECTOR2I& aP, LINE& aNewHead )
{
LINE initTrack( m_head );
LINE walkSolids, l2;
bool viaOk = buildInitialLine( aP, initTrack );
m_currentNode = m_shove->CurrentNode();
m_shove->SetLogger( Logger() );
m_shove->SetDebugDecorator( Dbg() );
OPTIMIZER optimizer( m_currentNode );
WALKAROUND walkaround( m_currentNode, Router() );
walkaround.SetSolidsOnly( true );
walkaround.SetIterationLimit( 10 );
walkaround.SetDebugDecorator( Dbg() );
walkaround.SetLogger( Logger() );
WALKAROUND::WALKAROUND_STATUS stat_solids = walkaround.Route( initTrack, walkSolids );
optimizer.SetEffortLevel( OPTIMIZER::MERGE_SEGMENTS );
optimizer.SetCollisionMask( ITEM::SOLID_T );
optimizer.Optimize( &walkSolids );
if( stat_solids == WALKAROUND::DONE )
l2 = walkSolids;
else
l2 = initTrack.ClipToNearestObstacle( m_shove->CurrentNode() );
LINE l( m_tail );
l.Line().Append( l2.CLine() );
l.Line().Simplify();
if( l.PointCount() == 0 || l2.PointCount() == 0 )
{
aNewHead = m_head;
return false;
}
if( m_placingVia && viaOk )
{
VIA v1( makeVia( l.CPoint( -1 ) ) );
VIA v2( makeVia( l2.CPoint( -1 ) ) );
l.AppendVia( v1 );
l2.AppendVia( v2 );
}
l.Line().Simplify();
// in certain, uncommon cases there may be loops in the head+tail, In such case, we don't shove to avoid
// screwing up the database.
if( l.HasLoops() )
{
aNewHead = m_head;
return false;
}
SHOVE::SHOVE_STATUS status = m_shove->ShoveLines( l );
m_currentNode = m_shove->CurrentNode();
if( status == SHOVE::SH_OK || status == SHOVE::SH_HEAD_MODIFIED )
{
if( status == SHOVE::SH_HEAD_MODIFIED )
l2 = m_shove->NewHead();
optimizer.SetWorld( m_currentNode );
int effortLevel = OPTIMIZER::MERGE_OBTUSE;
if( Settings().SmartPads() && !m_postureSolver.IsManuallyForced() )
effortLevel = OPTIMIZER::SMART_PADS;
optimizer.SetEffortLevel( effortLevel );
optimizer.SetCollisionMask( ITEM::ANY_T );
optimizer.Optimize( &l2 );
aNewHead = l2;
return true;
}
else
{
walkaround.SetWorld( m_currentNode );
walkaround.SetSolidsOnly( false );
walkaround.SetIterationLimit( 10 );
walkaround.SetApproachCursor( true, aP );
walkaround.Route( initTrack, l2 );
aNewHead = l2.ClipToNearestObstacle( m_shove->CurrentNode() );
return false;
}
return false;
}
bool LINE_PLACER::routeHead( const VECTOR2I& aP, LINE& aNewHead )
{
switch( m_currentMode )
{
case RM_MarkObstacles:
return rhMarkObstacles( aP, aNewHead );
case RM_Walkaround:
return rhWalkOnly( aP, aNewHead );
case RM_Shove:
return rhShoveOnly( aP, aNewHead );
default:
break;
}
return false;
}
bool LINE_PLACER::optimizeTailHeadTransition()
{
LINE linetmp = Trace();
if( OPTIMIZER::Optimize( &linetmp, OPTIMIZER::FANOUT_CLEANUP, m_currentNode ) )
{
if( linetmp.SegmentCount() < 1 )
return false;
m_head = linetmp;
m_p_start = linetmp.CLine().CPoint( 0 );
m_direction = DIRECTION_45( linetmp.CSegment( 0 ) );
m_tail.Line().Clear();
return true;
}
SHAPE_LINE_CHAIN& head = m_head.Line();
SHAPE_LINE_CHAIN& tail = m_tail.Line();
int tailLookbackSegments = 3;
//if(m_currentMode() == RM_Walkaround)
// tailLookbackSegments = 10000;
int threshold = std::min( tail.PointCount(), tailLookbackSegments + 1 );
if( tail.SegmentCount() < 3 )
return false;
// assemble TailLookbackSegments tail segments with the current head
SHAPE_LINE_CHAIN opt_line = tail.Slice( -threshold, -1 );
int end = std::min(2, head.PointCount() - 1 );
opt_line.Append( head.Slice( 0, end ) );
LINE new_head( m_tail, opt_line );
// and see if it could be made simpler by merging obtuse/collnear segments.
// If so, replace the (threshold) last tail points and the head with
// the optimized line
if( OPTIMIZER::Optimize( &new_head, OPTIMIZER::MERGE_OBTUSE, m_currentNode ) )
{
LINE tmp( m_tail, opt_line );
wxLogTrace( "PNS", "Placer: optimize tail-head [%d]", threshold );
head.Clear();
tail.Replace( -threshold, -1, new_head.CLine() );
tail.Simplify();
m_p_start = new_head.CLine().CPoint( -1 );
m_direction = DIRECTION_45( new_head.CSegment( -1 ) );
return true;
}
return false;
}
void LINE_PLACER::routeStep( const VECTOR2I& aP )
{
bool fail = false;
bool go_back = false;
int i, n_iter = 1;
LINE new_head;
wxLogTrace( "PNS", "INIT-DIR: %s head: %d, tail: %d segs",
m_initial_direction.Format().c_str(),
m_head.SegmentCount(),
m_tail.SegmentCount() );
for( i = 0; i < n_iter; i++ )
{
if( !go_back && Settings().FollowMouse() )
reduceTail( aP );
go_back = false;
if( !routeHead( aP, new_head ) )
fail = true;
if( !new_head.Is45Degree() )
fail = true;
if( !Settings().FollowMouse() )
return;
m_head = new_head;
if( handleSelfIntersections() )
{
n_iter++;
go_back = true;
}
if( !go_back && handlePullback() )
{
n_iter++;
go_back = true;
}
}
if( !fail )
{
if( optimizeTailHeadTransition() )
return;
mergeHead();
}
}
bool LINE_PLACER::route( const VECTOR2I& aP )
{
routeStep( aP );
if (!m_head.PointCount() )
return false;
return m_head.CPoint(-1) == aP;
}
const LINE LINE_PLACER::Trace() const
{
LINE tmp( m_head );
tmp.SetShape( m_tail.CLine() );
tmp.Line().Append( m_head.CLine() );
tmp.Line().Simplify();
return tmp;
}
const ITEM_SET LINE_PLACER::Traces()
{
m_currentTrace = Trace();
return ITEM_SET( &m_currentTrace );
}
void LINE_PLACER::FlipPosture()
{
m_postureSolver.FlipPosture();
}
NODE* LINE_PLACER::CurrentNode( bool aLoopsRemoved ) const
{
if( aLoopsRemoved && m_lastNode )
return m_lastNode;
return m_currentNode;
}
bool LINE_PLACER::SplitAdjacentSegments( NODE* aNode, ITEM* aSeg, const VECTOR2I& aP )
{
if( !aSeg )
return false;
if( !aSeg->OfKind( ITEM::SEGMENT_T ) )
return false;
JOINT* jt = aNode->FindJoint( aP, aSeg );
if( jt && jt->LinkCount() >= 1 )
return false;
SEGMENT* s_old = static_cast<SEGMENT*>( aSeg );
std::unique_ptr<SEGMENT> s_new[2] = { Clone( *s_old ), Clone( *s_old ) };
s_new[0]->SetEnds( s_old->Seg().A, aP );
s_new[1]->SetEnds( aP, s_old->Seg().B );
aNode->Remove( s_old );
aNode->Add( std::move( s_new[0] ), true );
aNode->Add( std::move( s_new[1] ), true );
return true;
}
bool LINE_PLACER::SetLayer( int aLayer )
{
if( m_idle )
{
m_currentLayer = aLayer;
return true;
}
else if( m_chainedPlacement )
{
return false;
}
else if( !m_startItem
|| ( m_startItem->OfKind( ITEM::VIA_T ) && m_startItem->Layers().Overlaps( aLayer ) )
|| ( m_startItem->OfKind( ITEM::SOLID_T ) && m_startItem->Layers().Overlaps( aLayer ) ) )
{
m_currentLayer = aLayer;
m_head.Line().Clear();
m_tail.Line().Clear();
m_head.SetLayer( m_currentLayer );
m_tail.SetLayer( m_currentLayer );
Move( m_currentEnd, NULL );
return true;
}
return false;
}
bool LINE_PLACER::Start( const VECTOR2I& aP, ITEM* aStartItem )
{
m_placementCorrect = false;
m_currentStart = VECTOR2I( aP );
m_currentEnd = VECTOR2I( aP );
m_currentNet = std::max( 0, aStartItem ? aStartItem->Net() : 0 );
m_startItem = aStartItem;
m_placingVia = false;
m_chainedPlacement = false;
m_fixedTail.Clear();
setInitialDirection( Settings().InitialDirection() );
initPlacement();
DIRECTION_45 lastSegDir = DIRECTION_45::UNDEFINED;
if( aStartItem && aStartItem->Kind() == ITEM::SEGMENT_T )
{
// If we land on a segment endpoint, assume the starting direction is continuing along
// the same direction as the endpoint. If we started in the middle, don't set a
// direction so that the posture solver is not biased.
SEG seg = static_cast<SEGMENT*>( aStartItem )->Seg();
// NOTE: have to flip this over at the moment because DIRECTION_45(SEG) assumes +y is
// North but a SEG will have -y be North in KiCad world coordinate system.
// This should probably be fixed in DIRECTION_45 but it's used in a lot of PNS code
// that would need to be checked carefully for such a change...
seg.A.y = -seg.A.y;
seg.B.y = -seg.B.y;
if( aP == seg.A )
lastSegDir = DIRECTION_45( seg );
else if( aP == seg.B )
lastSegDir = DIRECTION_45( seg.Reversed() );
}
else if( aStartItem && aStartItem->Kind() == ITEM::SOLID_T &&
static_cast<SOLID*>( aStartItem )->Parent()->Type() == PCB_PAD_T )
{
double angle = static_cast<SOLID*>( aStartItem )->GetOrientation() / 10.0;
angle = ( angle + 22.5 ) / 45.0;
lastSegDir = DIRECTION_45( static_cast<DIRECTION_45::Directions>( int( angle ) ) );
}
m_postureSolver.Clear();
m_postureSolver.AddTrailPoint( aP );
m_postureSolver.SetTolerance( m_head.Width() );
m_postureSolver.SetDefaultDirections( m_initial_direction, lastSegDir );
m_postureSolver.SetDisabled( !Settings().GetAutoPosture() );
NODE *n;
if ( m_shove )
n = m_shove->CurrentNode();
else
n = m_currentNode;
m_fixedTail.AddStage( m_currentStart, m_currentLayer, m_placingVia, m_direction, n );
return true;
}
void LINE_PLACER::initPlacement()
{
m_idle = false;
m_head.Line().Clear();
m_tail.Line().Clear();
m_head.SetNet( m_currentNet );
m_tail.SetNet( m_currentNet );
m_head.SetLayer( m_currentLayer );
m_tail.SetLayer( m_currentLayer );
m_head.SetWidth( m_sizes.TrackWidth() );
m_tail.SetWidth( m_sizes.TrackWidth() );
m_head.RemoveVia();
m_tail.RemoveVia();
m_p_start = m_currentStart;
m_direction = m_initial_direction;
NODE* world = Router()->GetWorld();
world->KillChildren();
NODE* rootNode = world->Branch();
SplitAdjacentSegments( rootNode, m_startItem, m_currentStart );
setWorld( rootNode );
wxLogTrace( "PNS", "world %p, intitial-direction %s layer %d",
m_world,
m_direction.Format().c_str(),
m_currentLayer );
m_lastNode = NULL;
m_currentNode = m_world;
m_currentMode = Settings().Mode();
m_shove.reset();
if( m_currentMode == RM_Shove || m_currentMode == RM_Smart )
m_shove = std::make_unique<SHOVE>( m_world->Branch(), Router() );
}
bool LINE_PLACER::Move( const VECTOR2I& aP, ITEM* aEndItem )
{
LINE current;
VECTOR2I p = aP;
int eiDepth = -1;
if( aEndItem && aEndItem->Owner() )
eiDepth = static_cast<NODE*>( aEndItem->Owner() )->Depth();
if( m_lastNode )
{
delete m_lastNode;
m_lastNode = NULL;
}
bool reachesEnd = route( p );
current = Trace();
if( !current.PointCount() )
m_currentEnd = m_p_start;
else
m_currentEnd = current.CLine().CPoint( -1 );
NODE* latestNode = m_currentNode;
m_lastNode = latestNode->Branch();
if( reachesEnd
&& eiDepth >= 0
&& aEndItem && latestNode->Depth() > eiDepth
&& current.SegmentCount() )
{
SplitAdjacentSegments( m_lastNode, aEndItem, current.CPoint( -1 ) );
if( Settings().RemoveLoops() )
removeLoops( m_lastNode, current );
}
updateLeadingRatLine();
m_postureSolver.AddTrailPoint( aP );
return true;
}
bool LINE_PLACER::FixRoute( const VECTOR2I& aP, ITEM* aEndItem, bool aForceFinish )
{
bool fixAll = Settings().GetFixAllSegments();
bool realEnd = false;
LINE pl = Trace();
if( m_currentMode == RM_MarkObstacles )
{
// Mark Obstacles is sort of a half-manual, half-automated mode in which the
// user has more responsibility and authority.
if( aEndItem )
{
// The user has indicated a connection should be made. If either the trace or
// endItem is net-less, then allow the connection by adopting the net of the other.
if( m_currentNet <= 0 )
{
m_currentNet = aEndItem->Net();
pl.SetNet( m_currentNet );
}
else if (aEndItem->Net() <= 0 )
{
aEndItem->SetNet( m_currentNet );
}
}
// Collisions still prevent fixing unless "Allow DRC violations" is checked
if( !Settings().CanViolateDRC() && m_world->CheckColliding( &pl ) )
return false;
}
const SHAPE_LINE_CHAIN& l = pl.CLine();
if( !l.SegmentCount() )
{
if( m_lastNode )
{
// Do a final optimization to the stored state
NODE::ITEM_VECTOR removed, added;
m_lastNode->GetUpdatedItems( removed, added );
if( !added.empty() && added.back()->Kind() == ITEM::SEGMENT_T )
simplifyNewLine( m_lastNode, static_cast<SEGMENT*>( added.back() ) );
}
// Nothing to commit if we have an empty line
if( !pl.EndsWithVia() )
return false;
m_lastNode->Add( Clone( pl.Via() ) );
m_currentNode = NULL;
m_idle = true;
m_placementCorrect = true;
return true;
}
VECTOR2I p_pre_last = l.CPoint( -1 );
const VECTOR2I p_last = l.CPoint( -1 );
if( l.PointCount() > 2 )
p_pre_last = l.CPoint( -2 );
if( aEndItem && m_currentNet >= 0 && m_currentNet == aEndItem->Net() )
realEnd = true;
if( aForceFinish )
realEnd = true;
// TODO: Rollback doesn't work properly if fix-all isn't enabled and we are placing arcs,
// so if we are, act as though we are in fix-all mode.
if( !fixAll && l.ArcCount() )
fixAll = true;
SEG lastDirSeg = ( !fixAll && l.SegmentCount() > 1 ) ? l.CSegment( -2 ) : l.CSegment( -1 );
lastDirSeg.A.y = -lastDirSeg.A.y;
lastDirSeg.B.y = -lastDirSeg.B.y;
DIRECTION_45 d_last( lastDirSeg );
int lastV;
if( realEnd || m_placingVia || fixAll )
lastV = l.SegmentCount();
else
lastV = std::max( 1, l.SegmentCount() - 1 );
SEGMENT seg;
SEGMENT* lastSeg = nullptr;
int lastArc = -1;
for( int i = 0; i < lastV; i++ )
{
ssize_t arcIndex = l.ArcIndex( i );
if( arcIndex < 0 || ( lastArc >= 0 && i == lastV - 1 && l.CShapes()[lastV] == -1 ) )
{
seg = SEGMENT( pl.CSegment( i ), m_currentNet );
seg.SetWidth( pl.Width() );
seg.SetLayer( m_currentLayer );
if( m_lastNode->Add( std::make_unique<SEGMENT>( seg ) ) )
lastSeg = &seg;
}
else
{
if( arcIndex == lastArc )
continue;
auto arc = std::make_unique<ARC>( l.Arc( arcIndex ), m_currentNet );
arc->SetWidth( pl.Width() );
arc->SetLayer( m_currentLayer );
m_lastNode->Add( std::move( arc ) );
lastSeg = nullptr;
lastArc = arcIndex;
}
}
if( pl.EndsWithVia() )
m_lastNode->Add( Clone( pl.Via() ) );
if( realEnd && lastSeg )
simplifyNewLine( m_lastNode, lastSeg );
if( !realEnd )
{
setInitialDirection( d_last );
m_currentStart = ( m_placingVia || fixAll ) ? p_last : p_pre_last;
NODE* commit = fixAll ? m_lastNode : m_currentNode;
m_fixedTail.AddStage( m_p_start, m_currentLayer, m_placingVia, m_direction, commit );
m_startItem = NULL;
m_placingVia = false;
m_chainedPlacement = !pl.EndsWithVia();
m_p_start = m_currentStart;
m_direction = m_initial_direction;
m_head.Line().Clear();
m_tail.Line().Clear();
m_head.RemoveVia();
m_tail.RemoveVia();
m_currentNode = m_lastNode;
m_lastNode = m_lastNode->Branch();
if( m_shove )
m_shove->AddLockedSpringbackNode( m_currentNode );
DIRECTION_45 lastSegDir = pl.EndsWithVia() ? DIRECTION_45::UNDEFINED : d_last;
m_postureSolver.Clear();
m_postureSolver.SetTolerance( m_head.Width() );
m_postureSolver.AddTrailPoint( m_currentStart );
m_postureSolver.SetDefaultDirections( m_initial_direction, lastSegDir );
m_placementCorrect = true;
}
else
{
m_placementCorrect = true;
m_idle = true;
}
return realEnd;
}
bool LINE_PLACER::UnfixRoute()
{
FIXED_TAIL::STAGE st;
if ( !m_fixedTail.PopStage( st ) )
return false;
m_head.Line().Clear();
m_tail.Line().Clear();
m_startItem = NULL;
m_p_start = st.pts[0].p;
m_direction = st.pts[0].direction;
m_placingVia = st.pts[0].placingVias;
m_currentNode = st.commit;
m_currentLayer = st.pts[0].layer;
m_head.SetLayer( m_currentLayer );
m_tail.SetLayer( m_currentLayer );
m_head.RemoveVia();
m_tail.RemoveVia();
m_postureSolver.Clear();
m_postureSolver.SetDefaultDirections( m_initial_direction, m_direction );
m_postureSolver.AddTrailPoint( m_p_start );
if( m_shove )
{
m_shove->RewindSpringbackTo( m_currentNode );
m_shove->UnlockSpringbackNode( m_currentNode );
m_currentNode = m_shove->CurrentNode();
m_currentNode->KillChildren();
}
m_lastNode = m_currentNode->Branch();
return true;
}
bool LINE_PLACER::HasPlacedAnything() const
{
return m_placementCorrect || m_fixedTail.StageCount() > 1;
}
bool LINE_PLACER::CommitPlacement()
{
if( m_lastNode )
Router()->CommitRouting( m_lastNode );
m_lastNode = NULL;
m_currentNode = NULL;
return true;
}
void LINE_PLACER::removeLoops( NODE* aNode, LINE& aLatest )
{
if( !aLatest.SegmentCount() )
return;
if( aLatest.CLine().CPoint( 0 ) == aLatest.CLine().CPoint( -1 ) )
return;
std::set<LINKED_ITEM *> toErase;
aNode->Add( aLatest, true );
for( int s = 0; s < aLatest.LinkCount(); s++ )
{
LINKED_ITEM* seg = aLatest.GetLink(s);
LINE ourLine = aNode->AssembleLine( seg );
JOINT a, b;
std::vector<LINE> lines;
aNode->FindLineEnds( ourLine, a, b );
if( a == b )
aNode->FindLineEnds( aLatest, a, b );
aNode->FindLinesBetweenJoints( a, b, lines );
int removedCount = 0;
int total = 0;
for( LINE& line : lines )
{
total++;
if( !( line.ContainsLink( seg ) ) && line.SegmentCount() )
{
for( LINKED_ITEM* ss : line.Links() )
toErase.insert( ss );
removedCount++;
}
}
wxLogTrace( "PNS", "total segs removed: %d/%d", removedCount, total );
}
for( LINKED_ITEM* s : toErase )
aNode->Remove( s );
aNode->Remove( aLatest );
}
void LINE_PLACER::simplifyNewLine( NODE* aNode, SEGMENT* aLatest )
{
LINE l = aNode->AssembleLine( aLatest );
bool optimized = OPTIMIZER::Optimize( &l, OPTIMIZER::MERGE_COLINEAR, aNode );
SHAPE_LINE_CHAIN simplified( l.CLine() );
simplified.Simplify();
if( optimized || simplified.PointCount() != l.PointCount() )
{
aNode->Remove( l );
l.SetShape( simplified );
aNode->Add( l );
}
}
void LINE_PLACER::UpdateSizes( const SIZES_SETTINGS& aSizes )
{
m_sizes = aSizes;
if( !m_idle )
{
m_head.SetWidth( m_sizes.TrackWidth() );
m_tail.SetWidth( m_sizes.TrackWidth() );
if( m_head.EndsWithVia() )
{
m_head.SetViaDiameter( m_sizes.ViaDiameter() );
m_head.SetViaDrill( m_sizes.ViaDrill() );
}
}
}
void LINE_PLACER::updateLeadingRatLine()
{
LINE current = Trace();
SHAPE_LINE_CHAIN ratLine;
TOPOLOGY topo( m_lastNode );
if( topo.LeadingRatLine( &current, ratLine ) )
m_router->GetInterface()->DisplayRatline( ratLine, 5 );
}
void LINE_PLACER::SetOrthoMode( bool aOrthoMode )
{
m_orthoMode = aOrthoMode;
}
bool LINE_PLACER::buildInitialLine( const VECTOR2I& aP, LINE& aHead )
{
SHAPE_LINE_CHAIN l;
DIRECTION_45 guessedDir = m_postureSolver.GetPosture( aP );
// Rounded corners don't make sense when routing orthogonally (single track at a time)
bool fillet = !m_orthoMode && Settings().GetCornerMode() == CORNER_MODE::ROUNDED_45;
if( m_p_start == aP )
{
l.Clear();
}
else
{
if( Settings().GetFreeAngleMode() && Settings().Mode() == RM_MarkObstacles )
{
l = SHAPE_LINE_CHAIN( { m_p_start, aP } );
}
else
{
if( !m_tail.PointCount() )
l = guessedDir.BuildInitialTrace( m_p_start, aP, false, fillet );
else
l = m_direction.BuildInitialTrace( m_p_start, aP, false, fillet );
}
if( l.SegmentCount() > 1 && m_orthoMode )
{
VECTOR2I newLast = l.CSegment( 0 ).LineProject( l.CPoint( -1 ) );
l.Remove( -1, -1 );
l.SetPoint( 1, newLast );
}
}
aHead.SetLayer( m_currentLayer );
aHead.SetShape( l );
if( !m_placingVia )
return true;
VIA v( makeVia( aP ) );
v.SetNet( aHead.Net() );
if( m_currentMode == RM_MarkObstacles )
{
aHead.AppendVia( v );
return true;
}
VECTOR2I force;
VECTOR2I lead = aP - m_p_start;
bool solidsOnly = ( m_currentMode != RM_Walkaround );
if( v.PushoutForce( m_currentNode, lead, force, solidsOnly, 40 ) )
{
SHAPE_LINE_CHAIN line = guessedDir.BuildInitialTrace( m_p_start, aP + force, false,
fillet );
aHead = LINE( aHead, line );
v.SetPos( v.Pos() + force );
return true;
}
return false; // via placement unsuccessful
}
void LINE_PLACER::GetModifiedNets( std::vector<int>& aNets ) const
{
aNets.push_back( m_currentNet );
}
bool LINE_PLACER::AbortPlacement()
{
m_world->KillChildren();
return true;
}
FIXED_TAIL::FIXED_TAIL( int aLineCount )
{
}
FIXED_TAIL::~FIXED_TAIL()
{
}
void FIXED_TAIL::Clear()
{
m_stages.clear();
}
void FIXED_TAIL::AddStage( VECTOR2I aStart, int aLayer, bool placingVias, DIRECTION_45 direction,
NODE *aNode )
{
STAGE st;
FIX_POINT pt;
pt.p = aStart;
pt.layer = aLayer;
pt.direction = direction;
pt.placingVias = placingVias;
st.pts.push_back(pt);
st.commit = aNode;
m_stages.push_back( st );
}
bool FIXED_TAIL::PopStage( FIXED_TAIL::STAGE& aStage )
{
if( !m_stages.size() )
return false;
aStage = m_stages.back();
if( m_stages.size() > 1 )
m_stages.pop_back();
return true;
}
int FIXED_TAIL::StageCount() const
{
return m_stages.size();
}
POSTURE_SOLVER::POSTURE_SOLVER()
{
m_tolerance = 0;
m_disabled = false;
Clear();
}
POSTURE_SOLVER::~POSTURE_SOLVER() {}
void POSTURE_SOLVER::Clear()
{
m_forced = false;
m_manuallyForced = false;
m_trail.Clear();
}
void POSTURE_SOLVER::AddTrailPoint( const VECTOR2I& aP )
{
if( m_trail.SegmentCount() == 0 )
{
m_trail.Append( aP );
}
else
{
SEG s_new( m_trail.CPoint( -1 ), aP );
for( int i = 0; i < m_trail.SegmentCount() - 1; i++ )
{
const auto& s_trail = m_trail.CSegment( i );
if( s_trail.Distance( s_new ) <= m_tolerance )
{
m_trail = m_trail.Slice( 0, i );
break;
}
}
m_trail.Append( aP );
}
m_trail.Simplify();
auto dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator();
dbg->AddLine( m_trail, 5, 100000 );
}
DIRECTION_45 POSTURE_SOLVER::GetPosture( const VECTOR2I& aP )
{
// Tuning factor for how good the "fit" of the trail must be to the posture
const double areaRatioThreshold = 1.3;
// Tuning factor to minimize flutter
const double areaRatioEpsilon = 0.25;
// Minimum distance factor of the trail before the min area test is used to lock the solver
const double minAreaCutoffDistanceFactor = 6;
// Adjusts how far away from p0 we get before whatever posture we solved is locked in
const int lockDistanceFactor = 25;
// Adjusts how close to p0 we unlock the posture again if one was locked already
const int unlockDistanceFactor = 4;
if( m_disabled || m_trail.PointCount() < 2 || m_manuallyForced )
{
if( !m_manuallyForced && m_lastSegDirection != DIRECTION_45::UNDEFINED )
m_direction = m_lastSegDirection;
return m_direction;
}
auto dbg = ROUTER::GetInstance()->GetInterface()->GetDebugDecorator();
auto p0 = m_trail.CPoint( 0 );
double refLength = SEG( p0, aP ).Length();
SHAPE_LINE_CHAIN straight( DIRECTION_45().BuildInitialTrace( p0, aP, false, false ) );
straight.SetClosed( true );
straight.Append( m_trail.Reverse() );
straight.Simplify();
dbg->AddLine( straight, m_forced ? 3 : 2, 100000 );
double areaS = std::abs( straight.Area() );
SHAPE_LINE_CHAIN diag( DIRECTION_45().BuildInitialTrace( p0, aP, true, false ) );
diag.Append( m_trail.Reverse() );
diag.SetClosed( true );
diag.Simplify();
dbg->AddLine( diag, 1, 100000 );
double areaDiag = std::abs( diag.Area() );
double ratio = areaS / ( areaDiag + 1.0 );
// heuristic to detect that the user dragged back the cursor to the beginning of the trace
// in this case, we cancel any forced posture and restart the trail
if( m_forced && refLength < unlockDistanceFactor * m_tolerance )
{
m_forced = false;
VECTOR2I start = p0;
m_trail.Clear();
m_trail.Append( start );
}
bool areaOk = true;
// Check the actual trail area against the cutoff. This prevents flutter when the trail is
// very close to a straight line.
if( !m_forced && refLength > minAreaCutoffDistanceFactor * m_tolerance )
{
double areaCutoff = m_tolerance * refLength;
SHAPE_LINE_CHAIN trail( m_trail );
trail.SetClosed( true );
if( std::abs( trail.Area() ) < areaCutoff )
areaOk = false;
}
DIRECTION_45 straightDirection;
DIRECTION_45 diagDirection;
DIRECTION_45 newDirection = m_direction;
SEG seg = straight.CSegment( 0 );
seg.A.y = -seg.A.y;
seg.B.y = -seg.B.y;
straightDirection = DIRECTION_45( seg );
seg = diag.CSegment( 0 );
seg.A.y = -seg.A.y;
seg.B.y = -seg.B.y;
diagDirection = DIRECTION_45( seg );
if( !m_forced && areaOk && ratio > areaRatioThreshold + areaRatioEpsilon )
newDirection = diagDirection;
else if( !m_forced && areaOk && ratio < ( 1.0 / areaRatioThreshold ) - areaRatioEpsilon )
newDirection = straightDirection;
else
newDirection = m_direction.IsDiagonal() ? diagDirection : straightDirection;
m_direction = newDirection;
// If we have a last segment, correct the direction relative to it. For segment exit, we want
// to correct to the least obtuse
if( !m_manuallyForced && m_lastSegDirection != DIRECTION_45::UNDEFINED )
{
if( straightDirection == m_lastSegDirection )
{
m_direction = straightDirection;
}
else if( diagDirection == m_lastSegDirection )
{
m_direction = diagDirection;
}
else
{
switch( m_direction.Angle( m_lastSegDirection ) )
{
case DIRECTION_45::ANG_HALF_FULL:
// Force a better (acute) connection
m_direction = m_direction.IsDiagonal() ? straightDirection : diagDirection;
break;
case DIRECTION_45::ANG_ACUTE:
{
// Force a better connection by flipping if possible
DIRECTION_45 candidate = m_direction.IsDiagonal() ? straightDirection
: diagDirection;
if( candidate.Angle( m_lastSegDirection ) == DIRECTION_45::ANG_RIGHT )
m_direction = candidate;
break;
}
case DIRECTION_45::ANG_RIGHT:
{
// Force a better connection by flipping if possible
DIRECTION_45 candidate = m_direction.IsDiagonal() ? straightDirection
: diagDirection;
if( candidate.Angle( m_lastSegDirection ) == DIRECTION_45::ANG_OBTUSE )
m_direction = candidate;
break;
}
default:
break;
}
}
}
// If we get far away from the initial point, lock in the current solution to prevent flutter
if( !m_forced && refLength > lockDistanceFactor * m_tolerance )
m_forced = true;
return m_direction;
}
void POSTURE_SOLVER::FlipPosture()
{
m_direction = m_direction.Right();
m_forced = true;
m_manuallyForced = true;
}
}