943 lines
28 KiB
C++
943 lines
28 KiB
C++
|
|
/* EDITEUR de PCB: AUTOROUTAGE: routines "graphiques" */
|
|
/******************************************************/
|
|
|
|
/* Fichier BOARD.CC */
|
|
|
|
#include "fctsys.h"
|
|
#include "gr_basic.h"
|
|
|
|
#include "common.h"
|
|
#include "pcbnew.h"
|
|
#include "autorout.h"
|
|
#include "trigo.h"
|
|
#include "cell.h"
|
|
|
|
/* Exported functions */
|
|
int ToMatrixCoordinate ( int aPhysicalCoordinate);
|
|
void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color );
|
|
void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer,
|
|
int color, int op_logique );
|
|
|
|
|
|
/* Local functions */
|
|
static void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
|
|
int color, int op_logique );
|
|
static void DrawHVSegment( int ux0, int uy0, int ux1, int uy1, int demi_largeur, int layer,
|
|
int color, int op_logique );
|
|
|
|
static void TraceFilledCercle( BOARD* Pcb, int cx, int cy, int rayon, int masque_layer,
|
|
int color, int op_logique );
|
|
static void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
|
|
int color, int op_logique );
|
|
|
|
/* Macro d'appel de mise a jour de cellules */
|
|
#define OP_CELL( layer, dy, dx ) { if( layer < 0 ) \
|
|
{ \
|
|
WriteCell( dy, dx, BOTTOM, color ); \
|
|
if( Nb_Sides ) \
|
|
WriteCell( dy, dx, TOP, color );\
|
|
} \
|
|
else { \
|
|
if( layer == Route_Layer_BOTTOM ) \
|
|
WriteCell( dy, dx, BOTTOM, color );\
|
|
if( Nb_Sides ) \
|
|
if( layer == Route_Layer_TOP ) \
|
|
WriteCell( dy, dx, TOP, color );\
|
|
} }
|
|
|
|
int ToMatrixCoordinate ( int aPhysicalCoordinate)
|
|
/** Function ToMatrixCoordinate
|
|
* compute the coordinate in the routing matrix from the real (board) value
|
|
* @param aPhysicalCoordinate = value to convert
|
|
* @return the coordinate relative to the matrix
|
|
*/
|
|
{
|
|
return aPhysicalCoordinate / g_GridRoutingSize;
|
|
}
|
|
|
|
/******************************************************************************/
|
|
void Place_1_Pad_Board( BOARD* Pcb, D_PAD* pt_pad, int color, int marge, int op_logique )
|
|
/******************************************************************************/
|
|
|
|
/* Initialise a la valeur color, les cellules du Board comprises dans la
|
|
* surface du pad pointe par pt_pad, avec la marge reservee pour l'isolement
|
|
* et la demi largeur de la piste
|
|
* Parametres:
|
|
* pt_pad : pointeur sur la description du pad
|
|
* color : masque a ecrire dans les cellules
|
|
* marge : valeur a ajouter au rayon ou demi cote du pad
|
|
* op_logique: type d'ecriture dans la cellule ( WRITE, OR )
|
|
*/
|
|
{
|
|
int dx, dy;
|
|
wxPoint shape_pos = pt_pad->ReturnShapePos();;
|
|
|
|
dx = pt_pad->m_Size.x / 2; dx += marge;
|
|
|
|
if( pt_pad->m_PadShape == PAD_CIRCLE )
|
|
{
|
|
TraceFilledCercle( Pcb, shape_pos.x, shape_pos.y, dx,
|
|
pt_pad->m_Masque_Layer, color, op_logique );
|
|
return;
|
|
}
|
|
|
|
|
|
dy = pt_pad->m_Size.y / 2; dy += marge;
|
|
|
|
if( pt_pad->m_PadShape == PAD_TRAPEZOID )
|
|
{
|
|
dx += abs( pt_pad->m_DeltaSize.y ) / 2;
|
|
dy += abs( pt_pad->m_DeltaSize.x ) / 2;
|
|
}
|
|
|
|
if( (pt_pad->m_Orient % 900) == 0 )
|
|
{ /* Le pad est un rectangle horizontal ou vertical */
|
|
if( (pt_pad->m_Orient == 900 ) || (pt_pad->m_Orient == 2700) )
|
|
{ /* orient tournee de 90 deg */
|
|
EXCHG( dx, dy );
|
|
}
|
|
|
|
TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy,
|
|
shape_pos.x + dx, shape_pos.y + dy,
|
|
pt_pad->m_Masque_Layer, color, op_logique );
|
|
}
|
|
else
|
|
{
|
|
TraceFilledRectangle( Pcb, shape_pos.x - dx, shape_pos.y - dy,
|
|
shape_pos.x + dx, shape_pos.y + dy,
|
|
(int) pt_pad->m_Orient,
|
|
pt_pad->m_Masque_Layer, color, op_logique );
|
|
}
|
|
}
|
|
|
|
|
|
/************************************************************************/
|
|
void TraceFilledCercle( BOARD* Pcb, int cx, int cy, int rayon, int masque_layer,
|
|
int color, int op_logique )
|
|
/************************************************************************/
|
|
|
|
/* Initialise a la valeur color, les cellules du Board comprises dans la
|
|
* surface du cercle de centre cx,cy.
|
|
* Parametres:
|
|
* rayon : valeur a ajouter au rayon ou demi cote du pad
|
|
* masque_layer = couches occupees
|
|
* color : masque a ecrire dans les cellules
|
|
* op_logique: type d'ecriture dans la cellule ( WRITE, OR )
|
|
*/
|
|
{
|
|
int row, col;
|
|
int ux0, uy0, ux1, uy1;
|
|
int row_max, col_max, row_min, col_min;
|
|
int trace = 0;
|
|
float fdistmin, fdistx, fdisty;
|
|
|
|
void (*WriteCell)( int, int, int, BoardCell );
|
|
int tstwrite = 0;
|
|
int distmin;
|
|
|
|
/* Determination des couches occupees : */
|
|
|
|
/* routage sur 1 seule couche:
|
|
* sur bitmap BOTTOM et Route_Layer_B = Route_Layer_A*/
|
|
|
|
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
|
|
trace = 1; /* Trace sur BOTTOM */
|
|
|
|
if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] )
|
|
if( Nb_Sides )
|
|
trace |= 2;/* Trace sur TOP */
|
|
|
|
if( trace == 0 )
|
|
return;
|
|
|
|
switch( op_logique )
|
|
{
|
|
default:
|
|
case WRITE_CELL:
|
|
WriteCell = SetCell; break;
|
|
|
|
case WRITE_OR_CELL:
|
|
WriteCell = OrCell; break;
|
|
|
|
case WRITE_XOR_CELL:
|
|
WriteCell = XorCell; break;
|
|
|
|
case WRITE_AND_CELL:
|
|
WriteCell = AndCell; break;
|
|
|
|
case WRITE_ADD_CELL:
|
|
WriteCell = AddCell; break;
|
|
}
|
|
|
|
cx -= Pcb->m_BoundaryBox.m_Pos.x; cy -= Pcb->m_BoundaryBox.m_Pos.y;
|
|
|
|
distmin = rayon;
|
|
|
|
/* Calcul du rectangle d'encadrement du cercle*/
|
|
ux0 = cx - rayon; uy0 = cy - rayon;
|
|
ux1 = cx + rayon; uy1 = cy + rayon;
|
|
|
|
/* Calcul des coord limites des cellules appartenant au rectangle */
|
|
row_max = uy1 / g_GridRoutingSize;
|
|
col_max = ux1 / g_GridRoutingSize;
|
|
row_min = uy0 / g_GridRoutingSize; // if (uy0 > row_min*g_GridRoutingSize ) row_min++;
|
|
col_min = ux0 / g_GridRoutingSize; // if (ux0 > col_min*g_GridRoutingSize ) col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
if( row_max >= (Nrows - 1) )
|
|
row_max = Nrows - 1;
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
if( col_max >= (Ncols - 1) )
|
|
col_max = Ncols - 1;
|
|
|
|
/* On s'assure que l'on place toujours au moins une cellule */
|
|
if( row_min > row_max )
|
|
row_max = row_min;
|
|
if( col_min > col_max )
|
|
col_max = col_min;
|
|
|
|
fdistmin = (float) distmin * distmin;
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
fdisty = (float) ( cy - (row * g_GridRoutingSize) );
|
|
fdisty *= fdisty;
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
fdistx = (float) ( cx - (col * g_GridRoutingSize) );
|
|
fdistx *= fdistx;
|
|
|
|
if( fdistmin <= (fdistx + fdisty) )
|
|
continue;
|
|
|
|
if( trace & 1 )
|
|
WriteCell( row, col, BOTTOM, color );
|
|
if( trace & 2 )
|
|
WriteCell( row, col, TOP, color );
|
|
tstwrite = 1;
|
|
}
|
|
}
|
|
|
|
if( tstwrite )
|
|
return;
|
|
|
|
/* Si aucune cellule n'a ete ecrite, on touche les 4 voisins diagonaux
|
|
* (cas defavorable: pad hors grille, au centre des 4 voisins diagonaux) */
|
|
|
|
distmin = g_GridRoutingSize / 2 + 1;
|
|
fdistmin = ( (float) distmin * distmin ) * 2; /* = dist centre au point diagonal*/
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
fdisty = (float) ( cy - (row * g_GridRoutingSize) );
|
|
fdisty *= fdisty;
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
fdistx = (float) ( cx - (col * g_GridRoutingSize) );
|
|
fdistx *= fdistx;
|
|
|
|
if( fdistmin <= (fdistx + fdisty) )
|
|
continue;
|
|
|
|
if( trace & 1 )
|
|
WriteCell( row, col, BOTTOM, color );
|
|
if( trace & 2 )
|
|
WriteCell( row, col, TOP, color );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/******************************************************************************/
|
|
void TraceSegmentPcb( BOARD* Pcb, TRACK* pt_segm, int color, int marge, int op_logique )
|
|
/******************************************************************************/
|
|
|
|
/* trace un Segment de piste sur le BOARD de routage
|
|
*/
|
|
{
|
|
int demi_pas, demi_largeur;
|
|
int ux0, uy0, ux1, uy1;
|
|
|
|
|
|
demi_pas = g_GridRoutingSize / 2;
|
|
demi_largeur = (pt_segm->m_Width / 2) + marge;
|
|
/* Calcul du rectangle d'encadrement du segment ( si H,V ou Via) */
|
|
ux0 = pt_segm->m_Start.x - Pcb->m_BoundaryBox.m_Pos.x;
|
|
uy0 = pt_segm->m_Start.y - Pcb->m_BoundaryBox.m_Pos.y;
|
|
ux1 = pt_segm->m_End.x - Pcb->m_BoundaryBox.m_Pos.x;
|
|
uy1 = pt_segm->m_End.y - Pcb->m_BoundaryBox.m_Pos.y;
|
|
|
|
/* Test si VIA (cercle plein a tracer) */
|
|
if( pt_segm->Type() == TYPEVIA )
|
|
{
|
|
int mask_layer = 0;
|
|
if ( pt_segm->IsOnLayer(Route_Layer_BOTTOM) )
|
|
mask_layer = 1 << Route_Layer_BOTTOM;
|
|
if ( pt_segm->IsOnLayer(Route_Layer_TOP) )
|
|
{
|
|
if ( mask_layer == 0 )
|
|
mask_layer = 1 << Route_Layer_TOP;
|
|
else mask_layer = -1;
|
|
}
|
|
|
|
if( color == VIA_IMPOSSIBLE )
|
|
mask_layer = -1;
|
|
|
|
if ( mask_layer )
|
|
TraceFilledCercle( Pcb, pt_segm->m_Start.x, pt_segm->m_Start.y, demi_largeur,
|
|
mask_layer, color, op_logique );
|
|
return;
|
|
}
|
|
|
|
int layer = pt_segm->GetLayer();
|
|
if( color == VIA_IMPOSSIBLE )
|
|
layer = -1;
|
|
|
|
/* Le segment est ici un segment de droite ou un cercle ou un arc: */
|
|
if( pt_segm->m_Shape == S_CIRCLE )
|
|
{
|
|
TraceCercle( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique );
|
|
return;
|
|
}
|
|
|
|
if( pt_segm->m_Shape == S_ARC )
|
|
{
|
|
TraceArc( ux0, uy0, ux1, uy1, pt_segm->m_Param, demi_largeur, layer, color, op_logique );
|
|
return;
|
|
}
|
|
|
|
/* Le segment est ici un segment de droite */
|
|
if( (ux0 != ux1) && (uy0 != uy1) ) // segment incline
|
|
{
|
|
DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique );
|
|
return;
|
|
}
|
|
|
|
// Ici le segment est HORIZONTAL ou VERTICAL
|
|
// DrawHVSegment(ux0,uy0,ux1,uy1,demi_largeur,layer,color,op_logique); //F4EXB 051018-01
|
|
DrawSegmentQcq( ux0, uy0, ux1, uy1, demi_largeur, layer, color, op_logique ); //F4EXB 051018-01
|
|
return; //F4EXB 051018-01
|
|
}
|
|
|
|
|
|
/******************************************************************************************/
|
|
void TraceLignePcb( int x0, int y0, int x1, int y1, int layer, int color, int op_logique )
|
|
/******************************************************************************************/
|
|
|
|
/* trace une ligne; si layer = -1 sur toutes les couches
|
|
*/
|
|
{
|
|
int dx, dy, lim;
|
|
int cumul, inc, il, delta;
|
|
|
|
void (*WriteCell)( int, int, int, BoardCell );
|
|
|
|
switch( op_logique )
|
|
{
|
|
default:
|
|
case WRITE_CELL:
|
|
WriteCell = SetCell; break;
|
|
|
|
case WRITE_OR_CELL:
|
|
WriteCell = OrCell; break;
|
|
|
|
case WRITE_XOR_CELL:
|
|
WriteCell = XorCell; break;
|
|
|
|
case WRITE_AND_CELL:
|
|
WriteCell = AndCell; break;
|
|
|
|
case WRITE_ADD_CELL:
|
|
WriteCell = AddCell; break;
|
|
}
|
|
|
|
if( x0 == x1 ) // ligne verticale
|
|
{
|
|
if( y1 < y0 )
|
|
EXCHG( y0, y1 );
|
|
dy = y0 / g_GridRoutingSize;
|
|
lim = y1 / g_GridRoutingSize;
|
|
dx = x0 / g_GridRoutingSize;
|
|
/* Clipping aux limites du board */
|
|
if( (dx < 0) || (dx >= Ncols) )
|
|
return;
|
|
if( dy < 0 )
|
|
dy = 0;
|
|
if( lim >= Nrows )
|
|
lim = Nrows - 1;
|
|
for( ; dy <= lim; dy++ )
|
|
{
|
|
OP_CELL( layer, dy, dx );
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if( y0 == y1 ) // ligne horizontale
|
|
{
|
|
if( x1 < x0 )
|
|
EXCHG( x0, x1 );
|
|
dx = x0 / g_GridRoutingSize;
|
|
lim = x1 / g_GridRoutingSize;
|
|
dy = y0 / g_GridRoutingSize;
|
|
/* Clipping aux limites du board */
|
|
if( (dy < 0) || (dy >= Nrows) )
|
|
return;
|
|
if( dx < 0 )
|
|
dx = 0;
|
|
if( lim >= Ncols )
|
|
lim = Ncols - 1;
|
|
for( ; dx <= lim; dx++ )
|
|
{
|
|
OP_CELL( layer, dy, dx );
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Ici l'angle est quelconque: on utilise l'algorithme de LUCAS */
|
|
if( abs( x1 - x0 ) >= abs( y1 - y0 ) ) /* segment peu incline */
|
|
{
|
|
if( x1 < x0 )
|
|
{
|
|
EXCHG( x1, x0 ); EXCHG( y1, y0 );
|
|
}
|
|
|
|
dx = x0 / g_GridRoutingSize;
|
|
lim = x1 / g_GridRoutingSize;
|
|
dy = y0 / g_GridRoutingSize;
|
|
inc = 1; if( y1 < y0 )
|
|
inc = -1;
|
|
il = lim - dx; cumul = il / 2; delta = abs( y1 - y0 ) / g_GridRoutingSize;
|
|
for( ; dx <= lim; )
|
|
{
|
|
if( (dx >= 0) && (dy >= 0)
|
|
&& (dx < Ncols) && (dy < Nrows) )
|
|
{
|
|
OP_CELL( layer, dy, dx );
|
|
}
|
|
dx++; cumul += delta;
|
|
if( cumul > il )
|
|
{
|
|
cumul -= il; dy += inc;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( y1 < y0 )
|
|
{
|
|
EXCHG( x1, x0 ); EXCHG( y1, y0 );
|
|
}
|
|
|
|
dy = y0 / g_GridRoutingSize;
|
|
lim = y1 / g_GridRoutingSize;
|
|
dx = x0 / g_GridRoutingSize;
|
|
inc = 1; if( x1 < x0 )
|
|
inc = -1;
|
|
il = lim - dy; cumul = il / 2; delta = abs( x1 - x0 ) / g_GridRoutingSize;
|
|
for( ; dy <= lim; )
|
|
{
|
|
if( (dx >= 0) && (dy >= 0)
|
|
&& (dx < Ncols) && (dy < Nrows) )
|
|
{
|
|
OP_CELL( layer, dy, dx );
|
|
}
|
|
dy++; cumul += delta;
|
|
if( cumul > il )
|
|
{
|
|
cumul -= il; dx += inc;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*****************************************************************/
|
|
void TraceFilledRectangle( BOARD* Pcb,
|
|
int ux0, int uy0, int ux1, int uy1,
|
|
int masque_layer, int color, int op_logique )
|
|
/*****************************************************************/
|
|
|
|
/* Fonction Surchargee.
|
|
*
|
|
* Met a la valeur color l'ensemble des cellules du board inscrites dans
|
|
* le rectangle de coord ux0,uy0 ( angle haut a gauche )
|
|
* a ux1,uy1 ( angle bas a droite )
|
|
* Le rectangle est horizontal ( ou vertical )
|
|
* Coordonnees PCB.
|
|
*/
|
|
{
|
|
int row, col;
|
|
int row_min, row_max, col_min, col_max;
|
|
int trace = 0;
|
|
|
|
void (*WriteCell)( int, int, int, BoardCell );
|
|
|
|
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
|
|
trace = 1; /* Trace sur BOTTOM */
|
|
|
|
if( (masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) && Nb_Sides )
|
|
trace |= 2; /* Trace sur TOP */
|
|
|
|
if( trace == 0 )
|
|
return;
|
|
|
|
switch( op_logique )
|
|
{
|
|
default:
|
|
case WRITE_CELL:
|
|
WriteCell = SetCell; break;
|
|
|
|
case WRITE_OR_CELL:
|
|
WriteCell = OrCell; break;
|
|
|
|
case WRITE_XOR_CELL:
|
|
WriteCell = XorCell; break;
|
|
|
|
case WRITE_AND_CELL:
|
|
WriteCell = AndCell; break;
|
|
|
|
case WRITE_ADD_CELL:
|
|
WriteCell = AddCell; break;
|
|
}
|
|
|
|
ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y;
|
|
ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y;
|
|
|
|
/* Calcul des coord limites des cellules appartenant au rectangle */
|
|
row_max = uy1 / g_GridRoutingSize;
|
|
col_max = ux1 / g_GridRoutingSize;
|
|
row_min = uy0 / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize )
|
|
row_min++;
|
|
col_min = ux0 / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize )
|
|
col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
if( row_max >= (Nrows - 1) )
|
|
row_max = Nrows - 1;
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
if( col_max >= (Ncols - 1) )
|
|
col_max = Ncols - 1;
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
if( trace & 1 )
|
|
WriteCell( row, col, BOTTOM, color );
|
|
if( trace & 2 )
|
|
WriteCell( row, col, TOP, color );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/***********************************************************************************/
|
|
void TraceFilledRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1, int angle,
|
|
int masque_layer, int color, int op_logique )
|
|
/***********************************************************************************/
|
|
|
|
/* Fonction Surchargee.
|
|
*
|
|
* Met a la valeur color l'ensemble des cellules du board inscrites dans
|
|
* le rectangle de coord ux0,uy0 ( angle haut a droite )
|
|
* a ux1,uy1 ( angle bas a gauche )
|
|
* Le rectangle est tourne de la valeur angle (en 0,1 degres)
|
|
* Coordonnees PCB.
|
|
*/
|
|
{
|
|
int row, col;
|
|
int cx, cy; /* Centre du rectangle */
|
|
int rayon; /* rayon du cercle exinscrit */
|
|
int row_min, row_max, col_min, col_max;
|
|
int rotrow, rotcol;
|
|
int trace = 0;
|
|
|
|
void (*WriteCell)( int, int, int, BoardCell );
|
|
|
|
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
|
|
trace = 1; /* Trace sur BOTTOM */
|
|
|
|
if( masque_layer & g_TabOneLayerMask[Route_Layer_TOP] )
|
|
if( Nb_Sides )
|
|
trace |= 2;/* Trace sur TOP */
|
|
|
|
if( trace == 0 )
|
|
return;
|
|
|
|
switch( op_logique )
|
|
{
|
|
default:
|
|
case WRITE_CELL:
|
|
WriteCell = SetCell; break;
|
|
|
|
case WRITE_OR_CELL:
|
|
WriteCell = OrCell; break;
|
|
|
|
case WRITE_XOR_CELL:
|
|
WriteCell = XorCell; break;
|
|
|
|
case WRITE_AND_CELL:
|
|
WriteCell = AndCell; break;
|
|
|
|
case WRITE_ADD_CELL:
|
|
WriteCell = AddCell; break;
|
|
}
|
|
|
|
ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y;
|
|
ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y;
|
|
|
|
cx = (ux0 + ux1) / 2; cy = (uy0 + uy1) / 2;
|
|
rayon = (int) sqrt( (float) (cx - ux0) * (cx - ux0)
|
|
+ (float) (cy - uy0) * (cy - uy0) );
|
|
|
|
/* Calcul des coord limites des cellules appartenant au rectangle */
|
|
row_max = (cy + rayon) / g_GridRoutingSize;
|
|
col_max = (cx + rayon) / g_GridRoutingSize;
|
|
row_min = (cy - rayon) / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize )
|
|
row_min++;
|
|
col_min = (cx - rayon) / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize )
|
|
col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
if( row_max >= (Nrows - 1) )
|
|
row_max = Nrows - 1;
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
if( col_max >= (Ncols - 1) )
|
|
col_max = Ncols - 1;
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
rotrow = row * g_GridRoutingSize; rotcol = col * g_GridRoutingSize;
|
|
RotatePoint( &rotcol, &rotrow, cx, cy, -angle );
|
|
if( rotrow <= uy0 )
|
|
continue;
|
|
if( rotrow >= uy1 )
|
|
continue;
|
|
if( rotcol <= ux0 )
|
|
continue;
|
|
if( rotcol >= ux1 )
|
|
continue;
|
|
if( trace & 1 )
|
|
WriteCell( row, col, BOTTOM, color );
|
|
if( trace & 2 )
|
|
WriteCell( row, col, TOP, color );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*****************************************************************/
|
|
void DrawSegmentQcq( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
|
|
int color, int op_logique )
|
|
/*****************************************************************/
|
|
|
|
/* Remplit toutes les cellules du BOARD contenues dans le segment
|
|
* de demi-largeur lg, org ux,y0 fin ux,y1 a la valeur color .
|
|
* coord en unites PCB (0.1 mil) relatives a l'origine pt_pcb->m_PcbBox.m_Xmin,Y du board.
|
|
*/
|
|
{
|
|
int row, col;
|
|
int inc;
|
|
int row_max, col_max, row_min, col_min;
|
|
int demi_pas;
|
|
|
|
void (*WriteCell)( int, int, int, BoardCell );
|
|
int angle;
|
|
int cx, cy, dx, dy;
|
|
|
|
switch( op_logique )
|
|
{
|
|
default:
|
|
case WRITE_CELL:
|
|
WriteCell = SetCell; break;
|
|
|
|
case WRITE_OR_CELL:
|
|
WriteCell = OrCell; break;
|
|
|
|
case WRITE_XOR_CELL:
|
|
WriteCell = XorCell; break;
|
|
|
|
case WRITE_AND_CELL:
|
|
WriteCell = AndCell; break;
|
|
|
|
case WRITE_ADD_CELL:
|
|
WriteCell = AddCell; break;
|
|
}
|
|
|
|
/* on rend la coordonnee ux1 tj > ux0 , pour simplifier les calculs */
|
|
if( ux1 < ux0 )
|
|
{
|
|
EXCHG( ux1, ux0 ); EXCHG( uy1, uy0 );
|
|
}
|
|
|
|
/* calcul de l'increment selon axe Y */
|
|
inc = 1; if( uy1 < uy0 )
|
|
inc = -1;
|
|
|
|
/* Calcul de l'encadrement : */
|
|
demi_pas = g_GridRoutingSize / 2;
|
|
|
|
col_min = (ux0 - lg) / g_GridRoutingSize;
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
col_max = (ux1 + lg + demi_pas) / g_GridRoutingSize;
|
|
if( col_max > (Ncols - 1) )
|
|
col_max = Ncols - 1;
|
|
|
|
if( inc > 0 )
|
|
{
|
|
row_min = (uy0 - lg) / g_GridRoutingSize;
|
|
row_max = (uy1 + lg + demi_pas) / g_GridRoutingSize;
|
|
}
|
|
else
|
|
{
|
|
row_min = (uy1 - lg) / g_GridRoutingSize;
|
|
row_max = (uy0 + lg + demi_pas) / g_GridRoutingSize;
|
|
}
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
if( row_min > (Nrows - 1) )
|
|
row_min = Nrows - 1;
|
|
if( row_max < 0 )
|
|
row_max = 0;
|
|
if( row_max > (Nrows - 1) )
|
|
row_max = Nrows - 1;
|
|
|
|
|
|
dx = ux1 - ux0; dy = uy1 - uy0;
|
|
if( dx )
|
|
angle = (int) (atan2( dy, dx ) * 1800 / M_PI);
|
|
else
|
|
{
|
|
angle = 900; if( dy < 0 )
|
|
angle = -900;
|
|
}
|
|
|
|
RotatePoint( &dx, &dy, angle ); /* dx = longueur, dy = 0 */
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
int cxr;
|
|
cxr = (col * g_GridRoutingSize) - ux0;
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
cy = (row * g_GridRoutingSize) - uy0;
|
|
cx = cxr;
|
|
RotatePoint( &cx, &cy, angle );
|
|
if( abs( cy ) > lg )
|
|
continue; /* Le point est trop loin sur l'axe Y */
|
|
|
|
/* ici le point a tester est proche du segment: la position
|
|
* selon l'axe X doit etre testee */
|
|
if( (cx >= 0) && (cx <= dx) )
|
|
{
|
|
OP_CELL( layer, row, col );
|
|
continue;
|
|
}
|
|
/* examen des extremites qui sont arrondies */
|
|
if( (cx < 0) && (cx >= -lg) )
|
|
{
|
|
if( ( (cx * cx) + (cy * cy) ) <= (lg * lg) )
|
|
OP_CELL( layer, row, col );
|
|
continue;
|
|
}
|
|
if( (cx > dx) && ( cx <= (dx + lg) ) )
|
|
{
|
|
if( ( ( (cx - dx) * (cx - dx) ) + (cy * cy) ) <= (lg * lg) )
|
|
OP_CELL( layer, row, col );
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/********************************************************************/
|
|
void DrawHVSegment( int ux0, int uy0, int ux1, int uy1, int demi_largeur, int layer,
|
|
int color, int op_logique )
|
|
/********************************************************************/
|
|
|
|
/* Draw a horizontal or vertical segment.
|
|
* same as DrawSegmentQcq, but faster
|
|
*/
|
|
{
|
|
int row, col;
|
|
int row_max, col_max, row_min, col_min;
|
|
|
|
void (*WriteCell)( int, int, int, BoardCell );
|
|
|
|
switch( op_logique )
|
|
{
|
|
default:
|
|
case WRITE_CELL:
|
|
WriteCell = SetCell; break;
|
|
|
|
case WRITE_OR_CELL:
|
|
WriteCell = OrCell; break;
|
|
|
|
case WRITE_XOR_CELL:
|
|
WriteCell = XorCell; break;
|
|
|
|
case WRITE_AND_CELL:
|
|
WriteCell = AndCell; break;
|
|
|
|
case WRITE_ADD_CELL:
|
|
WriteCell = AddCell; break;
|
|
}
|
|
|
|
// Modif des coord pour que les coord de fin soient > coord de debut
|
|
if( uy1 < uy0 )
|
|
EXCHG( uy0, uy1 ); // ceci n'est vrai que parce que
|
|
if( ux1 < ux0 )
|
|
EXCHG( ux0, ux1 ); // dx ou dy ou les 2 sonts nuls
|
|
|
|
// Le segment est assimile a un rectangle.
|
|
// TODO: traiter correctement les extremites arrondies
|
|
// if ( ux0 == ux1 ) // Vertical Segment
|
|
{
|
|
ux0 -= demi_largeur; ux1 += demi_largeur;
|
|
}
|
|
|
|
// else // Horizontal segment
|
|
{
|
|
uy0 -= demi_largeur; uy1 += demi_largeur;
|
|
}
|
|
|
|
// Calcul des coord limites des cellules appartenant au rectangle
|
|
row_max = uy1 / g_GridRoutingSize;
|
|
col_max = ux1 / g_GridRoutingSize;
|
|
|
|
row_min = uy0 / g_GridRoutingSize;
|
|
if( uy0 > row_min * g_GridRoutingSize )
|
|
row_min++; // Traitement de l'arrondi par defaut
|
|
|
|
col_min = ux0 / g_GridRoutingSize;
|
|
if( ux0 > col_min * g_GridRoutingSize )
|
|
col_min++;
|
|
|
|
if( row_min < 0 )
|
|
row_min = 0;
|
|
if( row_max >= (Nrows - 1) )
|
|
row_max = Nrows - 1;
|
|
if( col_min < 0 )
|
|
col_min = 0;
|
|
if( col_max >= (Ncols - 1) )
|
|
col_max = Ncols - 1;
|
|
|
|
if( row_min > row_max )
|
|
row_max = row_min;
|
|
if( col_min > col_max )
|
|
col_max = col_min;
|
|
|
|
for( row = row_min; row <= row_max; row++ )
|
|
{
|
|
for( col = col_min; col <= col_max; col++ )
|
|
{
|
|
OP_CELL( layer, row, col );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*****************************************************************/
|
|
void TraceCercle( int ux0, int uy0, int ux1, int uy1, int lg, int layer,
|
|
int color, int op_logique )
|
|
/*****************************************************************/
|
|
|
|
/* Remplit toutes les cellules du BOARD contenues dans le cercle
|
|
* de demi-largeur lg, centre ux,y0 passant par ux,y1 a la valeur color .
|
|
* coord en unites PCB (0.1 mil) relatives a l'origine pt_pcb->m_PcbBox.m_Xmin,Y du board.
|
|
*/
|
|
{
|
|
int rayon, nb_segm;
|
|
int x0, y0, // Point de depart du segment en cours de trace
|
|
x1, y1; // point d'arrivee
|
|
int ii;
|
|
int angle;
|
|
|
|
rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) );
|
|
|
|
x0 = x1 = rayon; y0 = y1 = 0;
|
|
if( lg < 1 )
|
|
lg = 1;
|
|
nb_segm = (2 * rayon) / lg;
|
|
if( nb_segm < 5 )
|
|
nb_segm = 5;
|
|
if( nb_segm > 100 )
|
|
nb_segm = 100;
|
|
for( ii = 1; ii < nb_segm; ii++ )
|
|
{
|
|
angle = (3600 * ii) / nb_segm;
|
|
x1 = (int) (rayon * fcosinus[angle]);
|
|
y1 = (int) (rayon * fsinus[angle]);
|
|
DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logique );
|
|
x0 = x1; y0 = y1;
|
|
}
|
|
|
|
DrawSegmentQcq( x1 + ux0, y1 + uy0, ux0 + rayon, uy0, lg, layer, color, op_logique );
|
|
}
|
|
|
|
|
|
/****************************************************************************/
|
|
void TraceArc( int ux0, int uy0, int ux1, int uy1, int ArcAngle, int lg, int layer,
|
|
int color, int op_logique )
|
|
/****************************************************************************/
|
|
|
|
/* Remplit toutes les cellules du BOARD contenues dans l'arc de "longueur" angle
|
|
* de demi-largeur lg, centre ux,y0 commencant en ux,y1 a la valeur color .
|
|
* coord en unites PCB (0.1 mil) relatives a l'origine
|
|
* pt_pcb->m_PcbBox.m_Xmin,Y du board.
|
|
*/
|
|
{
|
|
int rayon, nb_segm;
|
|
int x0, y0, // Point de depart du segment en cours de trace
|
|
x1, y1; // point d'arrivee
|
|
int ii;
|
|
int angle, StAngle;
|
|
|
|
|
|
rayon = (int) hypot( (double) (ux1 - ux0), (double) (uy1 - uy0) );
|
|
|
|
x0 = ux1 - ux0;
|
|
y0 = uy1 - uy0;
|
|
StAngle = ArcTangente( uy1 - uy0, ux1 - ux0 );
|
|
if( lg < 1 )
|
|
lg = 1;
|
|
nb_segm = (2 * rayon) / lg;
|
|
nb_segm = ( nb_segm * abs( ArcAngle ) ) / 3600;
|
|
if( nb_segm < 5 )
|
|
nb_segm = 5;
|
|
if( nb_segm > 100 )
|
|
nb_segm = 100;
|
|
|
|
for( ii = 1; ii <= nb_segm; ii++ )
|
|
{
|
|
angle = (ArcAngle * ii) / nb_segm;
|
|
angle += StAngle;
|
|
|
|
while( angle >= 3600 )
|
|
angle -= 3600;
|
|
|
|
while( angle < 0 )
|
|
angle += 3600;
|
|
|
|
x1 = (int) (rayon * fcosinus[angle]);
|
|
y1 = (int) (rayon * fsinus[angle]);
|
|
DrawSegmentQcq( x0 + ux0, y0 + uy0, x1 + ux0, y1 + uy0, lg, layer, color, op_logique );
|
|
x0 = x1; y0 = y1;
|
|
}
|
|
|
|
// DrawSegmentQcq(x1+ux0,y1+uy0, ux0+rayon, uy0,lg,layer, color, op_logique);
|
|
}
|