45 lines
1.1 KiB
TeX
45 lines
1.1 KiB
TeX
\input regression-test
|
|
|
|
\title{Moloch Test Suite}
|
|
\subtitle{A subtitle that is way to long and in fact might just need to be split across lines}
|
|
|
|
\author[Johan]{Johan Larsson}
|
|
\institute[LU]{Lund Univesity//Department of Statistics}
|
|
\date{April 23, 2024}
|
|
|
|
\begin{document}
|
|
|
|
\START
|
|
\showoutput
|
|
|
|
\begin{frame}{Table of contents}
|
|
\setbeamertemplate{section in toc}[sections numbered]
|
|
\tableofcontents[hideallsubsections]
|
|
\end{frame}
|
|
|
|
\section{Results}
|
|
|
|
\subsection{Proof of the Main Theorem}
|
|
|
|
\begin{frame}<1>
|
|
\frametitle{There Is No Largest Prime Number}
|
|
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
|
|
|
|
\begin{theorem}
|
|
There is no largest prime number.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
\begin{enumerate}
|
|
\item<1-| alert@1> Suppose $p$ were the largest prime number.
|
|
\item<2-> Let $q$ be the product of the first $p$ numbers.
|
|
\item<3-> Then $q$\;+\,$1$ is not divisible by any of them.
|
|
\item<1-> Thus $q$\;+\,$1$ is also prime and greater than $p$.\qedhere
|
|
\end{enumerate}
|
|
\end{proof}
|
|
\end{frame}
|
|
|
|
\vfil\break
|
|
\END
|
|
|
|
\end{document}
|