48 lines
1.3 KiB
TeX
48 lines
1.3 KiB
TeX
\input regression-test
|
|
|
|
\beamertemplatesolidbackgroundcolor{black!5}
|
|
\beamertemplatetransparentcovered
|
|
|
|
\usepackage{times}
|
|
|
|
\title{There Is No Largest Prime Number}
|
|
\subtitle{With an introduction to a new proof technique}
|
|
|
|
\author[Euklid]{Euklid of Alexandria}
|
|
\institute[Univ. Alexandria]{Department of Mathematics\\ University of Alexandria}
|
|
\date[ISPN '80]{27th International Symposium on Prime Numbers, --280}
|
|
|
|
\begin{document}
|
|
|
|
\START
|
|
\showoutput
|
|
|
|
\begin{frame}
|
|
\titlepage
|
|
\tableofcontents
|
|
\end{frame}
|
|
|
|
\section{Results}
|
|
\subsection{Proof of the Main Theorem}
|
|
|
|
\begin{frame}<1>
|
|
\frametitle{There Is No Largest Prime Number}
|
|
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
|
|
|
|
\begin{theorem}
|
|
There is no largest prime number.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
\begin{enumerate}
|
|
% The strange way of typesetting math is to minimize font usage
|
|
% in order to keep the file sizes of the examples small.
|
|
\item<1-| alert@1> Suppose $p$ were the largest prime number.
|
|
\item<2-> Let $q$ be the product of the first $p$ numbers.
|
|
\item<3-> Then $q$\;+\,$1$ is not divisible by any of them.
|
|
\item<1-> Thus $q$\;+\,$1$ is also prime and greater than $p$.\qedhere
|
|
\end{enumerate}
|
|
\end{proof}
|
|
\end{frame}
|
|
|
|
\end{document}
|