spot-the-bug/stream-ciphers/monocypher-3.1.1/tests/test-legacy.c

348 lines
13 KiB
C

// This file is dual-licensed. Choose whichever licence you want from
// the two licences listed below.
//
// The first licence is a regular 2-clause BSD licence. The second licence
// is the CC-0 from Creative Commons. It is intended to release Monocypher
// to the public domain. The BSD licence serves as a fallback option.
//
// SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0
//
// ------------------------------------------------------------------------
//
// Copyright (c) 2017-2019, Loup Vaillant
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// ------------------------------------------------------------------------
//
// Written in 2017-2019 by Loup Vaillant
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software. If not, see
// <https://creativecommons.org/publicdomain/zero/1.0/>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "monocypher.h"
#include "deprecated/chacha20.h"
#include "deprecated/aead-incr.h"
#include "utils.h"
#include "vectors.h"
#define CHACHA_BLOCK_SIZE 64
#define CHACHA_NB_BLOCKS 10
#define POLY1305_BLOCK_SIZE 16
#define BLAKE2B_BLOCK_SIZE 128
#define SHA_512_BLOCK_SIZE 128
////////////////////////////
/// Tests aginst vectors ///
////////////////////////////
static void chacha20(const vector in[], vector *out)
{
const vector *key = in;
const vector *nonce = in + 1;
const vector *plain = in + 2;
u64 ctr = load64_le(in[3].buf);
crypto_chacha_ctx ctx;
crypto_chacha20_init (&ctx, key->buf, nonce->buf);
crypto_chacha20_set_ctr(&ctx, ctr);
crypto_chacha20_encrypt(&ctx, out->buf, plain->buf, plain->size);
}
static void hchacha20(const vector in[], vector *out)
{
const vector *key = in;
const vector *nonce = in + 1;
crypto_chacha20_H(out->buf, key->buf, nonce->buf);
}
static void xchacha20(const vector in[], vector *out)
{
const vector *key = in;
const vector *nonce = in + 1;
const vector *plain = in + 2;
u64 ctr = load64_le(in[3].buf);
crypto_chacha_ctx ctx;
crypto_chacha20_x_init (&ctx, key->buf, nonce->buf);
crypto_chacha20_set_ctr(&ctx, ctr);
crypto_chacha20_encrypt(&ctx, out->buf, plain->buf, plain->size);
}
//////////////////////////////
/// Self consistency tests ///
//////////////////////////////
// Tests that encrypting in chunks yields the same result than
// encrypting all at once.
static int p_chacha20()
{
#undef INPUT_SIZE
#define INPUT_SIZE (CHACHA_BLOCK_SIZE * 4) // total input size
int status = 0;
FOR (i, 0, INPUT_SIZE) {
// outputs
u8 output_chunk[INPUT_SIZE];
u8 output_whole[INPUT_SIZE];
// inputs
RANDOM_INPUT(input, INPUT_SIZE);
RANDOM_INPUT(key , 32);
RANDOM_INPUT(nonce, 8);
// Encrypt in chunks
crypto_chacha_ctx ctx;
crypto_chacha20_init(&ctx, key, nonce);
crypto_chacha20_encrypt(&ctx, output_chunk , input , i);
crypto_chacha20_encrypt(&ctx, output_chunk+i, input+i, INPUT_SIZE-i);
// Encrypt all at once
crypto_chacha20_init(&ctx, key, nonce);
crypto_chacha20_encrypt(&ctx, output_whole, input, INPUT_SIZE);
// Compare
status |= memcmp(output_chunk, output_whole, INPUT_SIZE);
// Stream in chunks
crypto_chacha20_init(&ctx, key, nonce);
crypto_chacha20_stream(&ctx, output_chunk , i);
crypto_chacha20_stream(&ctx, output_chunk + i, INPUT_SIZE - i);
// Stream all at once
crypto_chacha20_init(&ctx, key, nonce);
crypto_chacha20_stream(&ctx, output_whole, INPUT_SIZE);
// Compare
status |= memcmp(output_chunk, output_whole, INPUT_SIZE);
}
printf("%s: Chacha20 (incremental)\n", status != 0 ? "FAILED" : "OK");
return status;
}
// Tests that output and input can be the same pointer
static int p_chacha20_same_ptr()
{
int status = 0;
u8 output[INPUT_SIZE];
RANDOM_INPUT(input, INPUT_SIZE);
RANDOM_INPUT(key , 32);
RANDOM_INPUT(nonce, 8);
crypto_chacha_ctx ctx;
crypto_chacha20_init (&ctx, key, nonce);
crypto_chacha20_encrypt(&ctx, output, input, INPUT_SIZE);
crypto_chacha20_init (&ctx, key, nonce);
crypto_chacha20_encrypt(&ctx, input, input, INPUT_SIZE);
status |= memcmp(output, input, CHACHA_BLOCK_SIZE);
printf("%s: Chacha20 (output == input)\n", status != 0 ? "FAILED" : "OK");
return status;
}
static int p_chacha20_set_ctr()
{
#define STREAM_SIZE (CHACHA_BLOCK_SIZE * CHACHA_NB_BLOCKS)
int status = 0;
FOR (i, 0, CHACHA_NB_BLOCKS) {
u8 output_part[STREAM_SIZE ];
u8 output_all [STREAM_SIZE ];
u8 output_more[STREAM_SIZE * 2];
RANDOM_INPUT(key , 32);
RANDOM_INPUT(nonce, 8);
size_t limit = i * CHACHA_BLOCK_SIZE;
// Encrypt all at once
crypto_chacha_ctx ctx;
crypto_chacha20_init(&ctx, key, nonce);
crypto_chacha20_stream(&ctx, output_all, STREAM_SIZE);
// Encrypt second part
crypto_chacha20_set_ctr(&ctx, i);
crypto_chacha20_stream(&ctx, output_part + limit, STREAM_SIZE - limit);
// Encrypt first part
crypto_chacha20_set_ctr(&ctx, 0);
crypto_chacha20_stream(&ctx, output_part, limit);
// Compare the results (must be the same)
status |= memcmp(output_part, output_all, STREAM_SIZE);
// Encrypt before the begining
crypto_chacha20_set_ctr(&ctx, -(u64)i);
crypto_chacha20_stream(&ctx,
output_more + STREAM_SIZE - limit,
STREAM_SIZE + limit);
// Compare the results (must be the same)
status |= memcmp(output_more + STREAM_SIZE, output_all, STREAM_SIZE);
}
printf("%s: Chacha20 (set counter)\n", status != 0 ? "FAILED" : "OK");
return status;
}
static int p_chacha20_H()
{
int status = 0;
FOR (i, 0, 100) {
RANDOM_INPUT(buffer, 80);
size_t out_idx = rand64() % 48;
size_t key_idx = rand64() % 48;
size_t in_idx = rand64() % 64;
u8 key[32]; FOR (j, 0, 32) { key[j] = buffer[j + key_idx]; }
u8 in [16]; FOR (j, 0, 16) { in [j] = buffer[j + in_idx]; }
// Run with and without overlap, then compare
u8 out[32];
crypto_chacha20_H(out, key, in);
crypto_chacha20_H(buffer + out_idx, buffer + key_idx, buffer + in_idx);
status |= memcmp(out, buffer + out_idx, 32);
}
printf("%s: HChacha20 (overlap)\n", status != 0 ? "FAILED" : "OK");
return status;
}
static int p_lock_incremental()
{
int status = 0;
FOR (i, 0, 1000) {
RANDOM_INPUT(key , 32);
RANDOM_INPUT(nonce, 24);
RANDOM_INPUT(ad , 128);
RANDOM_INPUT(plain, 256);
// total sizes
size_t ad_size = rand64() % 128;
size_t text_size = rand64() % 256;
// incremental sizes
size_t ad_size1 = ad_size == 0 ? 0 : rand64() % ad_size;
size_t text_size1 = text_size == 0 ? 0 : rand64() % text_size;
size_t ad_size2 = ad_size - ad_size1;
size_t text_size2 = text_size - text_size1;
// incremental buffers
u8 *ad1 = ad; u8 *ad2 = ad + ad_size1;
u8 *plain1 = plain; u8 *plain2 = plain + text_size1;
u8 mac1[16], cipher1[256];
u8 mac2[16], cipher2[256];
crypto_lock_aead(mac1, cipher1, key, nonce,
ad, ad_size, plain, text_size);
crypto_lock_ctx ctx;
crypto_lock_init (&ctx, key, nonce);
crypto_lock_auth_ad(&ctx, ad1, ad_size1); // just to show ad also have
crypto_lock_auth_ad(&ctx, ad2, ad_size2); // an incremental interface
crypto_lock_update (&ctx, cipher2 , plain1, text_size1);
crypto_lock_update (&ctx, cipher2 + text_size1, plain2, text_size2);
crypto_lock_final (&ctx, mac2);
status |= memcmp(mac1 , mac2 , 16 );
status |= memcmp(cipher1, cipher2, text_size);
// Now test the round trip.
u8 re_plain1[256];
u8 re_plain2[256];
status |= crypto_unlock_aead(re_plain1, key, nonce, mac1,
ad, ad_size, cipher1, text_size);
crypto_unlock_init (&ctx, key, nonce);
crypto_unlock_auth_ad(&ctx, ad, ad_size);
crypto_unlock_update (&ctx, re_plain2, cipher2, text_size);
status |= crypto_unlock_final(&ctx, mac2);
status |= memcmp(mac1 , mac2 , 16 );
status |= memcmp(plain, re_plain1, text_size);
status |= memcmp(plain, re_plain2, text_size);
// Test authentication without decryption
crypto_unlock_init (&ctx, key, nonce);
crypto_unlock_auth_ad (&ctx, ad , ad_size );
crypto_unlock_auth_message(&ctx, cipher2, text_size);
status |= crypto_unlock_final(&ctx, mac2);
// The same, except we're supposed to reject forgeries
if (text_size > 0) {
cipher2[0]++; // forgery attempt
crypto_unlock_init (&ctx, key, nonce);
crypto_unlock_auth_ad (&ctx, ad , ad_size );
crypto_unlock_auth_message(&ctx, cipher2, text_size);
status |= !crypto_unlock_final(&ctx, mac2);
}
}
printf("%s: aead (incremental)\n", status != 0 ? "FAILED" : "OK");
return status;
}
// Only additionnal data
static int p_auth()
{
int status = 0;
FOR (i, 0, 128) {
RANDOM_INPUT(key , 32);
RANDOM_INPUT(nonce , 24);
RANDOM_INPUT(ad , 128);
u8 mac1[16];
u8 mac2[16];
// roundtrip
{
crypto_lock_ctx ctx;
crypto_lock_init (&ctx, key, nonce);
crypto_lock_auth_ad(&ctx, ad, i);
crypto_lock_final (&ctx, mac1);
crypto_lock_aead(mac2, 0, key, nonce, ad, i, 0, 0);
status |= memcmp(mac1, mac2, 16);
}
{
crypto_unlock_ctx ctx;
crypto_unlock_init (&ctx, key, nonce);
crypto_unlock_auth_ad(&ctx, ad, i);
status |= crypto_unlock_final(&ctx, mac1);
status |= crypto_unlock_aead(0, key, nonce, mac1, ad, i, 0, 0);
}
}
printf("%s: aead (authentication)\n", status != 0 ? "FAILED" : "OK");
return status;
}
#define TEST(name, nb_inputs) vector_test(name, #name, nb_inputs, \
nb_##name##_vectors, \
name##_vectors, \
name##_sizes)
int main(int argc, char *argv[])
{
if (argc > 1) {
sscanf(argv[1], "%" PRIu64 "", &random_state);
}
printf("\nRandom seed: %" PRIu64 "\n", random_state);
int status = 0;
printf("\nTest against vectors");
printf("\n--------------------\n");
status |= TEST(chacha20 , 4);
status |= TEST(hchacha20 , 2);
status |= TEST(xchacha20 , 4);
printf("\nProperty based tests");
printf("\n--------------------\n");
status |= p_chacha20();
status |= p_chacha20_same_ptr();
status |= p_chacha20_set_ctr();
status |= p_chacha20_H();
status |= p_lock_incremental();
status |= p_auth();
printf("\n%s\n\n", status != 0 ? "SOME TESTS FAILED" : "All tests OK!");
return status;
}