spot-the-bug/stream-ciphers/monocypher-3.1.1/doc/html/crypto_x25519_public_key.html

165 lines
8.2 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8"/>
<style>
table.head, table.foot { width: 100%; }
td.head-rtitle, td.foot-os { text-align: right; }
td.head-vol { text-align: center; }
div.Pp { margin: 1ex 0ex; }
</style>
<link rel="stylesheet" href="style.css" type="text/css" media="all"/>
<title>CRYPTO_X25519(3MONOCYPHER)</title>
</head>
<body>
<table class="head">
<tr>
<td class="head-ltitle">CRYPTO_X25519(3MONOCYPHER)</td>
<td class="head-vol">3MONOCYPHER</td>
<td class="head-rtitle">CRYPTO_X25519(3MONOCYPHER)</td>
</tr>
</table>
<div class="manual-text">
<h1 class="Sh" title="Sh" id="NAME"><a class="selflink" href="#NAME">NAME</a></h1>
<b class="Nm" title="Nm">crypto_x25519</b>,
<b class="Nm" title="Nm">crypto_x25519_public_key</b> &#x2014;
<span class="Nd" title="Nd">X25519 key exchange</span>
<h1 class="Sh" title="Sh" id="SYNOPSIS"><a class="selflink" href="#SYNOPSIS">SYNOPSIS</a></h1>
<b class="In" title="In">#include
&lt;<a class="In" title="In">monocypher.h</a>&gt;</b>
<div class="Pp"></div>
<var class="Ft" title="Ft">void</var>
<br/>
<b class="Fn" title="Fn">crypto_x25519</b>(<var class="Fa" title="Fa">uint8_t
raw_shared_secret[32]</var>, <var class="Fa" title="Fa">const uint8_t
your_secret_key[32]</var>, <var class="Fa" title="Fa">const uint8_t
their_public_key[32]</var>);
<div class="Pp"></div>
<var class="Ft" title="Ft">void</var>
<br/>
<b class="Fn" title="Fn">crypto_x25519_public_key</b>(<var class="Fa" title="Fa">uint8_t
your_public_key[32]</var>, <var class="Fa" title="Fa">const uint8_t
your_secret_key[32]</var>);
<h1 class="Sh" title="Sh" id="DESCRIPTION"><a class="selflink" href="#DESCRIPTION">DESCRIPTION</a></h1>
<b class="Fn" title="Fn">crypto_x25519</b>() computes a shared secret with
<var class="Fa" title="Fa">your_secret_key</var> and
<var class="Fa" title="Fa">their_public_key</var>. It is a low-level
primitive. Use
<a class="Xr" title="Xr" href="crypto_key_exchange.html">crypto_key_exchange(3monocypher)</a>
unless you have a specific reason not to.
<div class="Pp"></div>
<b class="Fn" title="Fn">crypto_x25519_public_key</b>() is the same as
<a class="Xr" title="Xr" href="crypto_key_exchange_public_key.html">crypto_key_exchange_public_key(3monocypher)</a>.
It deterministically computes the public key from a random secret key.
<div class="Pp"></div>
The arguments are:
<dl class="Bl-tag">
<dt class="It-tag">&#x00A0;</dt>
<dd class="It-tag">&#x00A0;</dd>
<dt class="It-tag"><var class="Fa" title="Fa">raw_shared_secret</var></dt>
<dd class="It-tag">The shared secret, known only to those who know a relevant
secret key (yours or theirs). It is not cryptographically random. Do not
use it directly as a key. Hash it with
<a class="Xr" title="Xr" href="crypto_chacha20_H.html">crypto_chacha20_H(3monocypher)</a>
or
<a class="Xr" title="Xr" href="crypto_blake2b.html">crypto_blake2b(3monocypher)</a>
first.</dd>
<dt class="It-tag">&#x00A0;</dt>
<dd class="It-tag">&#x00A0;</dd>
<dt class="It-tag"><var class="Fa" title="Fa">your_secret_key</var></dt>
<dd class="It-tag">A 32-byte secret random number. See
<a class="Xr" title="Xr" href="intro.html">intro(3monocypher)</a> for
advice about generating random bytes (use the operating system's random
number generator).</dd>
<dt class="It-tag">&#x00A0;</dt>
<dd class="It-tag">&#x00A0;</dd>
<dt class="It-tag"><var class="Fa" title="Fa">their_public_key</var></dt>
<dd class="It-tag">The public key of the other party.
<div class="Pp"></div>
<var class="Fa" title="Fa">raw_shared_secret</var> and
<var class="Fa" title="Fa">your_secret_key</var> may overlap if your
secret is no longer required.</dd>
</dl>
<div class="Pp"></div>
Some protocols, such as some password-authenticated key exchange (PAKE)
protocols and oblivious pseudo-random functions (OPRF), may require
&#x201C;contributory&#x201D; behaviour, which ensures that no untrusted party
forces the shared secret to a known constant. If a protocol requires
contributory behaviour, compare the output of
<b class="Fn" title="Fn">crypto_x25519</b>() to an all-zero buffer using
<a class="Xr" title="Xr" href="crypto_verify32.html">crypto_verify32(3monocypher)</a>;
abort the protocol if the output and the all-zero buffer are equal.
<div class="Pp"></div>
Do not use the same secret key for both key exchanges and signatures. The public
keys are different, and revealing both may leak information. If there really
is no room to store or derive two different secret keys, consider generating a
key pair for signatures and then converting it with
<a class="Xr" title="Xr" href="crypto_from_eddsa_private.html">crypto_from_eddsa_private(3monocypher)</a>
and
<a class="Xr" title="Xr" href="crypto_from_eddsa_public.html">crypto_from_eddsa_public(3monocypher)</a>.
<h1 class="Sh" title="Sh" id="RETURN_VALUES"><a class="selflink" href="#RETURN_VALUES">RETURN
VALUES</a></h1>
<b class="Fn" title="Fn">crypto_x25519</b>() and
<b class="Fn" title="Fn">crypto_x25519_public_key</b>() return nothing.
<h1 class="Sh" title="Sh" id="EXAMPLES"><a class="selflink" href="#EXAMPLES">EXAMPLES</a></h1>
The following example assumes the existence of
<b class="Fn" title="Fn">arc4random_buf</b>(), which fills the given buffer
with cryptographically secure random bytes. If
<b class="Fn" title="Fn">arc4random_buf</b>() does not exist on your system,
see <a class="Xr" title="Xr" href="intro.html">intro(3monocypher)</a> for
advice about how to generate cryptographically secure random bytes.
<div class="Pp"></div>
Generate a pair of shared keys with your secret key and their public key. (This
can help nonce management for full duplex communications.)
<div class="Pp"></div>
<div class="Bd" style="margin-left: 5.00ex;">
<pre class="Li">
const uint8_t their_pk [32]; /* Their public key */
uint8_t your_sk [32]; /* Your secret key */
uint8_t shared_secret[32]; /* Shared secret (NOT a key) */
arc4random_buf(your_sk, 32);
crypto_x25519(shared_secret, your_sk, their_pk);
/* Wipe secrets if they are no longer needed */
crypto_wipe(your_sk, 32);
uint8_t shared_keys[64]; /* Two shared session keys */
crypto_blake2b(shared_keys, shared_secret, 32);
const uint8_t *key_1 = shared_keys; /* Shared key 1 */
const uint8_t *key_2 = shared_keys + 32; /* Shared key 2 */
/* Wipe secrets if they are no longer needed */
crypto_wipe(shared_secret, 32);
</pre>
</div>
<h1 class="Sh" title="Sh" id="SEE_ALSO"><a class="selflink" href="#SEE_ALSO">SEE
ALSO</a></h1>
<a class="Xr" title="Xr" href="crypto_key_exchange.html">crypto_key_exchange(3monocypher)</a>,
<a class="Xr" title="Xr" href="intro.html">intro(3monocypher)</a>
<h1 class="Sh" title="Sh" id="STANDARDS"><a class="selflink" href="#STANDARDS">STANDARDS</a></h1>
This function implements X25519, described in RFC 7748.
<h1 class="Sh" title="Sh" id="HISTORY"><a class="selflink" href="#HISTORY">HISTORY</a></h1>
The <b class="Fn" title="Fn">crypto_x25519</b>(), and
<b class="Fn" title="Fn">crypto_x25519_public_key</b>() functions first
appeared in Monocypher 0.1.
<h1 class="Sh" title="Sh" id="SECURITY_CONSIDERATIONS"><a class="selflink" href="#SECURITY_CONSIDERATIONS">SECURITY
CONSIDERATIONS</a></h1>
If either of the long term secret keys leaks, it may compromise
<i class="Em" title="Em">all past messages</i>. This can be avoided by using
protocols that provide forward secrecy, such as the X3DH key agreement
protocol.
<h1 class="Sh" title="Sh" id="IMPLEMENTATION_DETAILS"><a class="selflink" href="#IMPLEMENTATION_DETAILS">IMPLEMENTATION
DETAILS</a></h1>
The most significant bit of the public key is systematically ignored. It is not
needed because every public key should be smaller than 2^255-19, which fits in
255 bits. If another implementation of X25519 gives you a key that is not
fully reduced and has its high bit set, the computation will fail. On the
other hand, it also means you may use this bit for other purposes (such as
parity flipping for Ed25519 compatibility).</div>
<table class="foot">
<tr>
<td class="foot-date">March 31, 2020</td>
<td class="foot-os">Linux 4.15.0-106-generic</td>
</tr>
</table>
</body>
</html>