[−][src]Struct rand::distributions::weighted::alias_method::WeightedIndex
A distribution using weighted sampling to pick a discretely selected item.
Sampling a WeightedIndex<W>
distribution returns the index of a randomly
selected element from the vector used to create the WeightedIndex<W>
.
The chance of a given element being picked is proportional to the value of
the element. The weights can have any type W
for which a implementation of
Weight
exists.
Performance
Given that n
is the number of items in the vector used to create an
WeightedIndex<W>
, WeightedIndex<W>
will require O(n)
amount of
memory. More specifically it takes up some constant amount of memory plus
the vector used to create it and a Vec<u32>
with capacity n
.
Time complexity for the creation of a WeightedIndex<W>
is O(n)
.
Sampling is O(1)
, it makes a call to Uniform<u32>::sample
and a call
to Uniform<W>::sample
.
Example
use rand::distributions::weighted::alias_method::WeightedIndex; use rand::prelude::*; let choices = vec!['a', 'b', 'c']; let weights = vec![2, 1, 1]; let dist = WeightedIndex::new(weights).unwrap(); let mut rng = thread_rng(); for _ in 0..100 { // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c' println!("{}", choices[dist.sample(&mut rng)]); } let items = [('a', 0), ('b', 3), ('c', 7)]; let dist2 = WeightedIndex::new(items.iter().map(|item| item.1).collect()).unwrap(); for _ in 0..100 { // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c' println!("{}", items[dist2.sample(&mut rng)].0); }
Methods
impl<W: Weight> WeightedIndex<W>
[src]
pub fn new(weights: Vec<W>) -> Result<Self, WeightedError>
[src]
Creates a new [WeightedIndex
].
Returns an error if:
- The vector is empty.
- The vector is longer than
u32::MAX
. - For any weight
w
:w < 0
orw > max
wheremax = W::MAX / weights.len()
. - The sum of weights is zero.
Trait Implementations
impl<W: Weight> Distribution<usize> for WeightedIndex<W>
[src]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize
[src]
ⓘImportant traits for DistIter<D, R, T>fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> where
R: Rng,
Self: Sized,
[src]
R: Rng,
Self: Sized,
Create an iterator that generates random values of T
, using rng
as the source of randomness. Read more
impl<W: Weight> Clone for WeightedIndex<W> where
Uniform<W>: Clone,
[src]
Uniform<W>: Clone,
fn clone(&self) -> Self
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Performs copy-assignment from source
. Read more
impl<W: Weight> Debug for WeightedIndex<W> where
W: Debug,
Uniform<W>: Debug,
[src]
W: Debug,
Uniform<W>: Debug,
Auto Trait Implementations
impl<W> Send for WeightedIndex<W> where
W: Send,
<W as SampleUniform>::Sampler: Send,
W: Send,
<W as SampleUniform>::Sampler: Send,
impl<W> Sync for WeightedIndex<W> where
W: Sync,
<W as SampleUniform>::Sampler: Sync,
W: Sync,
<W as SampleUniform>::Sampler: Sync,
Blanket Implementations
impl<T> From<T> for T
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,