DragonProbe/bsp/rp2040/m_default/i2c_tinyusb.c

462 lines
15 KiB
C
Raw Normal View History

// vim: set et:
#include <stdio.h>
#include <hardware/clocks.h>
#include <hardware/i2c.h>
#include <hardware/resets.h>
#include <pico/binary_info.h>
#include <pico/stdlib.h>
#include <pico/timeout_helper.h>
#include "m_default/bsp-feature.h"
#include "m_default/pinout.h"
#include "m_default/i2ctinyusb.h"
static int delay = 10, delay2 = 5;
// I2C bitbang reimpl because ugh, synopsys
// (mostly inspired by original I2CTinyUSB AVR firmware)
__attribute__((__always_inline__)) inline static void i2cio_set_sda(bool hi) {
if (hi) {
sio_hw->gpio_oe_clr = (1 << PINOUT_I2C_SDA); // SDA is input
// => pullup configured, so it'll go high
} else {
sio_hw->gpio_oe_set = (1 << PINOUT_I2C_SDA); // SDA is output
sio_hw->gpio_clr = (1 << PINOUT_I2C_SDA); // and drive it low
}
}
__attribute__((__always_inline__)) inline static bool i2cio_get_sda(void) {
return (sio_hw->gpio_in & (1 << PINOUT_I2C_SDA)) != 0;
}
__attribute__((__always_inline__)) inline static void i2cio_set_scl(bool hi) {
busy_wait_us_32(delay2);
sio_hw->gpio_oe_set = (1 << PINOUT_I2C_SCL); // SCL is output
if (hi)
sio_hw->gpio_set = (1 << PINOUT_I2C_SCL); // SCL is high
else
sio_hw->gpio_clr = (1 << PINOUT_I2C_SCL); // SCL is low
busy_wait_us_32(delay2);
}
__attribute__((__always_inline__)) inline static void i2cio_scl_toggle(void) {
i2cio_set_scl(true);
i2cio_set_scl(false);
}
static void __no_inline_not_in_flash_func(i2cio_start)(void) { // start condition
i2cio_set_sda(false);
i2cio_set_scl(false);
}
static void __no_inline_not_in_flash_func(i2cio_repstart)(void) { // repstart condition
i2cio_set_sda(true);
i2cio_set_scl(true);
i2cio_set_sda(false);
i2cio_set_scl(false);
}
static void __no_inline_not_in_flash_func(i2cio_stop)(void) { // stop condition
i2cio_set_sda(false);
i2cio_set_scl(true);
i2cio_set_sda(true);
}
static bool __no_inline_not_in_flash_func(i2cio_write7)(
uint8_t v) { // return value: acked? // needed for 10bitaddr xfers
for (int i = 6; i >= 0; --i) {
i2cio_set_sda((v & (1 << i)) != 0);
i2cio_scl_toggle();
}
i2cio_set_sda(true);
i2cio_set_scl(true);
bool ack = !i2cio_get_sda();
i2cio_set_scl(false);
return ack;
}
static bool __no_inline_not_in_flash_func(i2cio_write8)(uint8_t v) { // return value: acked?
for (int i = 7; i >= 0; --i) {
i2cio_set_sda((v & (1 << i)) != 0);
i2cio_scl_toggle();
}
i2cio_set_sda(true);
i2cio_set_scl(true);
bool ack = !i2cio_get_sda();
i2cio_set_scl(false);
return ack;
}
static uint8_t __no_inline_not_in_flash_func(i2cio_read8)(bool last) {
i2cio_set_sda(true);
i2cio_set_scl(false);
uint8_t rv = 0;
for (int i = 7; i >= 0; --i) {
i2cio_set_scl(true);
bool c = i2cio_get_sda();
rv <<= 1;
if (c) rv |= 1;
i2cio_set_scl(false);
}
if (last)
i2cio_set_sda(true);
else
i2cio_set_sda(false);
i2cio_scl_toggle();
i2cio_set_sda(true);
return rv;
}
// replicating/rewriting some SDK functions because they don't do what I want
// so I'm making better ones
static int __no_inline_not_in_flash_func(i2cex_probe_address)(uint16_t addr, bool a10bit) {
// I2C pins to SIO
gpio_set_function(PINOUT_I2C_SCL, GPIO_FUNC_SIO);
gpio_set_function(PINOUT_I2C_SDA, GPIO_FUNC_SIO);
int rv;
i2cio_start();
if (a10bit) {
// A10 magic higher 2 addr bits r/#w bit
uint8_t addr1 = 0x70 | (((addr >> 8) & 3) << 1) | 0, addr2 = addr & 0xff;
if (i2cio_write7(addr1)) {
if (i2cio_write8(addr2))
rv = 0;
else
rv = PICO_ERROR_GENERIC;
} else
rv = PICO_ERROR_GENERIC;
} else {
if (i2cio_write8((addr << 1) & 0xff))
rv = 0; // acked: ok
else
rv = PICO_ERROR_GENERIC; // nak :/
}
i2cio_stop();
// I2C back to I2C
gpio_set_function(PINOUT_I2C_SCL, GPIO_FUNC_I2C);
gpio_set_function(PINOUT_I2C_SDA, GPIO_FUNC_I2C);
return rv;
}
inline static void i2cex_abort_xfer(i2c_inst_t* i2c) {
#if 1
// may be bugged??? so doesnt do anything for now
(void)i2c;
return;
#else
// now do the abort
i2c->hw->enable = 1 /*| (1<<2)*/ | (1 << 1);
// wait for M_TX_ABRT irq
do {
/*if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}*/
tight_loop_contents();
} while (/*!timeout &&*/ !(i2c->hw->raw_intr_stat & I2C_IC_RAW_INTR_STAT_TX_ABRT_BITS));
// reset irq
// if (!timeout)
(void)i2c->hw->clr_tx_abrt;
#endif
}
static int i2cex_write_blocking_until(i2c_inst_t* i2c, uint16_t addr, bool a10bit,
const uint8_t* src, size_t len, bool nostop, absolute_time_t until) {
timeout_state_t ts_;
struct timeout_state* ts = &ts_;
check_timeout_fn timeout_check = init_single_timeout_until(&ts_, until);
if ((int)len < 0) return PICO_ERROR_GENERIC;
if (a10bit) { // addr too high
if (addr & ~(uint16_t)((1 << 10) - 1)) return PICO_ERROR_GENERIC;
} else if (addr & 0x80)
return PICO_ERROR_GENERIC;
if (len == 0) return i2cex_probe_address(addr, a10bit);
bool abort = false, timeout = false;
uint32_t abort_reason = 0;
int byte_ctr;
i2c->hw->enable = 0;
// enable 10bit mode if requested
// clang-format off
hw_write_masked(&i2c->hw->con, I2C_IC_CON_IC_10BITADDR_MASTER_BITS,
(a10bit ? I2C_IC_CON_IC_10BITADDR_MASTER_VALUE_ADDR_10BITS
: I2C_IC_CON_IC_10BITADDR_MASTER_VALUE_ADDR_7BITS)
<< I2C_IC_CON_IC_10BITADDR_MASTER_LSB);
// clang-format on
i2c->hw->tar = addr;
i2c->hw->enable = 1;
for (byte_ctr = 0; byte_ctr < (int)len; ++byte_ctr) {
bool first = byte_ctr == 0, last = byte_ctr == (int)len - 1;
i2c->hw->data_cmd = (bool_to_bit(first && i2c->restart_on_next) << I2C_IC_DATA_CMD_RESTART_LSB)
| (bool_to_bit(last && !nostop) << I2C_IC_DATA_CMD_STOP_LSB)
| *src++;
do {
if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}
tight_loop_contents();
} while (!timeout && !(i2c->hw->raw_intr_stat & I2C_IC_RAW_INTR_STAT_TX_EMPTY_BITS));
if (!timeout) {
abort_reason = i2c->hw->tx_abrt_source;
if (abort_reason) {
(void)i2c->hw->clr_tx_abrt;
abort = true;
}
if (abort || (last && !nostop)) {
do {
if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}
tight_loop_contents();
// clang-format off
} while (!timeout && !(i2c->hw->raw_intr_stat & I2C_IC_RAW_INTR_STAT_STOP_DET_BITS));
// clang-format on
if (!timeout)
(void)i2c->hw->clr_stop_det;
else
// if we had a timeout, send an abort request to the hardware,
// so that the bus gets released
i2cex_abort_xfer(i2c);
}
} else
i2cex_abort_xfer(i2c);
if (abort) break;
}
int rval;
if (abort) {
// clang-format off
const int addr_noack = I2C_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK_BITS
| I2C_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK_BITS
| I2C_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK_BITS;
// clang-format on
if (timeout)
rval = PICO_ERROR_TIMEOUT;
else if (!abort_reason || (abort_reason & addr_noack))
rval = PICO_ERROR_GENERIC;
else if (abort_reason & I2C_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK_BITS)
rval = byte_ctr;
else
rval = PICO_ERROR_GENERIC;
} else
rval = byte_ctr;
i2c->restart_on_next = nostop;
return rval;
}
static int i2cex_read_blocking_until(i2c_inst_t* i2c, uint16_t addr, bool a10bit, uint8_t* dst,
size_t len, bool nostop, absolute_time_t until) {
timeout_state_t ts_;
struct timeout_state* ts = &ts_;
check_timeout_fn timeout_check = init_single_timeout_until(&ts_, until);
if ((int)len < 0) return PICO_ERROR_GENERIC;
if (a10bit) { // addr too high
if (addr & ~(uint16_t)((1 << 10) - 1)) return PICO_ERROR_GENERIC;
} else if (addr & 0x80)
return PICO_ERROR_GENERIC;
i2c->hw->enable = 0;
// enable 10bit mode if requested
hw_write_masked(&i2c->hw->con, I2C_IC_CON_IC_10BITADDR_MASTER_BITS,
(a10bit ? I2C_IC_CON_IC_10BITADDR_MASTER_VALUE_ADDR_10BITS
: I2C_IC_CON_IC_10BITADDR_MASTER_VALUE_ADDR_7BITS)
<< I2C_IC_CON_IC_10BITADDR_MASTER_LSB);
i2c->hw->tar = addr;
i2c->hw->enable = 1;
if (len == 0) return i2cex_probe_address(addr, a10bit);
bool abort = false, timeout = false;
uint32_t abort_reason = 0;
int byte_ctr;
for (byte_ctr = 0; byte_ctr < (int)len; ++byte_ctr) {
bool first = byte_ctr == 0;
bool last = byte_ctr == (int)len - 1;
while (!i2c_get_write_available(i2c) && !abort) {
tight_loop_contents();
// ?
if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}
}
if (timeout) {
// if we had a timeout, send an abort request to the hardware,
// so that the bus gets released
i2cex_abort_xfer(i2c);
}
if (abort) break;
i2c->hw->data_cmd = bool_to_bit(first && i2c->restart_on_next)
<< I2C_IC_DATA_CMD_RESTART_LSB |
bool_to_bit(last && !nostop) << I2C_IC_DATA_CMD_STOP_LSB |
I2C_IC_DATA_CMD_CMD_BITS; // -> 1 for read
do {
abort_reason = i2c->hw->tx_abrt_source;
abort = (bool)i2c->hw->clr_tx_abrt;
if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}
tight_loop_contents(); // ?
} while (!abort && !i2c_get_read_available(i2c));
if (timeout) {
// if we had a timeout, send an abort request to the hardware,
// so that the bus gets released
i2cex_abort_xfer(i2c);
}
if (abort) break;
uint8_t v = (uint8_t)i2c->hw->data_cmd;
// printf("\ngot read %02x\n", v);
*dst++ = v;
}
int rval;
if (abort) {
// printf("\ngot abrt: ");
const int addr_noack = I2C_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK_BITS |
I2C_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK_BITS |
I2C_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK_BITS;
if (timeout) { /*printf("timeout\n");*/
rval = PICO_ERROR_TIMEOUT;
} else if (!abort_reason || (abort_reason & addr_noack)) { // printf("disconn\n");
rval = PICO_ERROR_GENERIC;
} else { /*printf("unk\n");*/
rval = PICO_ERROR_GENERIC;
}
} else
rval = byte_ctr;
i2c->restart_on_next = nostop;
return rval;
}
static inline int i2cex_write_timeout_us(i2c_inst_t* i2c, uint16_t addr, bool a10bit,
const uint8_t* src, size_t len, bool nostop, uint32_t timeout_us) {
absolute_time_t t = make_timeout_time_us(timeout_us);
return i2cex_write_blocking_until(i2c, addr, a10bit, src, len, nostop, t);
}
static inline int i2cex_read_timeout_us(i2c_inst_t* i2c, uint16_t addr, bool a10bit, uint8_t* dst,
size_t len, bool nostop, uint32_t timeout_us) {
absolute_time_t t = make_timeout_time_us(timeout_us);
return i2cex_read_blocking_until(i2c, addr, a10bit, dst, len, nostop, t);
}
__attribute__((__const__)) enum ki2c_funcs i2ctu_dev_get_func(void) {
// TODO: SMBUS_EMUL_ALL => I2C_M_RECV_LEN
// TODO: maybe also PROTOCOL_MANGLING, NOSTART
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
}
void i2ctu_dev_init(void) {
// default to 100 kHz (SDK example default so should be ok)
delay = 10;
delay2 = 5;
i2c_init(PINOUT_I2C_DEV, 100 * 1000);
gpio_set_function(PINOUT_I2C_SCL, GPIO_FUNC_I2C);
gpio_set_function(PINOUT_I2C_SDA, GPIO_FUNC_I2C);
gpio_pull_up(PINOUT_I2C_SCL);
gpio_pull_up(PINOUT_I2C_SDA);
bi_decl(bi_2pins_with_func(PINOUT_I2C_SCL, PINOUT_I2C_SDA, GPIO_FUNC_I2C));
}
void i2ctu_dev_deinit(void) {
gpio_set_function(PINOUT_I2C_SCL, GPIO_FUNC_NULL);
gpio_set_function(PINOUT_I2C_SDA, GPIO_FUNC_NULL);
gpio_disable_pulls(PINOUT_I2C_SCL);
gpio_disable_pulls(PINOUT_I2C_SDA);
// default to 100 kHz (SDK example default so should be ok)
delay = 10;
delay2 = 5;
i2c_deinit(PINOUT_I2C_DEV);
}
uint32_t i2ctu_dev_set_freq(uint32_t freq, uint32_t us) {
delay = us;
delay2 = us >> 1;
if (!delay2) delay2 = 1;
return i2c_set_baudrate(PINOUT_I2C_DEV, freq);
}
enum itu_status i2ctu_dev_write(enum ki2c_flags flags, enum itu_command startstopflags, uint16_t addr,
const uint8_t* buf, size_t len) {
bool nostop = !(startstopflags & ITU_CMD_I2C_IO_END);
bool bit10 = flags & I2C_M_TEN;
/*if (len == 0) {
// do a read, that's less hazardous
uint8_t stuff = 0;
int rv = i2cex_read_timeout_us(PINOUT_I2C_DEV, addr, bit10, &stuff, 1,
nostop, 1000*1000);
if (rv < 0) return ITU_STATUS_ADDR_NAK;
return ITU_STATUS_ADDR_ACK;
} else*/
{
int rv = i2cex_write_timeout_us(PINOUT_I2C_DEV, addr, bit10, buf, len, nostop, 1000 * 1000);
if (rv < 0 || (size_t)rv < len) return ITU_STATUS_ADDR_NAK;
return ITU_STATUS_ADDR_ACK;
}
}
enum itu_status i2ctu_dev_read(enum ki2c_flags flags, enum itu_command startstopflags, uint16_t addr,
uint8_t* buf, size_t len) {
bool nostop = !(startstopflags & ITU_CMD_I2C_IO_END);
bool bit10 = flags & I2C_M_TEN;
/*if (len == 0) {
uint8_t stuff = 0;
int rv = i2cex_read_timeout_us(PINOUT_I2C_DEV, addr, bit10, &stuff, 1,
nostop, 1000*1000);
if (rv < 0) return ITU_STATUS_ADDR_NAK;
return ITU_STATUS_ADDR_ACK;
} else*/
{
int rv = i2cex_read_timeout_us(PINOUT_I2C_DEV, addr, bit10, buf, len, nostop, 1000 * 1000);
// printf("p le rv=%d buf=%02x ", rv, buf[0]);
if (rv < 0 || (size_t)rv < len) return ITU_STATUS_ADDR_NAK;
return ITU_STATUS_ADDR_ACK;
}
}