started on new usb itf, it compiles and it lsusbs

This commit is contained in:
Triss 2021-06-30 19:32:22 +02:00
parent 45ae75818d
commit 0716dbba1a
41 changed files with 852 additions and 3540 deletions

1
.gitignore vendored
View File

@ -2,3 +2,4 @@ cmake-build/
build/ build/
ex/ ex/
compile_commands.json compile_commands.json
_old/

View File

@ -56,22 +56,18 @@ endif()
target_sources(${PROJECT} PUBLIC target_sources(${PROJECT} PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/libco/libco.S ${CMAKE_CURRENT_SOURCE_DIR}/libco/libco.S
${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/DAP.c # ${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/DAP.c
${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/JTAG_DP.c # ${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/JTAG_DP.c
${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/DAP_vendor.c # ${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/DAP_vendor.c
${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/SWO.c # ${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/SWO.c
${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/SW_DP.c # ${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Source/SW_DP.c
${CMAKE_CURRENT_SOURCE_DIR}/bsp/${FAMILY}/cdc_uart.c
${CMAKE_CURRENT_SOURCE_DIR}/bsp/${FAMILY}/i2c_tinyusb.c
${CMAKE_CURRENT_SOURCE_DIR}/bsp/${FAMILY}/spi_serprog.c
${CMAKE_CURRENT_SOURCE_DIR}/bsp/${FAMILY}/tempsensor.c
${CMAKE_CURRENT_SOURCE_DIR}/bsp/${FAMILY}/unique.c ${CMAKE_CURRENT_SOURCE_DIR}/bsp/${FAMILY}/unique.c
${CMAKE_CURRENT_SOURCE_DIR}/src/cdc_serprog.c
${CMAKE_CURRENT_SOURCE_DIR}/src/vnd_i2ctinyusb.c
${CMAKE_CURRENT_SOURCE_DIR}/src/main.c ${CMAKE_CURRENT_SOURCE_DIR}/src/main.c
${CMAKE_CURRENT_SOURCE_DIR}/src/rtconf.c ${CMAKE_CURRENT_SOURCE_DIR}/src/modeset.c
${CMAKE_CURRENT_SOURCE_DIR}/src/usb_descriptors.c ${CMAKE_CURRENT_SOURCE_DIR}/src/thread.c
${CMAKE_CURRENT_SOURCE_DIR}/src/tempsensor.c ${CMAKE_CURRENT_SOURCE_DIR}/src/tusb_plt.S
${CMAKE_CURRENT_SOURCE_DIR}/src/vnd_cfg.c
${CMAKE_CURRENT_SOURCE_DIR}/src/m_default/0def.c
) )
if(USE_USBCDC_FOR_STDIO) if(USE_USBCDC_FOR_STDIO)
target_sources(${PROJECT} PUBLIC target_sources(${PROJECT} PUBLIC
@ -81,8 +77,8 @@ endif()
target_include_directories(${PROJECT} PUBLIC target_include_directories(${PROJECT} PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/src/ ${CMAKE_CURRENT_SOURCE_DIR}/src/
${CMAKE_CURRENT_SOURCE_DIR}/libco/ ${CMAKE_CURRENT_SOURCE_DIR}/libco/
${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Include/ # ${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/DAP/Firmware/Include/
${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/Core/Include/ # ${CMAKE_CURRENT_SOURCE_DIR}/CMSIS_5/CMSIS/Core/Include/
${CMAKE_CURRENT_SOURCE_DIR}/bsp/${FAMILY}/ ${CMAKE_CURRENT_SOURCE_DIR}/bsp/${FAMILY}/
${CMAKE_CURRENT_SOURCE_DIR}/bsp/default/ ${CMAKE_CURRENT_SOURCE_DIR}/bsp/default/
) )

View File

@ -1,470 +0,0 @@
// vim: set et:
/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Peter Lawrence
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
This DAP_config provides a CMSIS-DAP alternative to picoprobe and raspberrypi-swd.cfg
*/
#ifndef __DAP_CONFIG_H__
#define __DAP_CONFIG_H__
//**************************************************************************************************
/**
\defgroup DAP_Config_Debug_gr CMSIS-DAP Debug Unit Information
\ingroup DAP_ConfigIO_gr
@{
Provides definitions about the hardware and configuration of the Debug Unit.
This information includes:
- Definition of Cortex-M processor parameters used in CMSIS-DAP Debug Unit.
- Debug Unit Identification strings (Vendor, Product, Serial Number).
- Debug Unit communication packet size.
- Debug Access Port supported modes and settings (JTAG/SWD and SWO).
- Optional information about a connected Target Device (for Evaluation Boards).
*/
#include "cmsis_compiler.h"
#include "util.h"
/// Processor Clock of the Cortex-M MCU used in the Debug Unit.
/// This value is used to calculate the SWD/JTAG clock speed.
#define CPU_CLOCK 48000000U ///< Specifies the CPU Clock in Hz.
/// Number of processor cycles for I/O Port write operations.
/// This value is used to calculate the SWD/JTAG clock speed that is generated with I/O
/// Port write operations in the Debug Unit by a Cortex-M MCU. Most Cortex-M processors
/// require 2 processor cycles for a I/O Port Write operation. If the Debug Unit uses
/// a Cortex-M0+ processor with high-speed peripheral I/O only 1 processor cycle might be
/// required.
#define IO_PORT_WRITE_CYCLES 2U ///< I/O Cycles: 2=default, 1=Cortex-M0+ fast I/0.
/// Indicate that Serial Wire Debug (SWD) communication mode is available at the Debug Access Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_SWD 1 ///< SWD Mode: 1 = available, 0 = not available.
/// Indicate that JTAG communication mode is available at the Debug Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_JTAG 1 ///< JTAG Mode: 1 = available, 0 = not available.
/// Configure maximum number of JTAG devices on the scan chain connected to the Debug Access Port.
/// This setting impacts the RAM requirements of the Debug Unit. Valid range is 1 .. 255.
#define DAP_JTAG_DEV_CNT 8U ///< Maximum number of JTAG devices on scan chain.
/// Default communication mode on the Debug Access Port.
/// Used for the command \ref DAP_Connect when Port Default mode is selected.
#define DAP_DEFAULT_PORT 2U ///< Default JTAG/SWJ Port Mode: 1 = SWD, 2 = JTAG.
/// Default communication speed on the Debug Access Port for SWD and JTAG mode.
/// Used to initialize the default SWD/JTAG clock frequency.
/// The command \ref DAP_SWJ_Clock can be used to overwrite this default setting.
#define DAP_DEFAULT_SWJ_CLOCK 1000000U ///< Default SWD/JTAG clock frequency in Hz.
/// Maximum Package Size for Command and Response data.
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. Typical vales are 64 for Full-speed USB HID or
/// WinUSB, 1024 for High-speed USB HID and 512 for High-speed USB WinUSB.
#define DAP_PACKET_SIZE CFG_TUD_HID_EP_BUFSIZE ///< Specifies Packet Size in bytes.
/// Maximum Package Buffers for Command and Response data.
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. For devices with limited RAM or USB buffer the
/// setting can be reduced (valid range is 1 .. 255).
#define DAP_PACKET_COUNT 1U ///< Specifies number of packets buffered.
/// Indicate that UART Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_UART 0 ///< SWO UART: 1 = available, 0 = not available.
/// Maximum SWO UART Baudrate.
#define SWO_UART_MAX_BAUDRATE 10000000U ///< SWO UART Maximum Baudrate in Hz.
/// Indicate that Manchester Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_MANCHESTER 0 ///< SWO Manchester: 1 = available, 0 = not available.
/// SWO Trace Buffer Size.
#define SWO_BUFFER_SIZE 4096U ///< SWO Trace Buffer Size in bytes (must be 2^n).
/// SWO Streaming Trace.
#define SWO_STREAM 0 ///< SWO Streaming Trace: 1 = available, 0 = not available.
/// Indicate that UART Communication Port is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_UART 0 ///< DAP UART: 1 = available, 0 = not available.
/// USART Driver instance number for the UART Communication Port.
#define DAP_UART_DRIVER 1 ///< USART Driver instance number (Driver_USART#).
/// UART Receive Buffer Size.
#define DAP_UART_RX_BUFFER_SIZE 64U ///< Uart Receive Buffer Size in bytes (must be 2^n).
/// UART Transmit Buffer Size.
#define DAP_UART_TX_BUFFER_SIZE 64U ///< Uart Transmit Buffer Size in bytes (must be 2^n).
/// Indicate that UART Communication via USB COM Port is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#ifdef USE_USBCDC_FOR_STDIO
#define DAP_UART_USB_COM_PORT 1 ///< USB COM Port: 1 = available, 0 = not available.
#else
#define DAP_UART_USB_COM_PORT 0
#endif
/// Clock frequency of the Test Domain Timer. Timer value is returned with \ref TIMESTAMP_GET.
#define TIMESTAMP_CLOCK 0U ///< Timestamp clock in Hz (0 = timestamps not supported).
/// Debug Unit is connected to fixed Target Device.
/// The Debug Unit may be part of an evaluation board and always connected to a fixed
/// known device. In this case a Device Vendor and Device Name string is stored which
/// may be used by the debugger or IDE to configure device parameters.
#define TARGET_DEVICE_FIXED 0 ///< Target Device: 1 = known, 0 = unknown;
#include "DAP.h"
/** Get Vendor ID string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetVendorString(char* str) {
static const char vnd[] = INFO_MANUFACTURER;
for (size_t i = 0; i < sizeof(vnd); ++i) str[i] = vnd[i];
return sizeof(vnd) - 1;
}
/** Get Product ID string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetProductString(char* str) {
static const char prd[] = INFO_PRODUCT(INFO_BOARDNAME);
for (size_t i = 0; i < sizeof(prd); ++i) str[i] = prd[i];
return sizeof(prd) - 1;
}
/** Get Serial Number string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetSerNumString(char* str) { return get_unique_id_u8((uint8_t*)str); }
/** Get Target Device Vendor string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetDeviceVendorString(char* str) {
(void)str;
return 0;
}
/** Get Target Device Name string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetDeviceNameString(char* str) {
(void)str;
return 0;
}
/** Get Target Board Vendor string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetBoardVendorString(char* str) {
(void)str;
return 0;
}
/** Get Target Board Name string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetBoardNameString(char* str) {
(void)str;
return 0;
}
/* TODO! */
/** Get Product Firmware Version string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetProductFirmwareVersionString(char* str) {
(void)str;
return 0;
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_PortIO_gr CMSIS-DAP Hardware I/O Pin Access
\ingroup DAP_ConfigIO_gr
@{
Standard I/O Pins of the CMSIS-DAP Hardware Debug Port support standard JTAG mode
and Serial Wire Debug (SWD) mode. In SWD mode only 2 pins are required to implement the debug
interface of a device. The following I/O Pins are provided:
JTAG I/O Pin | SWD I/O Pin | CMSIS-DAP Hardware pin mode
---------------------------- | -------------------- | ---------------------------------------------
TCK: Test Clock | SWCLK: Clock | Output Push/Pull
TMS: Test Mode Select | SWDIO: Data I/O | Output Push/Pull; Input (for receiving data)
TDI: Test Data Input | | Output Push/Pull
TDO: Test Data Output | | Input
nTRST: Test Reset (optional) | | Output Open Drain with pull-up resistor
nRESET: Device Reset | nRESET: Device Reset | Output Open Drain with pull-up resistor
DAP Hardware I/O Pin Access Functions
-------------------------------------
The various I/O Pins are accessed by functions that implement the Read, Write, Set, or Clear to
these I/O Pins.
For the SWDIO I/O Pin there are additional functions that are called in SWD I/O mode only.
This functions are provided to achieve faster I/O that is possible with some advanced GPIO
peripherals that can independently write/read a single I/O pin without affecting any other pins
of the same I/O port. The following SWDIO I/O Pin functions are provided:
- \ref PIN_SWDIO_OUT_ENABLE to enable the output mode from the DAP hardware.
- \ref PIN_SWDIO_OUT_DISABLE to enable the input mode to the DAP hardware.
- \ref PIN_SWDIO_IN to read from the SWDIO I/O pin with utmost possible speed.
- \ref PIN_SWDIO_OUT to write to the SWDIO I/O pin with utmost possible speed.
*/
// Configure DAP I/O pins ------------------------------
/** Setup JTAG I/O pins: TCK, TMS, TDI, TDO, nTRST, and nRESET.
Configures the DAP Hardware I/O pins for JTAG mode:
- TCK, TMS, TDI, nTRST, nRESET to output mode and set to high level.
- TDO to input mode.
*/
__STATIC_INLINE void PORT_JTAG_SETUP(void) { }
/** Setup SWD I/O pins: SWCLK, SWDIO, and nRESET.
Configures the DAP Hardware I/O pins for Serial Wire Debug (SWD) mode:
- SWCLK, SWDIO, nRESET to output mode and set to default high level.
- TDI, nTRST to HighZ mode (pins are unused in SWD mode).
*/
__STATIC_INLINE void PORT_SWD_SETUP(void) { }
/** Disable JTAG/SWD I/O Pins.
Disables the DAP Hardware I/O pins which configures:
- TCK/SWCLK, TMS/SWDIO, TDI, TDO, nTRST, nRESET to High-Z mode.
*/
__STATIC_INLINE void PORT_OFF(void) { }
// SWCLK/TCK I/O pin -------------------------------------
/** SWCLK/TCK I/O pin: Get Input.
\return Current status of the SWCLK/TCK DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWCLK_TCK_IN(void) { return 0; }
/** SWCLK/TCK I/O pin: Set Output to High.
Set the SWCLK/TCK DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_SET(void) { }
/** SWCLK/TCK I/O pin: Set Output to Low.
Set the SWCLK/TCK DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_CLR(void) { }
// SWDIO/TMS Pin I/O --------------------------------------
/** SWDIO/TMS I/O pin: Get Input.
\return Current status of the SWDIO/TMS DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_TMS_IN(void) { return 0; }
/* PIN_SWDIO_TMS_SET and PIN_SWDIO_TMS_CLR are used by SWJ_Sequence */
/** SWDIO/TMS I/O pin: Set Output to High.
Set the SWDIO/TMS DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_SET(void) { }
/** SWDIO/TMS I/O pin: Set Output to Low.
Set the SWDIO/TMS DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_CLR(void) { }
/** SWDIO I/O pin: Get Input (used in SWD mode only).
\return Current status of the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_IN(void) { return 0; }
/** SWDIO I/O pin: Set Output (used in SWD mode only).
\param bit Output value for the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT(uint32_t bit) { (void)bit; }
/** SWDIO I/O pin: Switch to Output mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to output mode. This function is
called prior \ref PIN_SWDIO_OUT function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_ENABLE(void) { }
/** SWDIO I/O pin: Switch to Input mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to input mode. This function is
called prior \ref PIN_SWDIO_IN function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_DISABLE(void) { }
// TDI Pin I/O ---------------------------------------------
/** TDI I/O pin: Get Input.
\return Current status of the TDI DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDI_IN(void) { return 0; }
/** TDI I/O pin: Set Output.
\param bit Output value for the TDI DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_TDI_OUT(uint32_t bit) { (void)bit; }
// TDO Pin I/O ---------------------------------------------
/** TDO I/O pin: Get Input.
\return Current status of the TDO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDO_IN(void) { return 0; }
// nTRST Pin I/O -------------------------------------------
/** nTRST I/O pin: Get Input.
\return Current status of the nTRST DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nTRST_IN(void) { return 0; }
/** nTRST I/O pin: Set Output.
\param bit JTAG TRST Test Reset pin status:
- 0: issue a JTAG TRST Test Reset.
- 1: release JTAG TRST Test Reset.
*/
__STATIC_FORCEINLINE void PIN_nTRST_OUT(uint32_t bit) { (void)bit; }
// nRESET Pin I/O------------------------------------------
/** nRESET I/O pin: Get Input.
\return Current status of the nRESET DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nRESET_IN(void) { return 0; }
/** nRESET I/O pin: Set Output.
\param bit target device hardware reset pin status:
- 0: issue a device hardware reset.
- 1: release device hardware reset.
*/
__STATIC_FORCEINLINE void PIN_nRESET_OUT(uint32_t bit) { (void)bit; }
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_LEDs_gr CMSIS-DAP Hardware Status LEDs
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware may provide LEDs that indicate the status of the CMSIS-DAP Debug Unit.
It is recommended to provide the following LEDs for status indication:
- Connect LED: is active when the DAP hardware is connected to a debugger.
- Running LED: is active when the debugger has put the target device into running state.
*/
/** Debug Unit: Set status of Connected LED.
\param bit status of the Connect LED.
- 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit.
- 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit.
*/
__STATIC_INLINE void LED_CONNECTED_OUT(uint32_t bit) { (void)bit; }
/** Debug Unit: Set status Target Running LED.
\param bit status of the Target Running LED.
- 1: Target Running LED ON: program execution in target started.
- 0: Target Running LED OFF: program execution in target stopped.
*/
__STATIC_INLINE void LED_RUNNING_OUT(uint32_t bit) { (void)bit; }
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Timestamp_gr CMSIS-DAP Timestamp
\ingroup DAP_ConfigIO_gr
@{
Access function for Test Domain Timer.
The value of the Test Domain Timer in the Debug Unit is returned by the function \ref TIMESTAMP_GET.
By default, the DWT timer is used. The frequency of this timer is configured with \ref
TIMESTAMP_CLOCK.
*/
/** Get timestamp of Test Domain Timer.
\return Current timestamp value.
*/
__STATIC_INLINE uint32_t TIMESTAMP_GET(void) {
#if TIMESTAMP_CLOCK > 0
return (DWT->CYCCNT);
#else
return 0;
#endif
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Initialization_gr CMSIS-DAP Initialization
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware I/O and LED Pins are initialized with the function \ref DAP_SETUP.
*/
/** Setup of the Debug Unit I/O pins and LEDs (called when Debug Unit is initialized).
This function performs the initialization of the CMSIS-DAP Hardware I/O Pins and the
Status LEDs. In detail the operation of Hardware I/O and LED pins are enabled and set:
- I/O clock system enabled.
- all I/O pins: input buffer enabled, output pins are set to HighZ mode.
- for nTRST, nRESET a weak pull-up (if available) is enabled.
- LED output pins are enabled and LEDs are turned off.
*/
__STATIC_INLINE void DAP_SETUP(void) { }
/** Reset Target Device with custom specific I/O pin or command sequence.
This function allows the optional implementation of a device specific reset sequence.
It is called when the command \ref DAP_ResetTarget and is for example required
when a device needs a time-critical unlock sequence that enables the debug port.
\return 0 = no device specific reset sequence is implemented.\n
1 = a device specific reset sequence is implemented.
*/
__STATIC_INLINE uint8_t RESET_TARGET(void) {
return (0U); // change to '1' when a device reset sequence is implemented
}
///@}
#endif /* __DAP_CONFIG_H__ */

View File

@ -1,11 +0,0 @@
// vim: set et:
#include "protos.h"
void cdc_uart_init(void) { }
void cdc_uart_task(void) { }
void cdc_uart_set_hwflow(bool enable) { (void)enable; }
void cdc_uart_set_baud_rate(uint32_t brate) { (void)brate; }

View File

@ -1,36 +0,0 @@
// vim: set et:
#include "i2ctinyusb.h"
__attribute__((__const__)) enum ki2c_funcs i2ctu_get_func(void) { return 0; }
void i2ctu_init(void) { }
uint32_t i2ctu_set_freq(uint32_t freq, uint32_t us) {
(void)freq;
(void)us;
return 0;
}
enum itu_status i2ctu_write(enum ki2c_flags flags, enum itu_command startstopflags, uint16_t addr,
const uint8_t* buf, size_t len) {
(void)flags;
(void)startstopflags;
(void)addr;
(void)buf;
(void)len;
return ITU_STATUS_ADDR_NAK;
}
enum itu_status i2ctu_read(enum ki2c_flags flags, enum itu_command startstopflags, uint16_t addr,
uint8_t* buf, size_t len) {
(void)flags;
(void)startstopflags;
(void)addr;
(void)buf;
(void)len;
return ITU_STATUS_ADDR_NAK;
}

View File

@ -1,45 +0,0 @@
// vim: set et:
#ifndef PROTOCFG_H_
#define PROTOCFG_H_
/*#define DBOARD_HAS_UART
#define DBOARD_HAS_CMSISDAP
#define DBOARD_HAS_SERPROG
#define DBOARD_HAS_I2C
#define DBOARD_HAS_TEMPSENSOR*/
enum {
/*HID_N_CMSISDAP = 0,*/
HID_N__NITF
};
enum {
/*CDC_N_UART = 0,
CDC_N_SERPROG,*/
#ifdef USE_USBCDC_FOR_STDIO
CDC_N_STDIO,
#endif
CDC_N__NITF
};
enum { VND_N__NITF = 0 };
#define CFG_TUD_HID 0
#ifdef USE_USBCDC_FOR_STDIO
#define CFG_TUD_CDC 1
#else
#define CFG_TUD_CDC 0
#endif
#define CFG_TUD_VENDOR 0
/*#define USB_VID 0x2e8a*/ /* Raspberry Pi */
#define USB_VID 0xcafe /* TinyUSB */
/*#define USB_VID 0x1209*/ /* Generic */
/*#define USB_VID 0x1d50*/ /* OpenMoko */
#define USB_PID 0x1312
#define INFO_BOARDNAME "Unknown"
#endif

View File

@ -1,26 +0,0 @@
// vim: set et:
#include "protos.h"
#include "serprog.h"
void sp_spi_init(void) { }
uint32_t __not_in_flash_func(sp_spi_set_freq)(uint32_t freq_wanted) {
(void)freq_wanted;
return 0;
}
void __not_in_flash_func(sp_spi_cs_deselect)(void) { }
void __not_in_flash_func(sp_spi_cs_select)(void) { }
void __not_in_flash_func(sp_spi_op_begin)(void) { }
void __not_in_flash_func(sp_spi_op_end)(void) { }
void __not_in_flash_func(sp_spi_op_write)(uint32_t write_len, const uint8_t* write_data) {
(void)write_len;
(void)write_data;
}
void __not_in_flash_func(sp_spi_op_read)(uint32_t read_len, uint8_t* read_data) {
(void)read_len;
(void)read_data;
}

View File

@ -1,14 +0,0 @@
// vim: set et:
#include "tempsensor.h"
void tempsense_dev_init(void) { }
// clang-format off
// 8.4
int16_t tempsense_dev_get_temp (void) { return 0 << 4; }
int16_t tempsense_dev_get_lower(void) { return trunc_8fix4(float2fix( 0)); }
int16_t tempsense_dev_get_upper(void) { return trunc_8fix4(float2fix( 0)); }
int16_t tempsense_dev_get_crit (void) { return trunc_8fix4(float2fix( 0)); }
// clang-format on

View File

@ -1,625 +0,0 @@
// vim: set et:
/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Peter Lawrence
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
This DAP_config provides a CMSIS-DAP alternative to picoprobe and raspberrypi-swd.cfg
*/
#ifndef __DAP_CONFIG_H__
#define __DAP_CONFIG_H__
//**************************************************************************************************
/**
\defgroup DAP_Config_Debug_gr CMSIS-DAP Debug Unit Information
\ingroup DAP_ConfigIO_gr
@{
Provides definitions about the hardware and configuration of the Debug Unit.
This information includes:
- Definition of Cortex-M processor parameters used in CMSIS-DAP Debug Unit.
- Debug Unit Identification strings (Vendor, Product, Serial Number).
- Debug Unit communication packet size.
- Debug Access Port supported modes and settings (JTAG/SWD and SWO).
- Optional information about a connected Target Device (for Evaluation Boards).
*/
#include <stdint.h>
#include <hardware/gpio.h>
#include <hardware/regs/io_bank0.h>
#include <hardware/regs/pads_bank0.h>
#include <hardware/regs/resets.h>
#include <hardware/regs/sio.h>
#include <hardware/structs/iobank0.h>
#include <hardware/structs/padsbank0.h>
#include <hardware/structs/resets.h>
#include <hardware/structs/sio.h>
#include <pico/binary_info.h>
#include "bsp/board.h"
#include "cmsis_compiler.h"
#include "pinout.h"
#include "protos.h"
#include "util.h"
#define PINOUT_SWCLK PINOUT_JTAG_TCK
#define PINOUT_SWDIO PINOUT_JTAG_TMS
#define PINOUT_SWCLK_MASK (1UL << PINOUT_SWCLK)
#define PINOUT_SWDIO_MASK (1UL << PINOUT_SWDIO)
#define PINOUT_TCK_MASK (1UL << PINOUT_JTAG_TCK)
#define PINOUT_TMS_MASK (1UL << PINOUT_JTAG_TMS)
#define PINOUT_TDI_MASK (1UL << PINOUT_JTAG_TDI)
#define PINOUT_TDO_MASK (1UL << PINOUT_JTAG_TDO)
#define PINOUT_nTRST_MASK (1UL << PINOUT_JTAG_nTRST)
#define PINOUT_nRESET_MASK (1UL << PINOUT_JTAG_nRESET)
#define PINOUT_LED_MASK (1UL << PINOUT_LED)
/// Processor Clock of the Cortex-M MCU used in the Debug Unit.
/// This value is used to calculate the SWD/JTAG clock speed.
#define CPU_CLOCK 48000000U ///< Specifies the CPU Clock in Hz.
/// Number of processor cycles for I/O Port write operations.
/// This value is used to calculate the SWD/JTAG clock speed that is generated with I/O
/// Port write operations in the Debug Unit by a Cortex-M MCU. Most Cortex-M processors
/// require 2 processor cycles for a I/O Port Write operation. If the Debug Unit uses
/// a Cortex-M0+ processor with high-speed peripheral I/O only 1 processor cycle might be
/// required.
#define IO_PORT_WRITE_CYCLES 2U ///< I/O Cycles: 2=default, 1=Cortex-M0+ fast I/0.
/// Indicate that Serial Wire Debug (SWD) communication mode is available at the Debug Access Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_SWD 1 ///< SWD Mode: 1 = available, 0 = not available.
/// Indicate that JTAG communication mode is available at the Debug Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_JTAG 1 ///< JTAG Mode: 1 = available, 0 = not available.
/// Configure maximum number of JTAG devices on the scan chain connected to the Debug Access Port.
/// This setting impacts the RAM requirements of the Debug Unit. Valid range is 1 .. 255.
#define DAP_JTAG_DEV_CNT 8U ///< Maximum number of JTAG devices on scan chain.
/// Default communication mode on the Debug Access Port.
/// Used for the command \ref DAP_Connect when Port Default mode is selected.
#define DAP_DEFAULT_PORT 2U ///< Default JTAG/SWJ Port Mode: 1 = SWD, 2 = JTAG.
/// Default communication speed on the Debug Access Port for SWD and JTAG mode.
/// Used to initialize the default SWD/JTAG clock frequency.
/// The command \ref DAP_SWJ_Clock can be used to overwrite this default setting.
#define DAP_DEFAULT_SWJ_CLOCK 1000000U ///< Default SWD/JTAG clock frequency in Hz.
/// Maximum Package Size for Command and Response data.
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. Typical vales are 64 for Full-speed USB HID or
/// WinUSB, 1024 for High-speed USB HID and 512 for High-speed USB WinUSB.
#define DAP_PACKET_SIZE CFG_TUD_HID_EP_BUFSIZE ///< Specifies Packet Size in bytes.
/// Maximum Package Buffers for Command and Response data.
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. For devices with limited RAM or USB buffer the
/// setting can be reduced (valid range is 1 .. 255).
#define DAP_PACKET_COUNT 1U ///< Specifies number of packets buffered.
/// Indicate that UART Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_UART 0 ///< SWO UART: 1 = available, 0 = not available.
/// Maximum SWO UART Baudrate.
#define SWO_UART_MAX_BAUDRATE 10000000U ///< SWO UART Maximum Baudrate in Hz.
/// Indicate that Manchester Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_MANCHESTER 0 ///< SWO Manchester: 1 = available, 0 = not available.
/// SWO Trace Buffer Size.
#define SWO_BUFFER_SIZE 4096U ///< SWO Trace Buffer Size in bytes (must be 2^n).
/// SWO Streaming Trace.
#define SWO_STREAM 0 ///< SWO Streaming Trace: 1 = available, 0 = not available.
/// Indicate that UART Communication Port is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_UART 0 ///< DAP UART: 1 = available, 0 = not available.
/// USART Driver instance number for the UART Communication Port.
#define DAP_UART_DRIVER 1 ///< USART Driver instance number (Driver_USART#).
/// UART Receive Buffer Size.
#define DAP_UART_RX_BUFFER_SIZE 64U ///< Uart Receive Buffer Size in bytes (must be 2^n).
/// UART Transmit Buffer Size.
#define DAP_UART_TX_BUFFER_SIZE 64U ///< Uart Transmit Buffer Size in bytes (must be 2^n).
/// Indicate that UART Communication via USB COM Port is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#ifdef USE_USBCDC_FOR_STDIO
#define DAP_UART_USB_COM_PORT 1 ///< USB COM Port: 1 = available, 0 = not available.
#else
#define DAP_UART_USB_COM_PORT 0
#endif
/// Clock frequency of the Test Domain Timer. Timer value is returned with \ref TIMESTAMP_GET.
#define TIMESTAMP_CLOCK 0U ///< Timestamp clock in Hz (0 = timestamps not supported).
/// Debug Unit is connected to fixed Target Device.
/// The Debug Unit may be part of an evaluation board and always connected to a fixed
/// known device. In this case a Device Vendor and Device Name string is stored which
/// may be used by the debugger or IDE to configure device parameters.
#define TARGET_DEVICE_FIXED 0 ///< Target Device: 1 = known, 0 = unknown;
#if TARGET_DEVICE_FIXED
#define TARGET_DEVICE_VENDOR "Raspberry Pi" ///< String indicating the Silicon Vendor
#define TARGET_DEVICE_NAME "Pico" ///< String indicating the Target Device
#endif
#include "DAP.h"
/** Get Vendor ID string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetVendorString(char* str) {
static const char vnd[] = INFO_MANUFACTURER;
for (size_t i = 0; i < sizeof(vnd); ++i) str[i] = vnd[i];
return sizeof(vnd) - 1;
}
/** Get Product ID string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetProductString(char* str) {
static const char prd[] = INFO_PRODUCT(INFO_BOARDNAME);
for (size_t i = 0; i < sizeof(prd); ++i) str[i] = prd[i];
return sizeof(prd) - 1;
}
/** Get Serial Number string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetSerNumString(char* str) { return get_unique_id_u8((uint8_t*)str); }
/** Get Target Device Vendor string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetDeviceVendorString(char* str) {
(void)str;
return 0;
}
/** Get Target Device Name string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetDeviceNameString(char* str) {
(void)str;
return 0;
}
/** Get Target Board Vendor string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetBoardVendorString(char* str) {
(void)str;
return 0;
}
/** Get Target Board Name string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetTargetBoardNameString(char* str) {
(void)str;
return 0;
}
/* TODO! */
/** Get Product Firmware Version string.
\param str Pointer to buffer to store the string (max 60 characters).
\return String length (including terminating NULL character) or 0 (no string).
*/
__STATIC_INLINE uint8_t DAP_GetProductFirmwareVersionString(char* str) {
(void)str;
return 0;
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_PortIO_gr CMSIS-DAP Hardware I/O Pin Access
\ingroup DAP_ConfigIO_gr
@{
Standard I/O Pins of the CMSIS-DAP Hardware Debug Port support standard JTAG mode
and Serial Wire Debug (SWD) mode. In SWD mode only 2 pins are required to implement the debug
interface of a device. The following I/O Pins are provided:
JTAG I/O Pin | SWD I/O Pin | CMSIS-DAP Hardware pin mode
---------------------------- | -------------------- | ---------------------------------------------
TCK: Test Clock | SWCLK: Clock | Output Push/Pull
TMS: Test Mode Select | SWDIO: Data I/O | Output Push/Pull; Input (for receiving data)
TDI: Test Data Input | | Output Push/Pull
TDO: Test Data Output | | Input
nTRST: Test Reset (optional) | | Output Open Drain with pull-up resistor
nRESET: Device Reset | nRESET: Device Reset | Output Open Drain with pull-up resistor
DAP Hardware I/O Pin Access Functions
-------------------------------------
The various I/O Pins are accessed by functions that implement the Read, Write, Set, or Clear to
these I/O Pins.
For the SWDIO I/O Pin there are additional functions that are called in SWD I/O mode only.
This functions are provided to achieve faster I/O that is possible with some advanced GPIO
peripherals that can independently write/read a single I/O pin without affecting any other pins
of the same I/O port. The following SWDIO I/O Pin functions are provided:
- \ref PIN_SWDIO_OUT_ENABLE to enable the output mode from the DAP hardware.
- \ref PIN_SWDIO_OUT_DISABLE to enable the input mode to the DAP hardware.
- \ref PIN_SWDIO_IN to read from the SWDIO I/O pin with utmost possible speed.
- \ref PIN_SWDIO_OUT to write to the SWDIO I/O pin with utmost possible speed.
*/
// Configure DAP I/O pins ------------------------------
/** Setup JTAG I/O pins: TCK, TMS, TDI, TDO, nTRST, and nRESET.
Configures the DAP Hardware I/O pins for JTAG mode:
- TCK, TMS, TDI, nTRST, nRESET to output mode and set to high level.
- TDO to input mode.
*/
__STATIC_INLINE void PORT_JTAG_SETUP(void) {
resets_hw->reset &= ~(RESETS_RESET_IO_BANK0_BITS | RESETS_RESET_PADS_BANK0_BITS);
/* set to default high level */
sio_hw->gpio_oe_set = PINOUT_TCK_MASK | PINOUT_TMS_MASK | PINOUT_TDI_MASK | PINOUT_nTRST_MASK |
PINOUT_nRESET_MASK;
sio_hw->gpio_set = PINOUT_TCK_MASK | PINOUT_TMS_MASK | PINOUT_TDI_MASK | PINOUT_nTRST_MASK |
PINOUT_nRESET_MASK;
/* TDO needs to be an input */
sio_hw->gpio_oe_clr = PINOUT_TDO_MASK;
hw_write_masked(&padsbank0_hw->io[PINOUT_JTAG_TCK],
PADS_BANK0_GPIO0_IE_BITS, // bits to set: input enable
PADS_BANK0_GPIO0_IE_BITS |
PADS_BANK0_GPIO0_OD_BITS); // bits to mask out: input enable, output disable
hw_write_masked(&padsbank0_hw->io[PINOUT_JTAG_TMS], PADS_BANK0_GPIO0_IE_BITS,
PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS);
hw_write_masked(&padsbank0_hw->io[PINOUT_JTAG_TDI], PADS_BANK0_GPIO0_IE_BITS,
PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS);
hw_write_masked(&padsbank0_hw->io[PINOUT_JTAG_TDO],
PADS_BANK0_GPIO0_IE_BITS |
PADS_BANK0_GPIO0_OD_BITS, // TDO needs to have its output disabled
PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS);
hw_write_masked(&padsbank0_hw->io[PINOUT_JTAG_nTRST], PADS_BANK0_GPIO0_IE_BITS,
PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS);
hw_write_masked(&padsbank0_hw->io[PINOUT_JTAG_nRESET], PADS_BANK0_GPIO0_IE_BITS,
PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS);
// NOTE: hiZ: ctrl = (ctrl & ~(CTRL_OEOVER_BITS)) | (GPIO_OVERRIDE_LOW << CTRL_OEOVER_LSB);
// normal == 0, low == 2
// set pin modes to general IO (SIO)
iobank0_hw->io[PINOUT_JTAG_TCK].ctrl = GPIO_FUNC_SIO << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
iobank0_hw->io[PINOUT_JTAG_TMS].ctrl = GPIO_FUNC_SIO << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
iobank0_hw->io[PINOUT_JTAG_TDI].ctrl = GPIO_FUNC_SIO << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
iobank0_hw->io[PINOUT_JTAG_TDO].ctrl = (GPIO_FUNC_SIO << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB)
/*| (GPIO_OVERRIDE_LOW << IO_BANK0_GPIO0_CTRL_OEOVER_LSB)*/;
iobank0_hw->io[PINOUT_JTAG_nTRST].ctrl = GPIO_FUNC_SIO << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
iobank0_hw->io[PINOUT_JTAG_nRESET].ctrl = GPIO_FUNC_SIO << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
}
/** Setup SWD I/O pins: SWCLK, SWDIO, and nRESET.
Configures the DAP Hardware I/O pins for Serial Wire Debug (SWD) mode:
- SWCLK, SWDIO, nRESET to output mode and set to default high level.
- TDI, nTRST to HighZ mode (pins are unused in SWD mode).
*/
__STATIC_INLINE void PORT_SWD_SETUP(void) {
resets_hw->reset &= ~(RESETS_RESET_IO_BANK0_BITS | RESETS_RESET_PADS_BANK0_BITS);
/* set to default high level */
sio_hw->gpio_oe_set = PINOUT_SWCLK_MASK | PINOUT_SWDIO_MASK;
sio_hw->gpio_set = PINOUT_SWCLK_MASK | PINOUT_SWDIO_MASK;
hw_write_masked(&padsbank0_hw->io[PINOUT_SWCLK], PADS_BANK0_GPIO0_IE_BITS,
PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS);
hw_write_masked(&padsbank0_hw->io[PINOUT_SWDIO], PADS_BANK0_GPIO0_IE_BITS,
PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS);
iobank0_hw->io[PINOUT_SWCLK].ctrl = GPIO_FUNC_SIO << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
iobank0_hw->io[PINOUT_SWDIO].ctrl = GPIO_FUNC_SIO << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
}
/** Disable JTAG/SWD I/O Pins.
Disables the DAP Hardware I/O pins which configures:
- TCK/SWCLK, TMS/SWDIO, TDI, TDO, nTRST, nRESET to High-Z mode.
*/
__STATIC_INLINE void PORT_OFF(void) {
sio_hw->gpio_oe_clr = PINOUT_SWCLK_MASK | PINOUT_SWDIO_MASK |
PINOUT_TDI_MASK //| PINOUT_TDO_MASK
| PINOUT_nTRST_MASK | PINOUT_nRESET_MASK;
}
// SWCLK/TCK I/O pin -------------------------------------
/** SWCLK/TCK I/O pin: Get Input.
\return Current status of the SWCLK/TCK DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWCLK_TCK_IN(void) {
return (sio_hw->gpio_in & PINOUT_SWCLK_MASK) >> PINOUT_SWCLK;
}
/** SWCLK/TCK I/O pin: Set Output to High.
Set the SWCLK/TCK DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_SET(void) { sio_hw->gpio_set = PINOUT_SWCLK_MASK; }
/** SWCLK/TCK I/O pin: Set Output to Low.
Set the SWCLK/TCK DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_CLR(void) { sio_hw->gpio_clr = PINOUT_SWCLK_MASK; }
// SWDIO/TMS Pin I/O --------------------------------------
/** SWDIO/TMS I/O pin: Get Input.
\return Current status of the SWDIO/TMS DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_TMS_IN(void) {
return (sio_hw->gpio_in & PINOUT_SWDIO_MASK) >> PINOUT_SWDIO;
}
/* PIN_SWDIO_TMS_SET and PIN_SWDIO_TMS_CLR are used by SWJ_Sequence */
/** SWDIO/TMS I/O pin: Set Output to High.
Set the SWDIO/TMS DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_SET(void) { sio_hw->gpio_set = PINOUT_SWDIO_MASK; }
/** SWDIO/TMS I/O pin: Set Output to Low.
Set the SWDIO/TMS DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_CLR(void) { sio_hw->gpio_clr = PINOUT_SWDIO_MASK; }
/** SWDIO I/O pin: Get Input (used in SWD mode only).
\return Current status of the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_IN(void) {
return (sio_hw->gpio_in & PINOUT_SWDIO_MASK) ? 1U : 0U;
}
/** SWDIO I/O pin: Set Output (used in SWD mode only).
\param bit Output value for the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT(uint32_t bit) {
if (bit & 1)
sio_hw->gpio_set = PINOUT_SWDIO_MASK;
else
sio_hw->gpio_clr = PINOUT_SWDIO_MASK;
}
/** SWDIO I/O pin: Switch to Output mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to output mode. This function is
called prior \ref PIN_SWDIO_OUT function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_ENABLE(void) { sio_hw->gpio_oe_set = PINOUT_SWDIO_MASK; }
/** SWDIO I/O pin: Switch to Input mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to input mode. This function is
called prior \ref PIN_SWDIO_IN function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_DISABLE(void) { sio_hw->gpio_oe_clr = PINOUT_SWDIO_MASK; }
// TDI Pin I/O ---------------------------------------------
/** TDI I/O pin: Get Input.
\return Current status of the TDI DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDI_IN(void) {
return (sio_hw->gpio_in & PINOUT_TDI_MASK) >> PINOUT_JTAG_TDI;
}
/** TDI I/O pin: Set Output.
\param bit Output value for the TDI DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_TDI_OUT(uint32_t bit) {
if (bit & 1)
sio_hw->gpio_set = PINOUT_TDI_MASK;
else
sio_hw->gpio_clr = PINOUT_TDI_MASK;
}
// TDO Pin I/O ---------------------------------------------
/** TDO I/O pin: Get Input.
\return Current status of the TDO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDO_IN(void) {
return (sio_hw->gpio_in & PINOUT_TDO_MASK) >> PINOUT_JTAG_TDO;
}
// nTRST Pin I/O -------------------------------------------
/** nTRST I/O pin: Get Input.
\return Current status of the nTRST DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nTRST_IN(void) {
return (sio_hw->gpio_in & PINOUT_nTRST_MASK) >> PINOUT_JTAG_nTRST;
}
/** nTRST I/O pin: Set Output.
\param bit JTAG TRST Test Reset pin status:
- 0: issue a JTAG TRST Test Reset.
- 1: release JTAG TRST Test Reset.
*/
__STATIC_FORCEINLINE void PIN_nTRST_OUT(uint32_t bit) {
if (bit & 1)
sio_hw->gpio_set = PINOUT_nTRST_MASK;
else
sio_hw->gpio_clr = PINOUT_nTRST_MASK;
}
// nRESET Pin I/O------------------------------------------
/** nRESET I/O pin: Get Input.
\return Current status of the nRESET DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nRESET_IN(void) {
return (sio_hw->gpio_in & PINOUT_nRESET_MASK) >> PINOUT_JTAG_nRESET;
}
/** nRESET I/O pin: Set Output.
\param bit target device hardware reset pin status:
- 0: issue a device hardware reset.
- 1: release device hardware reset.
*/
__STATIC_FORCEINLINE void PIN_nRESET_OUT(uint32_t bit) {
if (bit & 1)
sio_hw->gpio_set = PINOUT_nRESET_MASK;
else
sio_hw->gpio_clr = PINOUT_nRESET_MASK;
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_LEDs_gr CMSIS-DAP Hardware Status LEDs
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware may provide LEDs that indicate the status of the CMSIS-DAP Debug Unit.
It is recommended to provide the following LEDs for status indication:
- Connect LED: is active when the DAP hardware is connected to a debugger.
- Running LED: is active when the debugger has put the target device into running state.
*/
/** Debug Unit: Set status of Connected LED.
\param bit status of the Connect LED.
- 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit.
- 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit.
*/
__STATIC_INLINE void LED_CONNECTED_OUT(uint32_t bit) {
#if PINOUT_LED_CONNECTED
if (bit & 1)
sio_hw->gpio_set = PINOUT_LED_MASK;
else
sio_hw->gpio_clr = PINOUT_LED_MASK;
#else
(void)bit;
#endif
}
/** Debug Unit: Set status Target Running LED.
\param bit status of the Target Running LED.
- 1: Target Running LED ON: program execution in target started.
- 0: Target Running LED OFF: program execution in target stopped.
*/
__STATIC_INLINE void LED_RUNNING_OUT(uint32_t bit) {
#if PINOUT_LED_RUNNING
if (bit & 1)
sio_hw->gpio_set = PINOUT_LED_MASK;
else
sio_hw->gpio_clr = PINOUT_LED_MASK;
#else
(void)bit;
#endif
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Timestamp_gr CMSIS-DAP Timestamp
\ingroup DAP_ConfigIO_gr
@{
Access function for Test Domain Timer.
The value of the Test Domain Timer in the Debug Unit is returned by the function \ref TIMESTAMP_GET.
By default, the DWT timer is used. The frequency of this timer is configured with \ref
TIMESTAMP_CLOCK.
*/
/** Get timestamp of Test Domain Timer.
\return Current timestamp value.
*/
__STATIC_INLINE uint32_t TIMESTAMP_GET(void) {
#if TIMESTAMP_CLOCK > 0
return (DWT->CYCCNT);
#else
return 0;
#endif
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Initialization_gr CMSIS-DAP Initialization
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware I/O and LED Pins are initialized with the function \ref DAP_SETUP.
*/
/** Setup of the Debug Unit I/O pins and LEDs (called when Debug Unit is initialized).
This function performs the initialization of the CMSIS-DAP Hardware I/O Pins and the
Status LEDs. In detail the operation of Hardware I/O and LED pins are enabled and set:
- I/O clock system enabled.
- all I/O pins: input buffer enabled, output pins are set to HighZ mode.
- for nTRST, nRESET a weak pull-up (if available) is enabled.
- LED output pins are enabled and LEDs are turned off.
*/
__STATIC_INLINE void DAP_SETUP(void) {
sio_hw->gpio_oe_set = PINOUT_LED_MASK;
sio_hw->gpio_clr = PINOUT_LED_MASK;
hw_write_masked(
&padsbank0_hw->io[PINOUT_LED], 0, PADS_BANK0_GPIO0_IE_BITS | PADS_BANK0_GPIO0_OD_BITS);
iobank0_hw->io[PINOUT_LED].ctrl = GPIO_FUNC_SIO << IO_BANK0_GPIO0_CTRL_FUNCSEL_LSB;
bi_decl(bi_2pins_with_names(PINOUT_JTAG_TCK, "TCK / SWCLK", PINOUT_JTAG_TMS, "TMS / SWDIO"));
bi_decl(bi_4pins_with_names(PINOUT_JTAG_TDI, "TDI", PINOUT_JTAG_TDO, "TDO", PINOUT_JTAG_nTRST,
"nTRST", PINOUT_JTAG_nRESET, "nRESET"));
}
/** Reset Target Device with custom specific I/O pin or command sequence.
This function allows the optional implementation of a device specific reset sequence.
It is called when the command \ref DAP_ResetTarget and is for example required
when a device needs a time-critical unlock sequence that enables the debug port.
\return 0 = no device specific reset sequence is implemented.\n
1 = a device specific reset sequence is implemented.
*/
__STATIC_INLINE uint8_t RESET_TARGET(void) {
return (0U); // change to '1' when a device reset sequence is implemented
}
///@}
#endif /* __DAP_CONFIG_H__ */

View File

@ -7,8 +7,8 @@
#include <pico/stdio/driver.h> #include <pico/stdio/driver.h>
#include <pico/time.h> #include <pico/time.h>
#include "pinout.h" //#include "pinout.h"
#include "protocfg.h" //#include "protocfg.h"
#include "tusb.h" #include "tusb.h"
#ifndef PICO_STDIO_USB_STDOUT_TIMEOUT_US #ifndef PICO_STDIO_USB_STDOUT_TIMEOUT_US
@ -18,6 +18,7 @@
// *mostly* the same as the SDK code, *except* we have to explicitely pass the // *mostly* the same as the SDK code, *except* we have to explicitely pass the
// CDC interface number to the tusb functions, making the SDK code itself very // CDC interface number to the tusb functions, making the SDK code itself very
// non-reusable >__> // non-reusable >__>
#define CDC_N_STDIO 0
static mutex_t stdio_usb_mutex; static mutex_t stdio_usb_mutex;

View File

@ -1,72 +0,0 @@
// vim: set et:
/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include <pico/binary_info.h>
#include <pico/stdlib.h>
#include "pinout.h"
#include "protos.h"
#include "tusb.h"
static uint8_t rx_buf[CFG_TUD_CDC_RX_BUFSIZE];
static uint8_t tx_buf[CFG_TUD_CDC_TX_BUFSIZE];
void cdc_uart_init(void) {
gpio_set_function(PINOUT_UART_TX, GPIO_FUNC_UART);
gpio_set_function(PINOUT_UART_RX, GPIO_FUNC_UART);
uart_init(PINOUT_UART_INTERFACE, PINOUT_UART_BAUDRATE);
bi_decl(bi_2pins_with_func(PINOUT_UART_TX, PINOUT_UART_RX, GPIO_FUNC_UART));
}
void cdc_uart_task(void) {
// Consume uart fifo regardless even if not connected
uint rx_len = 0;
while (uart_is_readable(PINOUT_UART_INTERFACE) && (rx_len < sizeof(rx_buf))) {
rx_buf[rx_len++] = uart_getc(PINOUT_UART_INTERFACE);
}
if (tud_cdc_n_connected(CDC_N_UART)) {
// Do we have anything to display on the host's terminal?
if (rx_len) {
for (uint i = 0; i < rx_len; i++) { tud_cdc_n_write_char(CDC_N_UART, rx_buf[i]); }
tud_cdc_n_write_flush(CDC_N_UART);
}
if (tud_cdc_n_available(CDC_N_UART)) {
// Is there any data from the host for us to tx
uint tx_len = tud_cdc_n_read(CDC_N_UART, tx_buf, sizeof(tx_buf));
uart_write_blocking(PINOUT_UART_INTERFACE, tx_buf, tx_len);
}
}
}
void cdc_uart_set_hwflow(bool enable) { uart_set_hw_flow(PINOUT_UART_INTERFACE, enable, enable); }
void cdc_uart_set_baudrate(uint32_t brate) {
uart_init(PINOUT_UART_INTERFACE, brate);
}

View File

@ -1,449 +0,0 @@
// vim: set et:
#include <stdio.h>
#include <hardware/clocks.h>
#include <hardware/i2c.h>
#include <hardware/resets.h>
#include <pico/binary_info.h>
#include <pico/stdlib.h>
#include <pico/timeout_helper.h>
#include "i2ctinyusb.h"
#include "pinout.h"
#include "protocfg.h"
static int delay = 10, delay2 = 5;
// I2C bitbang reimpl because ugh, synopsys
// (mostly inspired by original I2CTinyUSB AVR firmware)
__attribute__((__always_inline__)) inline static void i2cio_set_sda(bool hi) {
if (hi) {
sio_hw->gpio_oe_clr = (1 << PINOUT_I2C_SDA); // SDA is input
// => pullup configured, so it'll go high
} else {
sio_hw->gpio_oe_set = (1 << PINOUT_I2C_SDA); // SDA is output
sio_hw->gpio_clr = (1 << PINOUT_I2C_SDA); // and drive it low
}
}
__attribute__((__always_inline__)) inline static bool i2cio_get_sda(void) {
return (sio_hw->gpio_in & (1 << PINOUT_I2C_SDA)) != 0;
}
__attribute__((__always_inline__)) inline static void i2cio_set_scl(bool hi) {
busy_wait_us_32(delay2);
sio_hw->gpio_oe_set = (1 << PINOUT_I2C_SCL); // SCL is output
if (hi)
sio_hw->gpio_set = (1 << PINOUT_I2C_SCL); // SCL is high
else
sio_hw->gpio_clr = (1 << PINOUT_I2C_SCL); // SCL is low
busy_wait_us_32(delay2);
}
__attribute__((__always_inline__)) inline static void i2cio_scl_toggle(void) {
i2cio_set_scl(true);
i2cio_set_scl(false);
}
static void __no_inline_not_in_flash_func(i2cio_start)(void) { // start condition
i2cio_set_sda(false);
i2cio_set_scl(false);
}
static void __no_inline_not_in_flash_func(i2cio_repstart)(void) { // repstart condition
i2cio_set_sda(true);
i2cio_set_scl(true);
i2cio_set_sda(false);
i2cio_set_scl(false);
}
static void __no_inline_not_in_flash_func(i2cio_stop)(void) { // stop condition
i2cio_set_sda(false);
i2cio_set_scl(true);
i2cio_set_sda(true);
}
static bool __no_inline_not_in_flash_func(i2cio_write7)(
uint8_t v) { // return value: acked? // needed for 10bitaddr xfers
for (int i = 6; i >= 0; --i) {
i2cio_set_sda((v & (1 << i)) != 0);
i2cio_scl_toggle();
}
i2cio_set_sda(true);
i2cio_set_scl(true);
bool ack = !i2cio_get_sda();
i2cio_set_scl(false);
return ack;
}
static bool __no_inline_not_in_flash_func(i2cio_write8)(uint8_t v) { // return value: acked?
for (int i = 7; i >= 0; --i) {
i2cio_set_sda((v & (1 << i)) != 0);
i2cio_scl_toggle();
}
i2cio_set_sda(true);
i2cio_set_scl(true);
bool ack = !i2cio_get_sda();
i2cio_set_scl(false);
return ack;
}
static uint8_t __no_inline_not_in_flash_func(i2cio_read8)(bool last) {
i2cio_set_sda(true);
i2cio_set_scl(false);
uint8_t rv = 0;
for (int i = 7; i >= 0; --i) {
i2cio_set_scl(true);
bool c = i2cio_get_sda();
rv <<= 1;
if (c) rv |= 1;
i2cio_set_scl(false);
}
if (last)
i2cio_set_sda(true);
else
i2cio_set_sda(false);
i2cio_scl_toggle();
i2cio_set_sda(true);
return rv;
}
// replicating/rewriting some SDK functions because they don't do what I want
// so I'm making better ones
static int __no_inline_not_in_flash_func(i2cex_probe_address)(uint16_t addr, bool a10bit) {
// I2C pins to SIO
gpio_set_function(PINOUT_I2C_SCL, GPIO_FUNC_SIO);
gpio_set_function(PINOUT_I2C_SDA, GPIO_FUNC_SIO);
int rv;
i2cio_start();
if (a10bit) {
// A10 magic higher 2 addr bits r/#w bit
uint8_t addr1 = 0x70 | (((addr >> 8) & 3) << 1) | 0, addr2 = addr & 0xff;
if (i2cio_write7(addr1)) {
if (i2cio_write8(addr2))
rv = 0;
else
rv = PICO_ERROR_GENERIC;
} else
rv = PICO_ERROR_GENERIC;
} else {
if (i2cio_write8((addr << 1) & 0xff))
rv = 0; // acked: ok
else
rv = PICO_ERROR_GENERIC; // nak :/
}
i2cio_stop();
// I2C back to I2C
gpio_set_function(PINOUT_I2C_SCL, GPIO_FUNC_I2C);
gpio_set_function(PINOUT_I2C_SDA, GPIO_FUNC_I2C);
return rv;
}
inline static void i2cex_abort_xfer(i2c_inst_t* i2c) {
#if 1
// may be bugged??? so doesnt do anything for now
(void)i2c;
return;
#else
// now do the abort
i2c->hw->enable = 1 /*| (1<<2)*/ | (1 << 1);
// wait for M_TX_ABRT irq
do {
/*if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}*/
tight_loop_contents();
} while (/*!timeout &&*/ !(i2c->hw->raw_intr_stat & I2C_IC_RAW_INTR_STAT_TX_ABRT_BITS));
// reset irq
// if (!timeout)
(void)i2c->hw->clr_tx_abrt;
#endif
}
static int i2cex_write_blocking_until(i2c_inst_t* i2c, uint16_t addr, bool a10bit,
const uint8_t* src, size_t len, bool nostop, absolute_time_t until) {
timeout_state_t ts_;
struct timeout_state* ts = &ts_;
check_timeout_fn timeout_check = init_single_timeout_until(&ts_, until);
if ((int)len < 0) return PICO_ERROR_GENERIC;
if (a10bit) { // addr too high
if (addr & ~(uint16_t)((1 << 10) - 1)) return PICO_ERROR_GENERIC;
} else if (addr & 0x80)
return PICO_ERROR_GENERIC;
if (len == 0) return i2cex_probe_address(addr, a10bit);
bool abort = false, timeout = false;
uint32_t abort_reason = 0;
int byte_ctr;
i2c->hw->enable = 0;
// enable 10bit mode if requested
// clang-format off
hw_write_masked(&i2c->hw->con, I2C_IC_CON_IC_10BITADDR_MASTER_BITS,
(a10bit ? I2C_IC_CON_IC_10BITADDR_MASTER_VALUE_ADDR_10BITS
: I2C_IC_CON_IC_10BITADDR_MASTER_VALUE_ADDR_7BITS)
<< I2C_IC_CON_IC_10BITADDR_MASTER_LSB);
// clang-format on
i2c->hw->tar = addr;
i2c->hw->enable = 1;
for (byte_ctr = 0; byte_ctr < (int)len; ++byte_ctr) {
bool first = byte_ctr == 0, last = byte_ctr == (int)len - 1;
i2c->hw->data_cmd = (bool_to_bit(first && i2c->restart_on_next) << I2C_IC_DATA_CMD_RESTART_LSB)
| (bool_to_bit(last && !nostop) << I2C_IC_DATA_CMD_STOP_LSB)
| *src++;
do {
if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}
tight_loop_contents();
} while (!timeout && !(i2c->hw->raw_intr_stat & I2C_IC_RAW_INTR_STAT_TX_EMPTY_BITS));
if (!timeout) {
abort_reason = i2c->hw->tx_abrt_source;
if (abort_reason) {
(void)i2c->hw->clr_tx_abrt;
abort = true;
}
if (abort || (last && !nostop)) {
do {
if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}
tight_loop_contents();
// clang-format off
} while (!timeout && !(i2c->hw->raw_intr_stat & I2C_IC_RAW_INTR_STAT_STOP_DET_BITS));
// clang-format on
if (!timeout)
(void)i2c->hw->clr_stop_det;
else
// if we had a timeout, send an abort request to the hardware,
// so that the bus gets released
i2cex_abort_xfer(i2c);
}
} else
i2cex_abort_xfer(i2c);
if (abort) break;
}
int rval;
if (abort) {
// clang-format off
const int addr_noack = I2C_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK_BITS
| I2C_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK_BITS
| I2C_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK_BITS;
// clang-format on
if (timeout)
rval = PICO_ERROR_TIMEOUT;
else if (!abort_reason || (abort_reason & addr_noack))
rval = PICO_ERROR_GENERIC;
else if (abort_reason & I2C_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK_BITS)
rval = byte_ctr;
else
rval = PICO_ERROR_GENERIC;
} else
rval = byte_ctr;
i2c->restart_on_next = nostop;
return rval;
}
static int i2cex_read_blocking_until(i2c_inst_t* i2c, uint16_t addr, bool a10bit, uint8_t* dst,
size_t len, bool nostop, absolute_time_t until) {
timeout_state_t ts_;
struct timeout_state* ts = &ts_;
check_timeout_fn timeout_check = init_single_timeout_until(&ts_, until);
if ((int)len < 0) return PICO_ERROR_GENERIC;
if (a10bit) { // addr too high
if (addr & ~(uint16_t)((1 << 10) - 1)) return PICO_ERROR_GENERIC;
} else if (addr & 0x80)
return PICO_ERROR_GENERIC;
i2c->hw->enable = 0;
// enable 10bit mode if requested
hw_write_masked(&i2c->hw->con, I2C_IC_CON_IC_10BITADDR_MASTER_BITS,
(a10bit ? I2C_IC_CON_IC_10BITADDR_MASTER_VALUE_ADDR_10BITS
: I2C_IC_CON_IC_10BITADDR_MASTER_VALUE_ADDR_7BITS)
<< I2C_IC_CON_IC_10BITADDR_MASTER_LSB);
i2c->hw->tar = addr;
i2c->hw->enable = 1;
if (len == 0) return i2cex_probe_address(addr, a10bit);
bool abort = false, timeout = false;
uint32_t abort_reason = 0;
int byte_ctr;
for (byte_ctr = 0; byte_ctr < (int)len; ++byte_ctr) {
bool first = byte_ctr == 0;
bool last = byte_ctr == (int)len - 1;
while (!i2c_get_write_available(i2c) && !abort) {
tight_loop_contents();
// ?
if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}
}
if (timeout) {
// if we had a timeout, send an abort request to the hardware,
// so that the bus gets released
i2cex_abort_xfer(i2c);
}
if (abort) break;
i2c->hw->data_cmd = bool_to_bit(first && i2c->restart_on_next)
<< I2C_IC_DATA_CMD_RESTART_LSB |
bool_to_bit(last && !nostop) << I2C_IC_DATA_CMD_STOP_LSB |
I2C_IC_DATA_CMD_CMD_BITS; // -> 1 for read
do {
abort_reason = i2c->hw->tx_abrt_source;
abort = (bool)i2c->hw->clr_tx_abrt;
if (timeout_check) {
timeout = timeout_check(ts);
abort |= timeout;
}
tight_loop_contents(); // ?
} while (!abort && !i2c_get_read_available(i2c));
if (timeout) {
// if we had a timeout, send an abort request to the hardware,
// so that the bus gets released
i2cex_abort_xfer(i2c);
}
if (abort) break;
uint8_t v = (uint8_t)i2c->hw->data_cmd;
// printf("\ngot read %02x\n", v);
*dst++ = v;
}
int rval;
if (abort) {
// printf("\ngot abrt: ");
const int addr_noack = I2C_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK_BITS |
I2C_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK_BITS |
I2C_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK_BITS;
if (timeout) { /*printf("timeout\n");*/
rval = PICO_ERROR_TIMEOUT;
} else if (!abort_reason || (abort_reason & addr_noack)) { // printf("disconn\n");
rval = PICO_ERROR_GENERIC;
} else { /*printf("unk\n");*/
rval = PICO_ERROR_GENERIC;
}
} else
rval = byte_ctr;
i2c->restart_on_next = nostop;
return rval;
}
static inline int i2cex_write_timeout_us(i2c_inst_t* i2c, uint16_t addr, bool a10bit,
const uint8_t* src, size_t len, bool nostop, uint32_t timeout_us) {
absolute_time_t t = make_timeout_time_us(timeout_us);
return i2cex_write_blocking_until(i2c, addr, a10bit, src, len, nostop, t);
}
static inline int i2cex_read_timeout_us(i2c_inst_t* i2c, uint16_t addr, bool a10bit, uint8_t* dst,
size_t len, bool nostop, uint32_t timeout_us) {
absolute_time_t t = make_timeout_time_us(timeout_us);
return i2cex_read_blocking_until(i2c, addr, a10bit, dst, len, nostop, t);
}
__attribute__((__const__)) enum ki2c_funcs i2ctu_get_func(void) {
// TODO: SMBUS_EMUL_ALL => I2C_M_RECV_LEN
// TODO: maybe also PROTOCOL_MANGLING, NOSTART
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
}
void i2ctu_init(void) {
// default to 100 kHz (SDK example default so should be ok)
delay = 10;
delay2 = 5;
i2c_init(PINOUT_I2C_DEV, 100 * 1000);
gpio_set_function(PINOUT_I2C_SCL, GPIO_FUNC_I2C);
gpio_set_function(PINOUT_I2C_SDA, GPIO_FUNC_I2C);
gpio_pull_up(PINOUT_I2C_SCL);
gpio_pull_up(PINOUT_I2C_SDA);
bi_decl(bi_2pins_with_func(PINOUT_I2C_SCL, PINOUT_I2C_SDA, GPIO_FUNC_I2C));
}
uint32_t i2ctu_set_freq(uint32_t freq, uint32_t us) {
delay = us;
delay2 = us >> 1;
if (!delay2) delay2 = 1;
return i2c_set_baudrate(PINOUT_I2C_DEV, freq);
}
enum itu_status i2ctu_write(enum ki2c_flags flags, enum itu_command startstopflags, uint16_t addr,
const uint8_t* buf, size_t len) {
bool nostop = !(startstopflags & ITU_CMD_I2C_IO_END);
bool bit10 = flags & I2C_M_TEN;
/*if (len == 0) {
// do a read, that's less hazardous
uint8_t stuff = 0;
int rv = i2cex_read_timeout_us(PINOUT_I2C_DEV, addr, bit10, &stuff, 1,
nostop, 1000*1000);
if (rv < 0) return ITU_STATUS_ADDR_NAK;
return ITU_STATUS_ADDR_ACK;
} else*/
{
int rv = i2cex_write_timeout_us(PINOUT_I2C_DEV, addr, bit10, buf, len, nostop, 1000 * 1000);
if (rv < 0 || (size_t)rv < len) return ITU_STATUS_ADDR_NAK;
return ITU_STATUS_ADDR_ACK;
}
}
enum itu_status i2ctu_read(enum ki2c_flags flags, enum itu_command startstopflags, uint16_t addr,
uint8_t* buf, size_t len) {
bool nostop = !(startstopflags & ITU_CMD_I2C_IO_END);
bool bit10 = flags & I2C_M_TEN;
/*if (len == 0) {
uint8_t stuff = 0;
int rv = i2cex_read_timeout_us(PINOUT_I2C_DEV, addr, bit10, &stuff, 1,
nostop, 1000*1000);
if (rv < 0) return ITU_STATUS_ADDR_NAK;
return ITU_STATUS_ADDR_ACK;
} else*/
{
int rv = i2cex_read_timeout_us(PINOUT_I2C_DEV, addr, bit10, buf, len, nostop, 1000 * 1000);
// printf("p le rv=%d buf=%02x ", rv, buf[0]);
if (rv < 0 || (size_t)rv < len) return ITU_STATUS_ADDR_NAK;
return ITU_STATUS_ADDR_ACK;
}
}

View File

@ -1,51 +0,0 @@
// vim: set et:
#ifndef PINOUT_H_
#define PINOUT_H_
// UART config
#define PINOUT_UART_TX 4
#define PINOUT_UART_RX 5
#define PINOUT_UART_CTS 10
#define PINOUT_UART_RTS 11
#define PINOUT_UART_INTERFACE uart1
#define PINOUT_UART_BAUDRATE 115200
// JTAG config
#define PINOUT_JTAG_TCK 2 // == SWCLK
#define PINOUT_JTAG_TMS 3 // == SWDIO
#define PINOUT_JTAG_TDI 6
#define PINOUT_JTAG_TDO 7
#define PINOUT_JTAG_nTRST 8
#define PINOUT_JTAG_nRESET 9
// SPI config
#define PINOUT_SPI_DEV spi1
#define PINOUT_SPI_SCLK 14
#define PINOUT_SPI_MOSI 15
#define PINOUT_SPI_MISO 12
#define PINOUT_SPI_nCS 13
// I2C config
#define PINOUT_I2C_DEV i2c0
#define PINOUT_I2C_SCL 21
#define PINOUT_I2C_SDA 20
// LED config
// you can change these two as you like
#define PINOUT_LED_CONNECTED 1
#define PINOUT_LED_RUNNING 0
#ifndef PINOUT_LED
#ifndef PICO_DEFAULT_LED_PIN
#error "PICO_DEFAULT_LED_PIN is not defined, run PICOPROBE_LED=<led_pin> cmake"
#elif PICO_DEFAULT_LED_PIN == -1
#error "PICO_DEFAULT_LED_PIN is defined as -1, run PICOPROBE_LED=<led_pin> cmake"
#else
#define PINOUT_LED PICO_DEFAULT_LED_PIN
#endif
#endif /* PICOPROBE_LED */
#endif

View File

@ -3,38 +3,6 @@
#ifndef PROTOCFG_H_ #ifndef PROTOCFG_H_
#define PROTOCFG_H_ #define PROTOCFG_H_
#define DBOARD_HAS_UART
#define DBOARD_HAS_CMSISDAP
#define DBOARD_HAS_SERPROG
#define DBOARD_HAS_I2C
#define DBOARD_HAS_TEMPSENSOR
enum {
HID_N_CMSISDAP = 0,
HID_N__NITF
};
enum {
CDC_N_UART = 0,
CDC_N_SERPROG,
#ifdef USE_USBCDC_FOR_STDIO
CDC_N_STDIO,
#endif
CDC_N__NITF
};
enum {
VND_N__NITF = 0
};
#define CFG_TUD_HID 1
#ifdef USE_USBCDC_FOR_STDIO
#define CFG_TUD_CDC 3
#else
#define CFG_TUD_CDC 2
#endif
#define CFG_TUD_VENDOR 0
/*#define USB_VID 0x2e8a*/ /* Raspberry Pi */ /*#define USB_VID 0x2e8a*/ /* Raspberry Pi */
#define USB_VID 0xcafe /* TinyUSB */ #define USB_VID 0xcafe /* TinyUSB */
/*#define USB_VID 0x1209*/ /* Generic */ /*#define USB_VID 0x1209*/ /* Generic */
@ -45,4 +13,3 @@ enum {
#define INFO_BOARDNAME "RP2040 Pico" #define INFO_BOARDNAME "RP2040 Pico"
#endif #endif

View File

@ -1,72 +0,0 @@
// vim: set et:
#include <stdio.h>
#include <hardware/spi.h>
#include <pico/binary_info.h>
#include <pico/stdlib.h>
#include "pinout.h"
#include "protos.h"
#include "serprog.h"
static bool cs_asserted;
void sp_spi_init(void) {
cs_asserted = false;
spi_init(PINOUT_SPI_DEV, 512 * 1000); // default to 512 kHz
gpio_set_function(PINOUT_SPI_MISO, GPIO_FUNC_SPI);
gpio_set_function(PINOUT_SPI_MOSI, GPIO_FUNC_SPI);
gpio_set_function(PINOUT_SPI_SCLK, GPIO_FUNC_SPI);
// gpio_set_function(PINOUT_SPI_nCS, GPIO_FUNC_SIO);
gpio_init(PINOUT_SPI_nCS);
gpio_put(PINOUT_SPI_nCS, 1);
gpio_set_dir(PINOUT_SPI_nCS, GPIO_OUT);
bi_decl(bi_3pins_with_func(PINOUT_SPI_MISO, PINOUT_SPI_MOSI, PINOUT_SPI_SCLK, GPIO_FUNC_SPI));
bi_decl(bi_1pin_with_name(PINOUT_SPI_nCS, "SPI #CS"));
}
uint32_t __not_in_flash_func(sp_spi_set_freq)(uint32_t freq_wanted) {
return spi_set_baudrate(PINOUT_SPI_DEV, freq_wanted);
}
void __not_in_flash_func(sp_spi_cs_deselect)(void) {
asm volatile("nop\nnop\nnop"); // idk if this is needed
gpio_put(PINOUT_SPI_nCS, 1);
asm volatile("nop\nnop\nnop"); // idk if this is needed
cs_asserted = false;
}
void __not_in_flash_func(sp_spi_cs_select)(void) {
asm volatile("nop\nnop\nnop"); // idk if this is needed
gpio_put(PINOUT_SPI_nCS, 0);
asm volatile("nop\nnop\nnop"); // idk if this is needed
cs_asserted = true;
}
void __not_in_flash_func(sp_spi_op_begin)(void) {
// sp_spi_cs_select();
if (!cs_asserted) {
asm volatile("nop\nnop\nnop"); // idk if this is needed
gpio_put(PINOUT_SPI_nCS, 0);
asm volatile("nop\nnop\nnop"); // idk if this is needed
}
}
void __not_in_flash_func(sp_spi_op_end)(void) {
// sp_spi_cs_deselect();
if (!cs_asserted) { // YES, this condition is the intended one!
asm volatile("nop\nnop\nnop"); // idk if this is needed
gpio_put(PINOUT_SPI_nCS, 1);
asm volatile("nop\nnop\nnop"); // idk if this is needed
}
}
// TODO: use dma?
void __not_in_flash_func(sp_spi_op_write)(uint32_t write_len, const uint8_t* write_data) {
spi_write_blocking(PINOUT_SPI_DEV, write_data, write_len);
}
void __not_in_flash_func(sp_spi_op_read)(uint32_t read_len, uint8_t* read_data) {
spi_read_blocking(PINOUT_SPI_DEV, 0, read_data, read_len);
}

View File

@ -1,51 +0,0 @@
// vim: set et:
#include "tempsensor.h"
#include <hardware/adc.h>
#define T_SLOPE (-0.001721f)
#define T_BIAS (0.706f)
#define V_MAX (3.3f)
#define D_RANGE (4096)
#define T_OFF (27)
// convert float to x.4 fixed format
#define float2fix(x) (int)((x) * (1 << 4))
// convert x.4 fixed to 8.4 fixed
__attribute__((__const__)) inline static int16_t trunc_8fix4(int fix) {
// clang-format off
if (fix > 4095) fix = 4095;
if (fix < -4096) fix = -4096;
// clang-format on
return fix;
}
void tempsense_dev_init(void) {
adc_init();
adc_set_temp_sensor_enabled(true);
}
// 8.4
int16_t tempsense_dev_get_temp(void) {
adc_select_input(4); // select temp sensor
uint16_t result = adc_read();
float voltage = result * (V_MAX / D_RANGE);
float tempf = T_OFF + (voltage - T_BIAS) / T_SLOPE;
// FIXME: use fixed point instead! but something's wrong with the formula below
/*int temperature = float2fix(T_OFF - T_BIAS / T_SLOPE)
+ (int)result * float2fix(V_MAX / (D_RANGE * T_SLOPE));*/
return trunc_8fix4(/*temperature*/ float2fix(tempf));
}
// RP2040 absolute min/max are -20/85
// clang-format off
int16_t tempsense_dev_get_lower(void) { return trunc_8fix4(float2fix(-15)); }
int16_t tempsense_dev_get_upper(void) { return trunc_8fix4(float2fix( 75)); }
int16_t tempsense_dev_get_crit (void) { return trunc_8fix4(float2fix( 80)); }
// clang-format on

View File

@ -84,6 +84,7 @@ co_switch:@(cothread_t handle r0)
ldmia r0!, {r4-r7} ldmia r0!, {r4-r7}
ldr r2, [r0, #(0x28-0x10)] @ pc ldr r2, [r0, #(0x28-0x10)] @ pc
@ldr r0, [r0, #(0x2c-0x10)] @ ud/r0 / retval
mov pc, r2 mov pc, r2
bx lr bx lr
@ -94,9 +95,11 @@ co_switch:@(cothread_t handle r0)
.type co_derive, %function .type co_derive, %function
.thumb_func .thumb_func
.global co_derive .global co_derive
co_derive:@(void* memory r0, unsigned int size r1, void(*entrypoint)(void) r2) co_derive:@(void* memory r0, unsigned int size r1, void(*entrypoint)(void*) r2, void* ud r3)
push {r4} push {r4}
@mov r12, r3 @ save ud for later
@ if (!co_active_handle) co_active_handle = &co_active_buffer @ if (!co_active_handle) co_active_handle = &co_active_buffer
ldr r3, =co_active_handle ldr r3, =co_active_handle
ldr r4, [r3] ldr r4, [r3]
@ -117,8 +120,9 @@ co_derive:@(void* memory r0, unsigned int size r1, void(*entrypoint)(void) r2)
@ p(r3) = handle(r0) + offset(r3) @ p(r3) = handle(r0) + offset(r3)
add r3, r0 add r3, r0
@ initialize stack, entrypoint @ initialize stack, entrypoint
str r3, [r0, #( 9*4)] @str r12, [r0, #(11*4)] @ init r0: user argument
str r2, [r0, #(10*4)] str r3 , [r0, #( 9*4)] @ init sp/r13
str r2 , [r0, #(10*4)] @ init pc/r15
.Lret: .Lret:
pop {r4} pop {r4}

View File

@ -8,8 +8,8 @@
typedef void* cothread_t; typedef void* cothread_t;
cothread_t co_active(void); cothread_t co_active(void);
cothread_t co_derive(void* memory, unsigned int heapsize, void (*coentry)(void)); cothread_t co_derive(void* memory, unsigned int heapsize, void (*coentry)(void/***/)/*, void* ud*/);
void co_switch(cothread_t); void co_switch(cothread_t); // should we make this return void* (and thus `ud`)?
int co_serializable(void); int co_serializable(void);
#endif #endif

View File

@ -1,242 +0,0 @@
// vim: set et:
#include <stdio.h>
#include "protocfg.h"
#include "tusb.h"
#ifdef DBOARD_HAS_SERPROG
#include "protos.h"
#include "rtconf.h"
#include "serprog.h"
#include "util.h"
// TODO: refactor some of this stuff into another header & split off serprog
// protocol handling from the SPI stuff. one thing we should think about
// when performing this refactor is, would other boards support
// parallell, LPC, or FWH, or only SPI? if only SPI, the entire proto
// handler can just be made reusable verbatim.
// kinda refactored this already but it still has a good note for non-SPI stuff,
// so leaving it here for now
// clang-format off
static const uint8_t serprog_cmdmap[32] = {
0x3f, // cmd 00..05 not 0x06 (Q_CHIPSIZE) and 0x07 (Q_OPBUF), as this is a SPI-only device
0x01, // only cmd 08
0x1f, // cmd 10..15 supported
0, // 18..1f
0, // 20..27
0, // 28..2f
0, // 30..37
0, // 38..3f
0, // 4<0..47
0, // 48..4f
(1 << 3), // 50..57: enable 0x53
0, // 58..5f
0, // rest is 0
};
// clang-format on
static const char serprog_pgmname[16] = INFO_PRODUCT_BARE;
static uint8_t rx_buf[CFG_TUD_CDC_RX_BUFSIZE];
static uint8_t tx_buf[CFG_TUD_CDC_TX_BUFSIZE];
static uint32_t rxavail, rxpos;
void cdc_serprog_init(void) {
rxavail = 0;
rxpos = 0;
sp_spi_init();
}
static uint8_t read_byte(void) {
while (rxavail <= 0) {
if (!tud_cdc_n_connected(CDC_N_SERPROG) || !tud_cdc_n_available(CDC_N_SERPROG)) {
thread_yield();
continue;
}
rxpos = 0;
rxavail = tud_cdc_n_read(CDC_N_SERPROG, rx_buf, sizeof rx_buf);
if (rxavail == 0) thread_yield();
}
uint8_t rv = rx_buf[rxpos];
++rxpos;
--rxavail;
return rv;
}
static void handle_cmd(void) {
uint32_t nresp = 0;
uint8_t cmd = read_byte();
switch (cmd) {
case S_CMD_NOP:
tx_buf[0] = S_ACK;
nresp = 1;
break;
case S_CMD_SYNCNOP:
tx_buf[0] = S_NAK;
tx_buf[1] = S_ACK;
nresp = 2;
break;
case S_CMD_Q_IFACE:
tx_buf[0] = S_ACK;
tx_buf[1] = SERPROG_IFACE_VERSION & 0xff;
tx_buf[2] = (SERPROG_IFACE_VERSION >> 8) & 0xff;
nresp = 3;
break;
case S_CMD_Q_CMDMAP:
tx_buf[0] = S_ACK;
memcpy(&tx_buf[1], serprog_cmdmap, sizeof serprog_cmdmap);
nresp = sizeof(serprog_cmdmap) + 1;
break;
case S_CMD_Q_PGMNAME:
tx_buf[0] = S_ACK;
memcpy(&tx_buf[1], serprog_pgmname, sizeof serprog_pgmname);
nresp = sizeof(serprog_pgmname) + 1;
break;
case S_CMD_Q_SERBUF:
tx_buf[0] = S_ACK;
tx_buf[1] = sizeof(rx_buf) & 0xff;
tx_buf[2] = (sizeof(rx_buf) >> 8) & 0xff;
nresp = 3;
break;
case S_CMD_Q_BUSTYPE:
tx_buf[0] = S_ACK;
tx_buf[1] = 1 << 3; // SPI only
nresp = 2;
break;
case S_CMD_Q_WRNMAXLEN:
tx_buf[0] = S_ACK;
tx_buf[1] = (sizeof(tx_buf) - 1) & 0xff;
tx_buf[2] = ((sizeof(tx_buf) - 1) >> 8) & 0xff;
tx_buf[3] = ((sizeof(tx_buf) - 1) >> 16) & 0xff;
nresp = 4;
break;
case S_CMD_Q_RDNMAXLEN:
tx_buf[0] = S_ACK;
tx_buf[1] = (sizeof(rx_buf) - 1) & 0xff;
tx_buf[2] = ((sizeof(rx_buf) - 1) >> 8) & 0xff;
tx_buf[3] = ((sizeof(rx_buf) - 1) >> 16) & 0xff;
nresp = 4;
break;
case S_CMD_S_BUSTYPE:
if (read_byte() /* bus type to set */ == (1 << 3)) {
tx_buf[0] = S_ACK;
} else {
tx_buf[0] = S_NAK;
}
nresp = 1;
break;
case S_CMD_SPIOP: {
uint32_t slen, rlen;
// clang-format off
slen = (uint32_t)read_byte();
slen |= (uint32_t)read_byte() << 8;
slen |= (uint32_t)read_byte() << 16;
rlen = (uint32_t)read_byte();
rlen |= (uint32_t)read_byte() << 8;
rlen |= (uint32_t)read_byte() << 16;
// clang-format on
sp_spi_op_begin();
size_t this_batch;
// 1. write slen data bytes
// we're going to use the tx buf for all operations here
while (slen > 0) {
this_batch = sizeof(tx_buf);
if (this_batch > slen) this_batch = slen;
for (size_t i = 0; i < this_batch; ++i) tx_buf[i] = read_byte();
sp_spi_op_write(this_batch, tx_buf);
slen -= this_batch;
}
// 2. write data
// first, do a batch of 63, because we also need to send an ACK byte
this_batch = sizeof(tx_buf) - 1;
if (this_batch > rlen) this_batch = rlen;
sp_spi_op_read(this_batch, &tx_buf[1]);
tx_buf[0] = S_ACK;
tud_cdc_n_write(CDC_N_SERPROG, tx_buf, this_batch + 1);
rlen -= this_batch;
// now do in batches of 64
while (rlen > 0) {
this_batch = sizeof(tx_buf);
if (this_batch > rlen) this_batch = rlen;
sp_spi_op_read(this_batch, tx_buf);
tud_cdc_n_write(CDC_N_SERPROG, tx_buf, this_batch);
rlen -= this_batch;
}
tud_cdc_n_write_flush(CDC_N_SERPROG);
// that's it!
sp_spi_op_end();
nresp = 0; // we sent our own response manually
} break;
case S_CMD_S_SPI_FREQ: {
uint32_t freq;
// clang-format off
freq = (uint32_t)read_byte();
freq |= (uint32_t)read_byte() << 8;
freq |= (uint32_t)read_byte() << 16;
freq |= (uint32_t)read_byte() << 24;
// clang-format on
uint32_t nfreq = sp_spi_set_freq(freq);
tx_buf[0] = S_ACK;
tx_buf[1] = nfreq & 0xff;
tx_buf[2] = (nfreq >> 8) & 0xff;
tx_buf[3] = (nfreq >> 16) & 0xff;
tx_buf[4] = (nfreq >> 24) & 0xff;
nresp = 5;
} break;
case S_CMD_S_PINSTATE: {
if (read_byte() == 0)
sp_spi_cs_deselect();
else
sp_spi_cs_select();
tx_buf[0] = S_ACK;
nresp = 1;
} break;
case S_CMD_MAGIC_SETTINGS: {
uint8_t a = read_byte();
uint8_t b = read_byte();
tx_buf[0] = S_ACK;
tx_buf[1] = rtconf_do(a, b);
nresp = 2;
} break;
default:
tx_buf[0] = S_NAK;
nresp = 1;
break;
}
if (nresp > 0) {
tud_cdc_n_write(CDC_N_SERPROG, tx_buf, nresp);
tud_cdc_n_write_flush(CDC_N_SERPROG);
}
}
void cdc_serprog_task(void) { handle_cmd(); }
#endif /* DBOARD_HAS_SERPROG */

View File

@ -1,102 +0,0 @@
// vim: set et:
#ifndef I2CTINYUSB_H_
#define I2CTINYUSB_H_
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "protocfg.h"
enum itu_command {
ITU_CMD_ECHO = 0,
ITU_CMD_GET_FUNC = 1,
ITU_CMD_SET_DELAY = 2,
ITU_CMD_GET_STATUS = 3,
ITU_CMD_I2C_IO_BEGIN_F = (1 << 0),
ITU_CMD_I2C_IO_END_F = (1 << 1),
ITU_CMD_I2C_IO_DIR_MASK = ITU_CMD_I2C_IO_BEGIN_F | ITU_CMD_I2C_IO_END_F,
ITU_CMD_I2C_IO = 4,
ITU_CMD_I2C_IO_BEGIN = 4 | ITU_CMD_I2C_IO_BEGIN_F,
ITU_CMD_I2C_IO_END = 4 | ITU_CMD_I2C_IO_END_F,
ITU_CMD_I2C_IO_BEGINEND = 4 | ITU_CMD_I2C_IO_BEGIN_F | ITU_CMD_I2C_IO_END_F,
};
enum itu_status { ITU_STATUS_IDLE = 0, ITU_STATUS_ADDR_ACK = 1, ITU_STATUS_ADDR_NAK = 2 };
// these two are lifted straight from the linux kernel, lmao
enum ki2c_flags {
I2C_M_RD = 0x0001, /* guaranteed to be 0x0001! */
I2C_M_TEN = 0x0010, /* use only if I2C_FUNC_10BIT_ADDR */
I2C_M_DMA_SAFE = 0x0200, /* use only in kernel space */
I2C_M_RECV_LEN = 0x0400, /* use only if I2C_FUNC_SMBUS_READ_BLOCK_DATA */
I2C_M_NO_RD_ACK = 0x0800, /* use only if I2C_FUNC_PROTOCOL_MANGLING */
I2C_M_IGNORE_NAK = 0x1000, /* use only if I2C_FUNC_PROTOCOL_MANGLING */
I2C_M_REV_DIR_ADDR = 0x2000, /* use only if I2C_FUNC_PROTOCOL_MANGLING */
I2C_M_NOSTART = 0x4000, /* use only if I2C_FUNC_NOSTART */
I2C_M_STOP = 0x8000, /* use only if I2C_FUNC_PROTOCOL_MANGLING */
};
enum ki2c_funcs {
I2C_FUNC_I2C = 0x00000001,
I2C_FUNC_10BIT_ADDR = 0x00000002, /* required for I2C_M_TEN */
I2C_FUNC_PROTOCOL_MANGLING = 0x00000004, /* required for I2C_M_IGNORE_NAK etc. */
I2C_FUNC_SMBUS_PEC = 0x00000008,
I2C_FUNC_NOSTART = 0x00000010, /* required for I2C_M_NOSTART */
I2C_FUNC_SLAVE = 0x00000020,
I2C_FUNC_SMBUS_BLOCK_PROC_CALL = 0x00008000, /* SMBus 2.0 or later */
I2C_FUNC_SMBUS_QUICK = 0x00010000,
I2C_FUNC_SMBUS_READ_BYTE = 0x00020000,
I2C_FUNC_SMBUS_WRITE_BYTE = 0x00040000,
I2C_FUNC_SMBUS_READ_BYTE_DATA = 0x00080000,
I2C_FUNC_SMBUS_WRITE_BYTE_DATA = 0x00100000,
I2C_FUNC_SMBUS_READ_WORD_DATA = 0x00200000,
I2C_FUNC_SMBUS_WRITE_WORD_DATA = 0x00400000,
I2C_FUNC_SMBUS_PROC_CALL = 0x00800000,
I2C_FUNC_SMBUS_READ_BLOCK_DATA = 0x01000000, /* required for I2C_M_RECV_LEN */
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA = 0x02000000,
I2C_FUNC_SMBUS_READ_I2C_BLOCK = 0x04000000, /* I2C-like block xfer */
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK = 0x08000000, /* w/ 1-byte reg. addr. */
I2C_FUNC_SMBUS_READ_I2C_BLOCK_2 = 0x10000000, /* I2C-like block xfer */
I2C_FUNC_SMBUS_WRITE_I2C_BLOCK_2 = 0x20000000, /* w/ 2-byte reg. addr. */
I2C_FUNC_SMBUS_READ_BLOCK_DATA_PEC = 0x40000000, /* SMBus 2.0 or later */
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA_PEC = 0x80000000, /* SMBus 2.0 or later */
I2C_FUNC_SMBUS_BYTE = (I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE),
I2C_FUNC_SMBUS_BYTE_DATA = (I2C_FUNC_SMBUS_READ_BYTE_DATA | I2C_FUNC_SMBUS_WRITE_BYTE_DATA),
I2C_FUNC_SMBUS_WORD_DATA = (I2C_FUNC_SMBUS_READ_WORD_DATA | I2C_FUNC_SMBUS_WRITE_WORD_DATA),
I2C_FUNC_SMBUS_BLOCK_DATA = (I2C_FUNC_SMBUS_READ_BLOCK_DATA | I2C_FUNC_SMBUS_WRITE_BLOCK_DATA),
I2C_FUNC_SMBUS_I2C_BLOCK = (I2C_FUNC_SMBUS_READ_I2C_BLOCK | I2C_FUNC_SMBUS_WRITE_I2C_BLOCK),
I2C_FUNC_SMBUS_EMUL = (I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL |
I2C_FUNC_SMBUS_WRITE_BLOCK_DATA | I2C_FUNC_SMBUS_I2C_BLOCK |
I2C_FUNC_SMBUS_PEC),
/* if I2C_M_RECV_LEN is also supported */
I2C_FUNC_SMBUS_EMUL_ALL =
(I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_READ_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL),
};
__attribute__((__packed__)) struct itu_cmd {
uint16_t flags;
uint16_t addr;
uint16_t len;
uint8_t cmd;
};
#ifdef DBOARD_HAS_I2C
__attribute__((__const__)) enum ki2c_funcs i2ctu_get_func(void);
void i2ctu_init(void);
uint32_t i2ctu_set_freq(uint32_t freq, uint32_t us); // returns selected frequency, or 0 on error
enum itu_status i2ctu_write(enum ki2c_flags flags, enum itu_command startstopflags, uint16_t addr,
const uint8_t* buf, size_t len);
enum itu_status i2ctu_read(enum ki2c_flags flags, enum itu_command startstopflags, uint16_t addr,
uint8_t* buf, size_t len);
#endif
#endif

257
src/m_default/0def.c Normal file
View File

@ -0,0 +1,257 @@
// vim: set et:
#include <tusb.h>
#include "mode.h"
#include "vnd_cfg.h"
#include "protocfg.h"
#include "util.h"
void enter_cb(void) {
// TODO: init hw
}
void leave_cb(void) {
// TODO: deinit hw
}
void task_cb(void) {
// TODO: do stuff
}
void handle_cmd_cb(uint8_t cmd) {
uint8_t resp = 0;
switch (cmd) {
case mode_cmd_get_features:
vnd_cfg_write_resp(cfg_resp_ok, 1, &resp);
break;
default:
vnd_cfg_write_resp(cfg_resp_illcmd, 0, NULL);
break;
}
}
#define USB_BCD_BASE 0x8000
#define _PID_MAP(itf, n) ((CFG_TUD_##itf) << (n))
#define USB_BCD \
(USB_BCD_BASE | _PID_MAP(CDC, 0) | _PID_MAP(MSC, 3) | _PID_MAP(HID, 6) | _PID_MAP(MIDI, 9) | \
_PID_MAP(VENDOR, 12)) \
enum {
STRID_LANGID = 0,
STRID_MANUFACTURER,
STRID_PRODUCT,
STRID_SERIAL,
STRID_CONFIG,
STRID_IF_VND_CFG,
STRID_IF_CDC_STDIO,
};
enum {
ITF_NUM_VND_CFG,
//#ifdef USE_USBCDC_FOR_STDIO
ITF_NUM_CDC_STDIO_COM,
ITF_NUM_CDC_STDIO_DATA,
//#endif
ITF_NUM__TOTAL
};
enum {
CONFIG_TOTAL_LEN
= TUD_CONFIG_DESC_LEN
+ TUD_VENDOR_DESC_LEN
//#ifdef USE_USBCDC_FOR_STDIO
+ TUD_CDC_DESC_LEN
//#endif
};
#define EPNUM_CDC_STDIO_OUT 0x03
#define EPNUM_CDC_STDIO_IN 0x83
#define EPNUM_CDC_STDIO_NOTIF 0x84
// TODO: are these ok numbers?
#define EPNUM_VND_CFG_OUT 0x02
#define EPNUM_VND_CFG_IN 0x82
// clang-format off
static const tusb_desc_device_t desc_device = {
.bLength = sizeof(tusb_desc_device_t),
.bDescriptorType = TUSB_DESC_DEVICE,
.bcdUSB = 0x0110, // TODO: 0x0200 ?
.bDeviceClass = 0x00,
.bDeviceSubClass = 0x00,
.bDeviceProtocol = 0x00,
.bMaxPacketSize0 = CFG_TUD_ENDPOINT0_SIZE,
.idVendor = USB_VID,
.idProduct = USB_PID,
.bcdDevice = USB_BCD,
.iManufacturer = STRID_MANUFACTURER,
.iProduct = STRID_PRODUCT,
.iSerialNumber = STRID_SERIAL,
.bNumConfigurations = 0x01
};
static const uint8_t desc_hid_report[] = {
#if CFG_TUD_HID > 0
TUD_HID_REPORT_DESC_GENERIC_INOUT(CFG_TUD_HID_EP_BUFSIZE)
#else
0
#endif
};
static const uint8_t desc_configuration[] = {
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM__TOTAL, STRID_CONFIG, CONFIG_TOTAL_LEN,
TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
TUD_VENDOR_DESCRIPTOR(ITF_NUM_VND_CFG, STRID_IF_VND_CFG, EPNUM_VND_CFG_OUT,
EPNUM_VND_CFG_IN, 64),
//#ifdef USE_USBCDC_FOR_STDIO
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_STDIO_COM, STRID_IF_CDC_STDIO, EPNUM_CDC_STDIO_NOTIF, 64,
EPNUM_CDC_STDIO_OUT, EPNUM_CDC_STDIO_IN, 64),
//#endif
};
static const char* string_desc_arr[] = {
[STRID_LANGID] = (const char[]){0x09, 0x04}, // supported language is English (0x0409)
[STRID_MANUFACTURER] = "BLAHAJ CTF", // Manufacturer
[STRID_PRODUCT] = "Dragnbus (RP2040 Pico)", // Product
[STRID_CONFIG] = "Configuration descriptor",
// max string length check: |||||||||||||||||||||||||||||||
[STRID_IF_VND_CFG ] = "Device cfg/ctl interface",
[STRID_IF_CDC_STDIO] = "stdio CDC interface (debug)",
};
// clang-format on
// tinyusb callbacks
#if CFG_TUD_HID > 0
// Invoked when received GET_REPORT control request
// Application must fill buffer report's content and return its length.
// Return zero will cause the stack to STALL request
static uint16_t hid_get_report_cb(uint8_t instance, uint8_t report_id,
hid_report_type_t report_type, uint8_t* buffer, uint16_t reqlen) {
(void)instance;
(void)report_id;
(void)report_type;
(void)buffer;
(void)reqlen;
return 0;
}
static void hid_set_report_cb(uint8_t instance, uint8_t report_id,
hid_report_type_t report_type, uint8_t const* RxDataBuffer, uint16_t bufsize) {
static uint8_t TxDataBuffer[CFG_TUD_HID_EP_BUFSIZE];
uint32_t response_size = TU_MIN(CFG_TUD_HID_EP_BUFSIZE, bufsize);
// This doesn't use multiple report and report ID
(void)instance;
(void)report_id;
(void)report_type;
tud_hid_report(0, TxDataBuffer, response_size);
}
#endif
static void cdc_line_coding_cb(uint8_t itf, cdc_line_coding_t const* line_coding) {
(void)itf;
(void)line_coding;
}
static bool vendor_control_xfer_cb(uint8_t rhport, uint8_t ep_addr,
tusb_control_request_t const* req) {
(void)rhport;
(void)ep_addr;
(void)req;
return true;
}
// Invoked when received GET HID REPORT DESCRIPTOR
// Application return pointer to descriptor
// Descriptor contents must exist long enough for transfer to complete
static const uint8_t* hid_descriptor_report_cb(uint8_t instance) {
(void)instance;
return desc_hid_report;
}
// Invoked when received GET DEVICE DESCRIPTOR
// Application return pointer to descriptor
static const uint8_t* descriptor_device_cb(void) {
return (const uint8_t*)&desc_device;
}
// Invoked when received GET CONFIGURATION DESCRIPTOR
// Application return pointer to descriptor
// Descriptor contents must exist long enough for transfer to complete
static const uint8_t* descriptor_configuration_cb(uint8_t index) {
(void)index; // for multiple configurations
return desc_configuration;
}
// Invoked when received GET STRING DESCRIPTOR request
// Application return pointer to descriptor, whose contents must exist long enough for transfer to
// complete
static const uint16_t* descriptor_string_cb(uint8_t index, uint16_t langid) {
static uint16_t _desc_str[32];
(void)langid;
uint8_t chr_count = 0;
if (STRID_LANGID == index) {
memcpy(&_desc_str[1], string_desc_arr[STRID_LANGID], 2);
chr_count = 1;
} else if (STRID_SERIAL == index) {
chr_count = get_unique_id_u16(_desc_str + 1);
} else {
// Note: the 0xEE index string is a Microsoft OS 1.0 Descriptors.
// https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/microsoft-defined-usb-descriptors
if (!(index < sizeof(string_desc_arr) / sizeof(string_desc_arr[0]))) return NULL;
const char* str = string_desc_arr[index];
// Cap at max char
chr_count = TU_MIN(strlen(str), 31);
// Convert ASCII string into UTF-16
for (int i = 0; i < chr_count; i++) { _desc_str[1 + i] = str[i]; }
}
// first byte is length (including header), second byte is string type
_desc_str[0] = (TUSB_DESC_STRING << 8) | (2 * chr_count + 2);
return _desc_str;
}
extern struct mode m_01_default;
// clang-format off
struct mode m_01_default = {
.name = "Default mode with misc features",
.usb_desc = desc_configuration,
.version = 0x0010,
.enter = enter_cb,
.leave = leave_cb,
.task = task_cb,
.handle_cmd = handle_cmd_cb,
#if CFG_TUD_HID > 0
.tud_hid_get_report_cb = hid_get_report_cb,
.tud_hid_set_report_cb = hid_set_report_cb,
#endif
.tud_cdc_line_coding_cb = cdc_line_coding_cb,
.tud_vendor_control_xfer_cb = vendor_control_xfer_cb,
.tud_hid_descriptor_report_cb = hid_descriptor_report_cb,
.tud_descriptor_device_cb = descriptor_device_cb,
.tud_descriptor_configuration_cb = descriptor_configuration_cb,
.tud_descriptor_string_cb = descriptor_string_cb,
};
// clang-format on

View File

@ -1,169 +1,61 @@
// vim: set et: // vim: set et:
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include <stdio.h> #include <libco.h>
#include <stdlib.h>
#include <string.h>
// include order is sensitive here
// clang-format off
#include "tusb_config.h" #include "tusb_config.h"
#include "bsp/board.h" /* a tinyusb header */ #include "bsp/board.h" /* a tinyusb header */
#include "tusb.h" #include "tusb.h"
#include "DAP_config.h" /* ARM code *assumes* this is included prior to DAP.h */ #include "mode.h"
#include "DAP.h" #include "thread.h"
#include "vnd_cfg.h"
#include "util.h" static cothread_t vndcfg_thread;
#include "protocfg.h" static uint8_t vndcfg_stack[THREAD_STACK_SIZE];
#include "protos.h"
#include "libco.h"
// clang-format on
#ifdef PICO_BOARD #ifdef USE_USBCDC_FOR_STDIO
#include <pico/binary_info.h> void stdio_usb_init(void);
#endif #endif
static cothread_t mainthread; static void vndcfg_thread_fn(void) {
vnd_cfg_init();
void thread_yield(void) { co_switch(mainthread); }
#define DEFAULT_STACK_SIZE 1024
#ifdef DBOARD_HAS_UART
static cothread_t uartthread;
static uint8_t uartstack[DEFAULT_STACK_SIZE];
static void uart_thread_fn(void) {
cdc_uart_init();
thread_yield(); thread_yield();
while (1) { while (1) {
cdc_uart_task(); vnd_cfg_task();
thread_yield(); thread_yield();
} }
} }
#endif
#ifdef DBOARD_HAS_SERPROG int main() {
static cothread_t serprogthread; thread_init();
static uint8_t serprogstack[DEFAULT_STACK_SIZE];
static void serprog_thread_fn(void) { board_init(); // tinyusb hardware support function
cdc_serprog_init();
thread_yield();
while (1) {
cdc_serprog_task();
thread_yield();
}
}
#endif
// FIXME vndcfg_thread = co_derive(vndcfg_stack, sizeof vndcfg_stack, vndcfg_thread_fn);
extern uint32_t co_active_buffer[64]; co_switch(vndcfg_thread);
uint32_t co_active_buffer[64];
extern cothread_t co_active_handle;
cothread_t co_active_handle;
int main(void) { modes_init();
mainthread = co_active(); if (mode_current) mode_current->enter();
// TODO: split this out in a bsp-specific file
#if defined(PICO_BOARD) && !defined(USE_USBCDC_FOR_STDIO)
// use hardcoded values from TinyUSB board.h
bi_decl(bi_2pins_with_func(0, 1, GPIO_FUNC_UART));
#endif
board_init();
#ifdef DBOARD_HAS_UART
uartthread = co_derive(uartstack, sizeof uartstack, uart_thread_fn);
co_switch(uartthread); // will call cdc_uart_init() on correct thread
#endif
#ifdef DBOARD_HAS_SERPROG
serprogthread = co_derive(serprogstack, sizeof serprogstack, serprog_thread_fn);
co_switch(serprogthread); // will call cdc_serprog_init() on correct thread
#endif
#ifdef DBOARD_HAS_CMSISDAP
DAP_Setup();
#endif
tusb_init(); tusb_init();
// FIXME: put elsewhere?
#ifdef USE_USBCDC_FOR_STDIO #ifdef USE_USBCDC_FOR_STDIO
stdio_usb_init(); stdio_usb_init();
#endif #endif
while (1) { while (1) {
tud_task(); // tinyusb device task tud_task();
#ifdef DBOARD_HAS_UART if (mode_current) mode_current->task();
co_switch(uartthread);
#endif
tud_task(); // tinyusb device task tud_task();
#ifdef DBOARD_HAS_SERPROG co_switch(vndcfg_thread);
co_switch(serprogthread);
#endif // do this here instead of in a callback or in the vnd_cfg_task fn
if (mode_next_id != -1) {
modes_switch(mode_next_id);
mode_next_id = -1;
}
} }
return 0;
}
//--------------------------------------------------------------------+
// USB HID
//--------------------------------------------------------------------+
// Invoked when received GET_REPORT control request
// Application must fill buffer report's content and return its length.
// Return zero will cause the stack to STALL request
uint16_t tud_hid_get_report_cb(uint8_t instance, uint8_t report_id, hid_report_type_t report_type,
uint8_t* buffer, uint16_t reqlen) {
// TODO not Implemented
(void)instance;
(void)report_id;
(void)report_type;
(void)buffer;
(void)reqlen;
return 0;
}
void tud_hid_set_report_cb(uint8_t instance, uint8_t report_id, hid_report_type_t report_type,
uint8_t const* RxDataBuffer, uint16_t bufsize) {
static uint8_t TxDataBuffer[CFG_TUD_HID_EP_BUFSIZE];
uint32_t response_size = TU_MIN(CFG_TUD_HID_EP_BUFSIZE, bufsize);
// This doesn't use multiple report and report ID
(void)instance;
(void)report_id;
(void)report_type;
#ifdef DBOARD_HAS_CMSISDAP
DAP_ProcessCommand(RxDataBuffer, TxDataBuffer);
#endif
tud_hid_report(0, TxDataBuffer, response_size);
} }

59
src/mode.h Normal file
View File

@ -0,0 +1,59 @@
// vim: set et:
#ifndef MODE_H_
#define MODE_H_
#include <stdint.h>
#include <stdbool.h>
#include "tusb_config.h"
#include <tusb.h>
// clang-format off
struct mode {
const char* name;
const uint8_t* usb_desc;
uint16_t version;
void (*enter)(void); // claim required hardware. no tusb calls here please
void (*leave)(void); // release current in-use hardware. no tusb calls here please
void (*task )(void);
void (*handle_cmd)(uint8_t cmd); // handle a command coming from the vnd_cfg itf
// tinyusb callbacks
#if CFG_TUD_HID > 0
uint16_t (*tud_hid_get_report_cb)(uint8_t instance, uint8_t report_id,
hid_report_type_t report_type, uint8_t* buffer, uint16_t reqlen);
void (*tud_hid_set_report_cb)(uint8_t instance, uint8_t report_id,
hid_report_type_t report_type, uint8_t const* rxbuf, uint16_t bufsize);
#endif
#if CFG_TUD_CDC > 0
void (*tud_cdc_line_coding_cb)(uint8_t itf, cdc_line_coding_t const* line_coding);
#endif
#if CFG_TUD_VENDOR > 0
bool (*tud_vendor_control_xfer_cb)(uint8_t rhport, uint8_t ep_addr,
tusb_control_request_t const* req);
#endif
uint8_t const* (*tud_hid_descriptor_report_cb)(uint8_t instance);
uint8_t const* (*tud_descriptor_device_cb)(void);
uint8_t const* (*tud_descriptor_configuration_cb)(uint8_t index);
uint16_t const* (*tud_descriptor_string_cb)(uint8_t index, uint16_t langid);
};
// call this BEFORE tusb_init!
void modes_init(void);
void modes_switch(uint8_t newmode);
extern int mode_current_id;
extern int mode_next_id;
extern const struct mode* mode_list[16];
#define mode_default (mode_list[1])
#define mode_current (((mode_current_id)==-1)?NULL:(mode_list[mode_current_id]))
// clang-format on
#endif

112
src/modeset.c Normal file
View File

@ -0,0 +1,112 @@
// vim: set et:
#include "mode.h"
extern struct mode m_01_default;
// clang-format off
const struct mode* mode_list[16] = {
NULL, // dummy 0 entry
&m_01_default,
NULL, // terminating entry
};
// clang-format on
int mode_current_id = 1;
int mode_next_id = -1;
extern void* tusb_got[];
enum tusbgot_index {
tusbgot_hid_get_report = 0,
tusbgot_hid_set_report,
tusbgot_cdc_line_coding,
tusbgot_vendor_control_xfer,
tusbgot_hid_descriptor_report,
tusbgot_descriptor_device,
tusbgot_descriptor_configuration,
tusbgot_descriptor_string
};
void modes_init(void) {
// switch to the default mode, but without doing a USB reboot thing
mode_current_id = &mode_default - mode_list;
mode_next_id = -1;
if (!mode_default) return;
// clang-format off
#if CFG_TUD_HID > 0
tusb_got[tusbgot_hid_get_report ] = mode_default->tud_hid_get_report_cb;
tusb_got[tusbgot_hid_set_report ] = mode_default->tud_hid_set_report_cb;
#else
tusb_got[tusbgot_hid_get_report ] = NULL;
tusb_got[tusbgot_hid_set_report ] = NULL;
#endif
#if CFG_TUD_CDC > 0
tusb_got[tusbgot_cdc_line_coding ] = mode_default->tud_cdc_line_coding_cb;
#else
tusb_got[tusbgot_cdc_line_coding ] = NULL;
#endif
#if CFG_TUD_VENDOR > 0
tusb_got[tusbgot_vendor_control_xfer] = mode_default->tud_vendor_control_xfer_cb;
#else
tusb_got[tusbgot_vendor_control_xfer] = NULL;
#endif
tusb_got[tusbgot_hid_descriptor_report ] = mode_default->tud_hid_descriptor_report_cb;
tusb_got[tusbgot_descriptor_device ] = mode_default->tud_descriptor_device_cb;
tusb_got[tusbgot_descriptor_configuration] = mode_default->tud_descriptor_configuration_cb;
tusb_got[tusbgot_descriptor_string ] = mode_default->tud_descriptor_string_cb;
// clang-format on
}
void modes_switch(uint8_t newmode) {
if (mode_current) mode_current->leave();
// to force a reconfig from the device, we basically have to kill the USB
// physical connection for a while
tud_disconnect();
// maybe wait a second or so for the host to notice this
sleep_ms(750);
// now apply the new tusb settings
mode_current_id = (newmode >= 16 || newmode == 0) ? (-1) : newmode;
//mode_next_id = -1;
if (mode_current) {
// clang-format off
#if CFG_TUD_HID > 0
tusb_got[tusbgot_hid_get_report ] = mode_current->tud_hid_get_report_cb;
tusb_got[tusbgot_hid_set_report ] = mode_current->tud_hid_set_report_cb;
#else
tusb_got[tusbgot_hid_get_report ] = NULL;
tusb_got[tusbgot_hid_set_report ] = NULL;
#endif
#if CFG_TUD_CDC > 0
tusb_got[tusbgot_cdc_line_coding ] = mode_current->tud_cdc_line_coding_cb;
#else
tusb_got[tusbgot_cdc_line_coding ] = NULL;
#endif
#if CFG_TUD_VENDOR > 0
tusb_got[tusbgot_vendor_control_xfer] = mode_current->tud_vendor_control_xfer_cb;
#else
tusb_got[tusbgot_vendor_control_xfer] = NULL;
#endif
tusb_got[tusbgot_hid_descriptor_report ] = mode_current->tud_hid_descriptor_report_cb;
tusb_got[tusbgot_descriptor_device ] = mode_current->tud_descriptor_device_cb;
tusb_got[tusbgot_descriptor_configuration] = mode_current->tud_descriptor_configuration_cb;
tusb_got[tusbgot_descriptor_string ] = mode_current->tud_descriptor_string_cb;
// clang-format on
} else {
// TODO: invalid mode???
}
// and reconnect
tud_connect();
while (!tud_mounted()) sleep_ms(5);
if (mode_current) mode_current->enter();
}

View File

@ -1,40 +0,0 @@
// vim: set et:
#ifndef PROTOS_H_
#define PROTOS_H_
#include <stdbool.h>
#include <stdint.h>
#include "protocfg.h"
#define INFO_MANUFACTURER "BLAHAJ CTF"
#define INFO_PRODUCT_BARE "Dragnbus"
#define INFO_PRODUCT(board) "Dragnbus (" board ")"
#ifdef DBOARD_HAS_UART
void cdc_uart_init(void);
void cdc_uart_task(void);
void cdc_uart_set_hwflow(bool enable);
void cdc_uart_set_baudrate(uint32_t brate);
#endif
#ifdef DBOARD_HAS_SERPROG
void cdc_serprog_init(void);
void cdc_serprog_task(void);
#endif
#ifdef USE_USBCDC_FOR_STDIO
//#ifdef PICO_BOARD
bool stdio_usb_init(void);
//#endif
#endif
#ifdef DBOARD_HAS_I2C
void itu_init(void);
void itu_task(void);
#endif
#endif

View File

@ -1,58 +0,0 @@
// vim: set et:
#include "rtconf.h"
#include <stdint.h>
#include <stdio.h>
#include "protos.h"
#include "tempsensor.h"
enum {
implmap_val = 0
#ifdef DBOARD_HAS_CMSISDAP
| 1
#endif
#ifdef DBOARD_HAS_UART
| 2
#endif
#ifdef DBOARD_HAS_SERPROG
| 4
#endif
#ifdef DBOARD_HAS_I2C
| 4
#endif
#ifdef DBOARD_HAS_TEMPSENSOR
| 8
#endif
#ifdef USE_USBCDC_FOR_STDIO
| 128
#endif
};
uint8_t rtconf_do(uint8_t a, uint8_t b) {
switch ((enum rtconf_opt)a) {
#ifdef DBOARD_HAS_UART
case opt_uart_hwfc_endis: cdc_uart_set_hwflow(b != 0); return 0;
#endif
#ifdef DBOARD_HAS_TEMPSENSOR
case opt_tempsense_enaddr: {
bool act = tempsense_get_active();
uint8_t addr = tempsense_get_addr();
printf("act=%c addr=%02x arg=%02x\n", act ? 't' : 'f', addr, b);
uint8_t rv = tempsense_get_active() ? tempsense_get_addr() : 0xff;
if (b == 0x00)
return rv;
else if (b == 0xff)
tempsense_set_active(false);
else
tempsense_set_addr(b);
return rv;
}
#endif
case opt_get_implmap: return implmap_val;
default: return 0xff;
}
}

View File

@ -1,30 +0,0 @@
// vim: set et:
#ifndef RTCONF_H_
#define RTCONF_H_
#include <stdint.h>
#include "protocfg.h"
enum rtconf_opt {
#ifdef DBOARD_HAS_UART
// enable_disable UART flow control
// b: 0 -> disable, nonzero -> enable
// return: 0
opt_uart_hwfc_endis = 1,
#endif
#ifdef DBOARD_HAS_TEMPSENSOR
// 0x00: get I2C address or enable/disable status
// 0xff: disable
// other: set I2C address
opt_tempsense_enaddr = 2,
#endif
opt_get_implmap = 0xff
};
uint8_t rtconf_do(uint8_t a, uint8_t b);
#endif

View File

@ -1,56 +0,0 @@
// vim: set et:
#ifndef SERPROG_H_
#define SERPROG_H_
enum serprog_cmd {
S_CMD_NOP = 0x00,
S_CMD_Q_IFACE = 0x01,
S_CMD_Q_CMDMAP = 0x02,
S_CMD_Q_PGMNAME = 0x03,
S_CMD_Q_SERBUF = 0x04,
S_CMD_Q_BUSTYPE = 0x05,
S_CMD_Q_CHIPSIZE = 0x06,
S_CMD_Q_OPBUF = 0x07,
S_CMD_Q_WRNMAXLEN = 0x08,
S_CMD_R_BYTE = 0x09,
S_CMD_R_NBYTES = 0x0a,
S_CMD_O_INIT = 0x0b,
S_CMD_O_WRITEB = 0x0c,
S_CMD_O_WRITEN = 0x0d,
S_CMD_O_DELAY = 0x0e,
S_CMD_O_EXEC = 0x0f,
S_CMD_SYNCNOP = 0x10,
S_CMD_Q_RDNMAXLEN = 0x11,
S_CMD_S_BUSTYPE = 0x12,
S_CMD_SPIOP = 0x13,
S_CMD_S_SPI_FREQ = 0x14,
S_CMD_S_PINSTATE = 0x15,
S_CMD_MAGIC_SETTINGS = 0x53
};
enum serprog_response { S_ACK = 0x06, S_NAK = 0x15 };
#define SERPROG_IFACE_VERSION 0x0001
uint32_t /*freq_applied*/ sp_spi_set_freq(uint32_t freq_wanted);
void sp_spi_init(void);
void sp_spi_cs_deselect(void);
void sp_spi_cs_select(void);
void sp_spi_op_begin(void);
void sp_spi_op_write(uint32_t write_len, const uint8_t* write_data);
void sp_spi_op_read(uint32_t read_len, uint8_t* read_data);
void sp_spi_op_end(void);
static inline void sp_spi_op_do(
uint32_t write_len, const uint8_t* write_data, uint32_t read_len, uint8_t* read_data) {
sp_spi_op_begin();
sp_spi_op_write(write_len, write_data);
sp_spi_op_write(read_len, read_data);
sp_spi_op_end();
}
#endif

1
src/t/.gitignore vendored
View File

@ -1 +0,0 @@
tstest

View File

@ -1,73 +0,0 @@
#define DBOARD_HAS_TEMPSENSOR
#define VERY_FAKE
#include <stdint.h>
static inline void tempsense_dev_init(void) { }
static inline int16_t tempsense_dev_get_temp(void) { return 42 << 4; }
static inline int16_t tempsense_dev_get_lower(void) { return 0 << 4; }
static inline int16_t tempsense_dev_get_upper(void) { return 75 << 4; }
static inline int16_t tempsense_dev_get_crit(void) { return 80 << 4; }
#include "../tempsensor.c"
static int do_pkt(uint8_t cmd, bool read, uint16_t addr, uint16_t len, uint8_t* buf) {
int rv;
if (cmd & 1) tempsense_do_start();
if (read) {
rv = tempsense_do_read(len, buf);
} else {
rv = tempsense_do_write(len, buf);
}
if (cmd & 2) tempsense_do_stop();
printf("-> %d: %s\n", rv, (rv < 0 || rv != len) ? "nak" : "ack");
return rv;
}
static void pbuf(size_t len, const uint8_t* buf) {
printf("--> ");
size_t i;
for (i = 0; i < len; ++i) {
printf("%02x ", buf[i]);
if ((i & 0xf) == 0xf) printf("%c", '\n');
}
if ((i & 0xf) != 0x0) printf("%c", '\n');
}
int main(int argc, char* argv[]) {
tempsense_init();
tempsense_set_addr(0x18);
// initial probe
uint8_t pk1[1] = {0};
do_pkt(0x05, false, 0x18, 1, pk1);
uint8_t pk2[2];
do_pkt(0x06, true, 0x18, 2, pk2);
pbuf(2, pk2);
uint8_t pk3[1] = {1};
do_pkt(0x05, false, 0x18, 1, pk3);
uint8_t pk4[2];
do_pkt(0x06, true, 0x18, 2, pk4);
pbuf(2, pk4);
// sensor data get
// out 0x05 cmd5
// in 2byte cmd6
// out 0x04 cmd5
// in 2byte cmd6
// out 0x03 cmd5
// in 2byte cmd6
// out 0x02 cmd5
// in 2byte cmd6
}

View File

@ -1,245 +0,0 @@
// vim: set et:
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#ifndef VERY_FAKE
#include "protocfg.h"
// clang-format off
#define printf(fmt, ...) do { } while (0) \
// clang-format on
#endif
#ifdef DBOARD_HAS_TEMPSENSOR
#include "tempsensor.h"
static bool active;
static uint8_t addr;
static uint8_t reg;
static size_t index;
static bool instartstop, hasreg;
enum regid { cap = 0, config, t_upper, t_lower, t_crit, t_a, manuf_id, dev_idrev, reso };
#define MANUF_ID 0x0054
#define DEV_IDREV 0x0400
struct {
uint16_t config;
uint16_t t_upper, t_lower, t_crit;
uint8_t reso;
} mcp9808;
#define float2fix(x) (int)((x) * (1 << 4))
__attribute__((__const__)) inline static int16_t trunc_8fix4(int fix) {
// clang-format off
if (fix > 4095) fix = 4095;
if (fix < -4096) fix = -4096;
// clang-format on
return fix;
}
void tempsense_init(void) {
active = false;
addr = 0xff;
reg = 0;
index = 0;
instartstop = false;
hasreg = false;
tempsense_dev_init();
// clang-format off
mcp9808.t_lower = tempsense_dev_get_lower();
mcp9808.t_upper = tempsense_dev_get_upper();
mcp9808.t_crit = tempsense_dev_get_crit ();
// clang-format on
}
bool tempsense_get_active(void) { return active; }
void tempsense_set_active(bool act) {
active = act;
if (!act) addr = 0xff;
}
uint8_t tempsense_get_addr(void) { return addr; }
void tempsense_set_addr(uint8_t a) {
addr = a;
active = addr >= 0x8 && addr <= 0x77;
printf("set: ad=%02x ac=%c\n", addr, active ? 't' : 'f');
}
void tempsense_do_start(void) {
printf("ts start\n");
// reg = 0;
index = 0;
instartstop = true;
hasreg = false;
}
void tempsense_do_stop(void) {
printf("ts stop\n");
instartstop = false;
}
int tempsense_do_read(int length, uint8_t* buf) {
printf("read l=%d reg=%02x ", length, reg);
if (!instartstop || length < 0) return -1; // nak
if (length == 0) return 0; // ack
// if (!hasreg) return -1; // nak
int i;
for (i = 0; i < length; ++i, ++index) {
switch (reg) {
// TODO: big or little endian? seems to be big
case cap: buf[index] = 0; break;
case config:
if (index == 0)
buf[0] = (mcp9808.config >> 8) & 0xff;
else if (index == 1)
buf[1] = (mcp9808.config >> 0) & 0xff;
else
return index;
break;
case t_upper:
if (index == 0)
buf[0] = (mcp9808.t_upper >> 8) & 0xff;
else if (index == 1)
buf[1] = (mcp9808.t_upper >> 0) & 0xff;
else
return index;
break;
case t_lower:
if (index == 0)
buf[0] = (mcp9808.t_lower >> 8) & 0xff;
else if (index == 1)
buf[1] = (mcp9808.t_lower >> 0) & 0xff;
else
return index;
break;
case t_crit:
if (index == 0)
buf[0] = (mcp9808.t_crit >> 8) & 0xff;
else if (index == 1)
buf[1] = (mcp9808.t_crit >> 0) & 0xff;
else
return index;
break;
case t_a: {
static uint16_t temp;
if (index == 0) {
int16_t res = tempsense_dev_get_temp();
// clang-format off
uint32_t tup = mcp9808.t_upper & 0x1ffc;
if (tup & 0x1000) tup |= 0xffffe000; // make negative
uint32_t tlo = mcp9808.t_lower & 0x1ffc;
if (tlo & 0x1000) tlo |= 0xffffe000; // make negative
uint32_t tcr = mcp9808.t_crit & 0x1ffc;
if (tcr & 0x1000) tcr |= 0xffffe000; // make negative
// clang-format on
temp = res & 0x1fff; // data bits and sign bit
if ((int32_t)tlo > res) temp |= 0x2000;
if ((int32_t)tup < res) temp |= 0x4000;
if ((int32_t)tcr < res) temp |= 0x8000;
buf[0] = (temp >> 8) & 0xff;
} else if (index == 1)
buf[1] = (temp >> 0) & 0xff;
else
return index;
} break;
case manuf_id:
if (index == 0)
buf[0] = (MANUF_ID >> 8) & 0xff;
else if (index == 1)
buf[1] = (MANUF_ID >> 0) & 0xff;
else
return index;
break;
case dev_idrev:
if (index == 0)
buf[0] = (DEV_IDREV >> 8) & 0xff;
else if (index == 1)
buf[1] = (DEV_IDREV >> 0) & 0xff;
else
return index;
break;
case reso:
if (index == 0)
buf[0] = mcp9808.reso;
else
return index;
break;
default: return -1;
}
}
return i;
}
int tempsense_do_write(int length, const uint8_t* buf) {
printf("write l=%d reg=%02x iss=%c ", length, reg, instartstop ? 't' : 'f');
if (!instartstop || length < 0) return -1; // nak
if (length == 0) return 0; // ack
if (!hasreg) {
printf("get reg %02x ", reg);
reg = *buf & 0xf;
++buf;
--length;
hasreg = true;
}
if (length == 0) return 1; // ack, probably a read following
int i;
for (i = 0; i < length; ++i, ++index) {
switch (reg) {
case config:
if (index == 0) {
mcp9808.config = (mcp9808.config & 0x00ff) | ((uint16_t)buf[0] << 8);
} else if (index == 1) {
mcp9808.config = (mcp9808.config & 0xff00) | ((uint16_t)buf[1] << 0);
} else
return index;
break;
case t_upper:
if (index == 0) {
mcp9808.t_upper = (mcp9808.t_upper & 0x00ff) | ((uint16_t)buf[0] << 8);
} else if (index == 1) {
mcp9808.t_upper = (mcp9808.t_upper & 0xff00) | ((uint16_t)buf[1] << 0);
} else
return index;
break;
case t_lower:
if (index == 0) {
mcp9808.t_lower = (mcp9808.t_lower & 0x00ff) | ((uint16_t)buf[0] << 8);
} else if (index == 1) {
mcp9808.t_lower = (mcp9808.t_lower & 0xff00) | ((uint16_t)buf[1] << 0);
} else
return index;
break;
case t_crit:
if (index == 0) {
mcp9808.t_crit = (mcp9808.t_crit & 0x00ff) | ((uint16_t)buf[0] << 8);
} else if (index == 1) {
mcp9808.t_crit = (mcp9808.t_crit & 0xff00) | ((uint16_t)buf[1] << 0);
} else
return index;
break;
case reso: mcp9808.reso = buf[index]; break;
default: printf("unk reg\n"); return -1;
}
}
return i;
}
#endif

View File

@ -1,32 +0,0 @@
// vim: set et:
#ifndef TEMPSENSOR_H_
#define TEMPSENSOR_H_
#include <stdbool.h>
#include <stdint.h>
void tempsense_init(void);
bool tempsense_get_active(void);
void tempsense_set_active(bool active);
uint8_t tempsense_get_addr(void);
void tempsense_set_addr(uint8_t addr);
void tempsense_do_start(void); // start cond
int tempsense_do_read(int length, uint8_t* buf);
int tempsense_do_write(int length, const uint8_t* buf);
void tempsense_do_stop(void); // stop cond
#ifdef DBOARD_HAS_TEMPSENSOR
void tempsense_dev_init(void);
// 8.4
int16_t tempsense_dev_get_temp(void);
int16_t tempsense_dev_get_lower(void);
int16_t tempsense_dev_get_upper(void);
int16_t tempsense_dev_get_crit(void);
#endif
#endif

16
src/thread.c Normal file
View File

@ -0,0 +1,16 @@
// vim: set et:
#include <stdint.h>
#include "thread.h"
extern uint32_t co_active_buffer[64];
uint32_t co_active_buffer[64];
extern cothread_t co_active_handle;
cothread_t co_active_handle;
static cothread_t mainthread;
void thread_init (void) { mainthread = co_active(); }
void thread_yield(void) { co_switch(mainthread); }

14
src/thread.h Normal file
View File

@ -0,0 +1,14 @@
// vim: set et:
#ifndef THREAD_H_
#define THREAD_H_
#include <libco.h>
#define THREAD_STACK_SIZE 1024
void thread_init (void);
void thread_yield(void);
#endif

View File

@ -31,7 +31,7 @@
extern "C" { extern "C" {
#endif #endif
#include "protocfg.h" //#include "protocfg.h"
//-------------------------------------------------------------------- //--------------------------------------------------------------------
// COMMON CONFIGURATION // COMMON CONFIGURATION
@ -108,12 +108,21 @@ extern "C" {
#define CFG_TUD_MIDI 0 #define CFG_TUD_MIDI 0
#define CFG_TUD_NET 0 #define CFG_TUD_NET 0
// see also: bsp/<family>/protocfg.h // see also: bsp/<family>/protocfg.h
#define CFG_TUD_HID 0
#ifdef USE_USBCDC_FOR_STDIO
#define CFG_TUD_CDC 1
#else
#define CFG_TUD_CDC 0
#endif
#define CFG_TUD_VENDOR 1
#define CFG_TUD_HID_EP_BUFSIZE 64 #define CFG_TUD_HID_EP_BUFSIZE 64
// CDC FIFO size of TX and RX // CDC FIFO size of TX and RX
#define CFG_TUD_CDC_RX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64) #define CFG_TUD_CDC_RX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
#define CFG_TUD_CDC_TX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64) #define CFG_TUD_CDC_TX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
#define CFG_TUD_VENDOR_RX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
#define CFG_TUD_VENDOR_TX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
#ifdef __cplusplus #ifdef __cplusplus
} }

108
src/tusb_plt.S Normal file
View File

@ -0,0 +1,108 @@
@ vim: set ft=armv5:
.cpu cortex-m0
.thumb
.section .data.tusb_gotplt, "awx", %progbits
.global tusb_plt
tusb_plt:
@ sigh, thumb...
.type tud_hid_get_report_cb, %function
.global tud_hid_get_report_cb
tud_hid_get_report_cb:
push {r0}
ldr r0, .Lhid_get_report
mov r12, r0
pop {r0}
bx r12
.type tud_hid_set_report_cb, %function
.global tud_hid_set_report_cb
tud_hid_set_report_cb:
push {r0}
ldr r0, .Lhid_set_report
mov r12, r0
pop {r0}
bx r12
.type tud_cdc_line_coding_cb, %function
.global tud_cdc_line_coding_cb
tud_cdc_line_coding_cb:
push {r0}
ldr r0, .Lcdc_line_coding
mov r12, r0
pop {r0}
bx r12
.type tud_vendor_control_xfer_cb, %function
.global tud_vendor_control_xfer_cb
tud_vendor_control_xfer_cb:
push {r0}
ldr r0, .Lvendor_control_xfer
mov r12, r0
pop {r0}
bx r12
.type tud_hid_descriptor_report_cb, %function
.global tud_hid_descriptor_report_cb
tud_hid_descriptor_report_cb:
push {r0}
ldr r0, .Lhid_descriptor_report
mov r12, r0
pop {r0}
bx r12
.type tud_descriptor_device_cb, %function
.global tud_descriptor_device_cb
tud_descriptor_device_cb:
push {r0}
ldr r0, .Ldescriptor_device
mov r12, r0
pop {r0}
bx r12
.type tud_descriptor_configuration_cb, %function
.global tud_descriptor_configuration_cb
tud_descriptor_configuration_cb:
push {r0}
ldr r0, .Ldescriptor_configuration
mov r12, r0
pop {r0}
bx r12
.type tud_descriptor_string_cb, %function
.global tud_descriptor_string_cb
tud_descriptor_string_cb:
push {r0}
ldr r0, .Ldescriptor_string
mov r12, r0
pop {r0}
bx r12
.type tusb_got, %object
.size tusb_got, 4*8
.global tusb_got
tusb_got:
.Lhid_get_report:
.4byte 0 @ tud_hid_get_report_cb
.Lhid_set_report:
.4byte 0 @ tud_hid_set_report_cb
.Lcdc_line_coding:
.4byte 0 @ tud_cdc_line_coding_cb
.Lvendor_control_xfer:
.4byte 0 @ tud_vendor_control_xfer_cb
.Lhid_descriptor_report:
.4byte 0 @ tud_hid_descriptor_report_cb
.Ldescriptor_device:
.4byte 0 @ tud_descriptor_device_cb
.Ldescriptor_configuration:
.4byte 0 @ tud_descriptor_configuration_cb
.Ldescriptor_string:
.4byte 0 @ tud_descriptor_string_cb

View File

@ -1,277 +0,0 @@
// vim: set et:
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "protos.h"
#include "tusb.h"
#include "util.h"
/* A combination of interfaces must have a unique product id, since PC will save device driver after
* the first plug. Same VID/PID with different interface e.g MSC (first), then CDC (later) will
* possibly cause system error on PC.
*
* Auto ProductID layout's Bitmap:
* [MSB] HID | MSC | CDC [LSB]
*/
#ifdef DBOARD_HAS_I2C
#define USB_BCD_BASE 0x6000
#else
#define USB_BCD_BASE 0x4000
#endif
#define _PID_MAP(itf, n) ((CFG_TUD_##itf) << (n))
#define USB_BCD \
(USB_BCD_BASE | _PID_MAP(CDC, 0) | _PID_MAP(MSC, 3) | _PID_MAP(HID, 6) | _PID_MAP(MIDI, 9) | \
_PID_MAP(VENDOR, 12)) \
// String Descriptor Index
enum {
STRID_LANGID = 0,
STRID_MANUFACTURER,
STRID_PRODUCT,
STRID_SERIAL,
STRID_CONFIG,
STRID_IF_HID_CMSISDAP,
STRID_IF_VND_I2CTINYUSB,
STRID_IF_CDC_UART,
STRID_IF_CDC_SERPROG,
STRID_IF_CDC_STDIO,
};
//--------------------------------------------------------------------+
// Device Descriptors
//--------------------------------------------------------------------+
// clang-format off
tusb_desc_device_t const desc_device = {
.bLength = sizeof(tusb_desc_device_t),
.bDescriptorType = TUSB_DESC_DEVICE,
.bcdUSB = 0x0110, // TODO: 0x0200 ?
.bDeviceClass = 0x00,
.bDeviceSubClass = 0x00,
.bDeviceProtocol = 0x00,
.bMaxPacketSize0 = CFG_TUD_ENDPOINT0_SIZE,
.idVendor = USB_VID,
.idProduct = USB_PID,
.bcdDevice = USB_BCD,
.iManufacturer = STRID_MANUFACTURER,
.iProduct = STRID_PRODUCT,
.iSerialNumber = STRID_SERIAL,
.bNumConfigurations = 0x01
};
// clang-format on
// Invoked when received GET DEVICE DESCRIPTOR
// Application return pointer to descriptor
uint8_t const* tud_descriptor_device_cb(void) { return (uint8_t const*)&desc_device; }
//--------------------------------------------------------------------+
// HID Report Descriptor
//--------------------------------------------------------------------+
// clang-format off
static uint8_t const desc_hid_report[] = {
TUD_HID_REPORT_DESC_GENERIC_INOUT(CFG_TUD_HID_EP_BUFSIZE)
};
// clang-format on
// Invoked when received GET HID REPORT DESCRIPTOR
// Application return pointer to descriptor
// Descriptor contents must exist long enough for transfer to complete
uint8_t const* tud_hid_descriptor_report_cb(uint8_t instance) {
(void)instance;
return desc_hid_report;
}
//--------------------------------------------------------------------+
// Configuration Descriptor
//--------------------------------------------------------------------+
enum {
#ifdef DBOARD_HAS_I2C
ITF_NUM_VND_I2CTINYUSB,
#endif
#ifdef DBOARD_HAS_CMSISDAP
ITF_NUM_HID_CMSISDAP,
#endif
#ifdef DBOARD_HAS_UART
ITF_NUM_CDC_UART_COM,
ITF_NUM_CDC_UART_DATA,
#endif
#ifdef DBOARD_HAS_SERPROG
ITF_NUM_CDC_SERPROG_COM,
ITF_NUM_CDC_SERPROG_DATA,
#endif
#ifdef USE_USBCDC_FOR_STDIO
ITF_NUM_CDC_STDIO_COM,
ITF_NUM_CDC_STDIO_DATA,
#endif
ITF_NUM_TOTAL
};
#define TUD_I2CTINYUSB_LEN (9)
#define TUD_I2CTINYUSB_DESCRIPTOR(_itfnum, _stridx) \
9, TUSB_DESC_INTERFACE, _itfnum, 0, 0, 0, 0, 0, _stridx \
enum {
CONFIG_TOTAL_LEN = TUD_CONFIG_DESC_LEN
#ifdef DBOARD_HAS_I2C
+ TUD_I2CTINYUSB_LEN
#endif
#ifdef DBOARD_HAS_UART
+ TUD_CDC_DESC_LEN
#endif
#ifdef DBOARD_HAS_CMSISDAP
+ TUD_HID_INOUT_DESC_LEN
#endif
#ifdef DBOARD_HAS_SERPROG
+ TUD_CDC_DESC_LEN
#endif
#ifdef USE_USBCDC_FOR_STDIO
+ TUD_CDC_DESC_LEN
#endif
};
#define EPNUM_CDC_UART_OUT 0x02
#define EPNUM_CDC_UART_IN 0x82
#define EPNUM_CDC_UART_NOTIF 0x83
#define EPNUM_HID_CMSISDAP 0x04
#define EPNUM_CDC_SERPROG_OUT 0x05
#define EPNUM_CDC_SERPROG_IN 0x85
#define EPNUM_CDC_SERPROG_NOTIF 0x86
#define EPNUM_CDC_STDIO_OUT 0x07
#define EPNUM_CDC_STDIO_IN 0x87
#define EPNUM_CDC_STDIO_NOTIF 0x88
// NOTE: if you modify this table, don't forget to keep tusb_config.h up to date as well!
// TODO: maybe add some strings to all these interfaces
// clang-format off
uint8_t const desc_configuration[] = {
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, STRID_CONFIG, CONFIG_TOTAL_LEN,
TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
#ifdef DBOARD_HAS_CMSISDAP
TUD_HID_INOUT_DESCRIPTOR(ITF_NUM_HID_CMSISDAP, STRID_IF_HID_CMSISDAP,
0 /*HID_PROTOCOL_NONE*/, sizeof(desc_hid_report), EPNUM_HID_CMSISDAP,
0x80 | (EPNUM_HID_CMSISDAP + 0), CFG_TUD_HID_EP_BUFSIZE, 1),
#endif
#ifdef DBOARD_HAS_I2C
TUD_I2CTINYUSB_DESCRIPTOR(ITF_NUM_VND_I2CTINYUSB, STRID_IF_VND_I2CTINYUSB),
#endif
#ifdef DBOARD_HAS_UART
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_UART_COM, STRID_IF_CDC_UART, EPNUM_CDC_UART_NOTIF, 64,
EPNUM_CDC_UART_OUT, EPNUM_CDC_UART_IN, 64),
#endif
#ifdef DBOARD_HAS_SERPROG
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_SERPROG_COM, STRID_IF_CDC_SERPROG, EPNUM_CDC_SERPROG_NOTIF,
64, EPNUM_CDC_SERPROG_OUT, EPNUM_CDC_SERPROG_IN, 64),
#endif
#ifdef USE_USBCDC_FOR_STDIO
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_STDIO_COM, STRID_IF_CDC_STDIO, EPNUM_CDC_STDIO_NOTIF, 64,
EPNUM_CDC_STDIO_OUT, EPNUM_CDC_STDIO_IN, 64),
#endif
};
// clang-format on
// Invoked when received GET CONFIGURATION DESCRIPTOR
// Application return pointer to descriptor
// Descriptor contents must exist long enough for transfer to complete
uint8_t const* tud_descriptor_configuration_cb(uint8_t index) {
(void)index; // for multiple configurations
return desc_configuration;
}
//--------------------------------------------------------------------+
// String Descriptors
//--------------------------------------------------------------------+
// array of pointer to string descriptors
// clang-format off
char const* string_desc_arr[] = {
[STRID_LANGID] = (const char[]){0x09, 0x04}, // supported language is English (0x0409)
[STRID_MANUFACTURER] = INFO_MANUFACTURER, // Manufacturer
[STRID_PRODUCT] = INFO_PRODUCT(INFO_BOARDNAME), // Product
[STRID_CONFIG] = "Configuration descriptor",
// max string length check: |||||||||||||||||||||||||||||||
[STRID_IF_HID_CMSISDAP] = "CMSIS-DAP HID interface",
[STRID_IF_VND_I2CTINYUSB] = "I2C-Tiny-USB interface",
[STRID_IF_CDC_UART] = "UART CDC interface",
[STRID_IF_CDC_SERPROG] = "Serprog CDC interface",
[STRID_IF_CDC_STDIO] = "stdio CDC interface (debug)",
};
// clang-format on
// Invoked when received GET STRING DESCRIPTOR request
// Application return pointer to descriptor, whose contents must exist long enough for transfer to
// complete
uint16_t const* tud_descriptor_string_cb(uint8_t index, uint16_t langid) {
static uint16_t _desc_str[32];
(void)langid;
uint8_t chr_count = 0;
if (STRID_LANGID == index) {
memcpy(&_desc_str[1], string_desc_arr[STRID_LANGID], 2);
chr_count = 1;
} else if (STRID_SERIAL == index) {
chr_count = get_unique_id_u16(_desc_str + 1);
} else {
// Note: the 0xEE index string is a Microsoft OS 1.0 Descriptors.
// https://docs.microsoft.com/en-us/windows-hardware/drivers/usbcon/microsoft-defined-usb-descriptors
if (!(index < sizeof(string_desc_arr) / sizeof(string_desc_arr[0]))) return NULL;
const char* str = string_desc_arr[index];
// Cap at max char
chr_count = TU_MIN(strlen(str), 31);
// Convert ASCII string into UTF-16
for (int i = 0; i < chr_count; i++) { _desc_str[1 + i] = str[i]; }
}
// first byte is length (including header), second byte is string type
_desc_str[0] = (TUSB_DESC_STRING << 8) | (2 * chr_count + 2);
return _desc_str;
}
void tud_cdc_line_coding_cb(uint8_t itf, cdc_line_coding_t const* line_coding) {
if (itf == CDC_N_UART) { cdc_uart_set_baudrate(line_coding->bit_rate); }
}

View File

@ -10,8 +10,6 @@ static inline char nyb2hex(int x) {
return 'A' + (x - 0xa); return 'A' + (x - 0xa);
} }
void thread_yield(void);
// clang-format off // clang-format off
uint8_t get_unique_id_u8 (uint8_t * desc_str); uint8_t get_unique_id_u8 (uint8_t * desc_str);
uint8_t get_unique_id_u16(uint16_t* desc_str); uint8_t get_unique_id_u16(uint16_t* desc_str);

143
src/vnd_cfg.c Normal file
View File

@ -0,0 +1,143 @@
// vim: set et:
#include <string.h>
#include <tusb.h>
#include "mode.h"
#include "vnd_cfg.h"
#include "thread.h"
static uint8_t rx_buf[CFG_TUD_VENDOR_TX_BUFSIZE];
static uint8_t tx_buf[CFG_TUD_VENDOR_TX_BUFSIZE];
static uint32_t rxavail, rxpos, txpos;
void vnd_cfg_init(void) {
rxavail = 0;
rxpos = 0;
txpos = 0;
}
uint8_t vnd_cfg_read_byte(void) {
while (rxavail <= 0) {
if (!tud_vendor_n_mounted(0) && !tud_vendor_n_available(0)) {
thread_yield();
continue;
}
rxpos = 0;
rxavail = tud_vendor_n_read(0, rx_buf, sizeof rx_buf);
if (rxavail == 0) thread_yield();
}
uint8_t rv = rx_buf[rxpos];
++rxpos;
--rxavail;
return rv;
}
void vnd_cfg_write_flush(void) {
// TODO: is this needed?
while (tud_vendor_n_write_available(0) < txpos) {
thread_yield();
}
tud_vendor_n_write(0, tx_buf, txpos);
txpos = 0;
}
void vnd_cfg_write_byte(uint8_t v) {
if (txpos == CFG_TUD_VENDOR_TX_BUFSIZE) {
vnd_cfg_write_flush();
}
tx_buf[txpos] = v;
++txpos;
}
void vnd_cfg_write_resp(enum cfg_resp stat, uint16_t len, const void* data) {
if (len > 0x7fff) len = 0x7fff; // aaaaaaaaaaaaaaaaa // TODO: throw some kind of error
vnd_cfg_write_byte(stat);
if (len < 0x80) {
vnd_cfg_write_byte(len);
} else {
vnd_cfg_write_byte((len & 0x7f) | 0x80);
vnd_cfg_write_byte(len >> 7);
}
for (size_t i = 0; i < len; ++i) {
vnd_cfg_write_byte(((const uint8_t*)data)[i]);
}
vnd_cfg_write_flush();
}
void vnd_cfg_task(void) {
uint8_t cmd = vnd_cfg_read_byte();
uint8_t verbuf[2];
if (cmd & 0xf0) {
uint8_t mode = (uint8_t)(cmd & 0xf0) >> 4;
uint8_t mcmd = cmd & 0x0f;
if (mode != mode_current_id && mcmd > mode_cmd_get_features) {
vnd_cfg_write_resp(cfg_resp_badmode, 0, NULL);
} else if (mode_list[mode] == NULL) {
vnd_cfg_write_resp(cfg_resp_nosuchmode, 0, NULL);
} else {
switch (mcmd) {
case mode_cmd_get_name:
vnd_cfg_write_resp(cfg_resp_ok, strlen(mode_list[mode]->name),
mode_list[mode]->name);
break;
case mode_cmd_get_version:
verbuf[0] = (mode_list[mode]->version >> 0) & 0xff;
verbuf[1] = (mode_list[mode]->version >> 8) & 0xff;
vnd_cfg_write_resp(cfg_resp_ok, 2, verbuf);
break;
default:
mode_list[mode]->handle_cmd(mcmd);
break;
}
}
} else {
switch (cmd) {
case cfg_cmd_get_version:
verbuf[0] = (VND_CFG_PROTO_VER >> 0) & 0xff;
verbuf[1] = (VND_CFG_PROTO_VER >> 8) & 0xff;
vnd_cfg_write_resp(cfg_resp_ok, 2, verbuf);
break;
case cfg_cmd_get_modes:
verbuf[0] = 0x01;
for (size_t i = 1; i < 16; ++i) {
if (mode_list[i] != NULL) verbuf[0] |= 1 << i;
}
vnd_cfg_write_resp(cfg_resp_ok, 1, verbuf);
break;
case cfg_cmd_get_cur_mode:
verbuf[0] = mode_current_id;
vnd_cfg_write_resp(cfg_resp_ok, 1, verbuf);
break;
case cfg_cmd_set_cur_mode:
verbuf[0] = vnd_cfg_read_byte();
if (verbuf[0] == 0 || verbuf[0] >= 0x10 || mode_list[verbuf[0]] == NULL) {
vnd_cfg_write_resp(cfg_resp_nosuchmode, 0, NULL);
} else {
// will be handled later so the USB stack won't break, whcih might happen if reconfig would happen now
mode_next_id = verbuf[0];
vnd_cfg_write_resp(cfg_resp_ok, 0, NULL);
}
break;
case cfg_cmd_get_infostr:
vnd_cfg_write_resp(cfg_resp_ok, strlen("Dragnbus"), "Dragnbus");
break;
default:
vnd_cfg_write_resp(cfg_resp_illcmd, 0, NULL);
break;
}
}
}

79
src/vnd_cfg.h Normal file
View File

@ -0,0 +1,79 @@
// vim: set et:
#ifndef VND_CFG_H_
#define VND_CFG_H_
#include <stdint.h>
/* the configuration vendor interface must always be the first vendor itf. */
#define VND_CFG_PROTO_VER 0x0010
void vnd_cfg_init(void);
void vnd_cfg_task(void);
// commands meant for configuring and initializing the device
enum cfg_cmd {
cfg_cmd_get_version = 0x00,
cfg_cmd_get_modes = 0x01,
cfg_cmd_get_cur_mode = 0x02,
cfg_cmd_set_cur_mode = 0x03,
cfg_cmd_get_infostr = 0x04,
};
// common commands for every mode
// for non-active modes, only these three can be used, others will result in a
// 'badmode' error
enum mode_cmd {
mode_cmd_get_name = 0x00,
mode_cmd_get_version = 0x01,
mode_cmd_get_features = 0x02,
};
enum cfg_resp {
cfg_resp_ok = 0x00,
cfg_resp_illcmd = 0x01,
cfg_resp_badmode = 0x02,
cfg_resp_nosuchmode = 0x03,
};
uint8_t vnd_cfg_read_byte (void);
void vnd_cfg_write_flush(void);
void vnd_cfg_write_byte(uint8_t v);
void vnd_cfg_write_resp(enum cfg_resp stat, uint16_t len, const void* data);
/*
* wire protocol:
* host sends messages, device sends replies. the device never initiates a xfer
*
* the first byte of a command is the combination of the mode it is meant for
* in the high nybble, and the command number itself in the low nybble. optional
* extra command bytes may follow, depending on the command itself.
* a high nybble is 0 signifies a general configuration command, not meant for
* a particular mode
*
* a response consists of a response status byte (enum cfg_resp), followed by
* a 7- or 15-bit VLQ int (little-endian) for the payload length, followed by
* the payload itself.
*
* general commands:
* * get vesion (0x00): returns a payload of 2 bytes with version data. should
* currently be 0x10 0x00 (00.10h)
* * get modes (0x01): returns 2 bytes with a bitmap containing all supported
* modes (bit 0 is for general cfg and must always be 1)
* * get cur mode (0x02): returns a single byte containing the current mode number
* * set cur mode (0x03): sets the current mode. one extra request byte, no
* response payload
* * get info string (0x04): get a string containing human-readable info about
* the device. for display only
*
* common mode commands:
* * get name (0x00): returns a name or other descriptive string in the payload.
* for display only
* * get version (0x01): returns a 2-byte version number in the payload
* * get_features (0x02): gets a bitmap of supported features. length and meaning
* of the bits depends on the mode
*/
#endif

View File

@ -1,266 +0,0 @@
#include "protos.h"
#ifdef DBOARD_HAS_I2C
// clang-format off
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <hardware/i2c.h>
#include "tusb.h"
#include "device/usbd_pvt.h"
#include "protocfg.h"
#include "pinout.h"
#include "i2ctinyusb.h"
#include "tempsensor.h"
// clang-format on
static uint8_t itf_num;
static enum itu_status status;
static struct itu_cmd curcmd;
static uint8_t rxbuf[128];
static uint8_t txbuf[128];
static void iub_init(void) {
status = ITU_STATUS_IDLE;
memset(&curcmd, 0, sizeof curcmd);
i2ctu_init();
#ifdef DBOARD_HAS_TEMPSENSOR
tempsense_init();
#endif
}
static void iub_reset(uint8_t rhport) {
(void)rhport;
status = ITU_STATUS_IDLE;
memset(&curcmd, 0, sizeof curcmd);
i2ctu_init();
#ifdef DBOARD_HAS_TEMPSENSOR
tempsense_init();
#endif
itf_num = 0;
}
static uint16_t iub_open(uint8_t rhport, tusb_desc_interface_t const* itf_desc, uint16_t max_len) {
(void)rhport;
// clang-format off
TU_VERIFY(itf_desc->bInterfaceClass == 0
&& itf_desc->bInterfaceSubClass == 0
&& itf_desc->bInterfaceProtocol == 0,
0);
// clang-format on
const uint16_t drv_len = sizeof(tusb_desc_interface_t);
TU_VERIFY(max_len >= drv_len, 0);
itf_num = itf_desc->bInterfaceNumber;
return drv_len;
}
static bool iub_ctl_req(uint8_t rhport, uint8_t stage, tusb_control_request_t const* req) {
(void)rhport;
/*static char* stages[]={"SETUP","DATA","ACK"};
static char* types[]={"STD","CLS","VND","INV"};
printf("ctl req stage=%s rt=%s, wIndex=%04x, bReq=%02x, wValue=%04x wLength=%04x\n",
stages[stage], types[req->bmRequestType_bit.type],
req->wIndex, req->bRequest, req->wValue, req->wLength);*/
if (req->bmRequestType_bit.type != TUSB_REQ_TYPE_VENDOR) return true;
if (stage == CONTROL_STAGE_DATA) {
struct itu_cmd cmd = curcmd;
if (req->bRequest >= ITU_CMD_I2C_IO && req->bRequest <= ITU_CMD_I2C_IO_BEGINEND &&
cmd.cmd == req->bRequest && cmd.flags == req->wValue && cmd.addr == req->wIndex &&
cmd.len == req->wLength) {
// printf("WDATA a=%04hx l=%04hx ", cmd.addr, cmd.len);
// printf("data=%02x %02x...\n", rxbuf[0], rxbuf[1]);
#ifdef DBOARD_HAS_TEMPSENSOR
if (tempsense_get_active() && tempsense_get_addr() == cmd.addr) {
if (cmd.cmd & ITU_CMD_I2C_IO_BEGIN_F) tempsense_do_start();
// FIXME: fix status handling
int rv = tempsense_do_write(cmd.len > sizeof rxbuf ? sizeof rxbuf : cmd.len, rxbuf);
if (rv < 0 || rv != cmd.len)
status = ITU_STATUS_ADDR_NAK;
else
status = ITU_STATUS_ADDR_ACK;
if (cmd.cmd & ITU_CMD_I2C_IO_END_F) tempsense_do_stop();
} else
#endif
{
status = i2ctu_write(cmd.flags, cmd.cmd & ITU_CMD_I2C_IO_DIR_MASK, cmd.addr, rxbuf,
cmd.len > sizeof rxbuf ? sizeof rxbuf : cmd.len);
}
// cancel curcmd
curcmd.cmd = 0xff;
}
return true;
} else if (stage == CONTROL_STAGE_SETUP) {
switch (req->bRequest) {
case ITU_CMD_ECHO: { // flags to be echoed back, addr unused, len=2
if (req->wLength != 2) return false; // bad length -> let's stall
uint8_t rv[2];
rv[0] = req->wValue & 0xff;
rv[1] = (req->wValue >> 8) & 0xff;
return tud_control_xfer(rhport, req, rv, sizeof rv);
} break;
case ITU_CMD_GET_FUNC: { // flags unused, addr unused, len=4
if (req->wLength != 4) return false;
const uint32_t func = i2ctu_get_func();
txbuf[0] = func & 0xff;
txbuf[1] = (func >> 8) & 0xff;
txbuf[2] = (func >> 16) & 0xff;
txbuf[3] = (func >> 24) & 0xff;
return tud_control_xfer(rhport, req, txbuf, 4);
} break;
case ITU_CMD_SET_DELAY: { // flags=delay, addr unused, len=0
if (req->wLength != 0) return false;
uint32_t us = req->wValue ? req->wValue : 1;
uint32_t freq = 1000 * 1000 / us;
// printf("set freq us=%u freq=%u\n", us, freq);
if (i2ctu_set_freq(freq, us) != 0) // returned an ok frequency
return tud_control_status(rhport, req);
else
return false;
} break;
case ITU_CMD_GET_STATUS: { // flags unused, addr unused, len=1
if (req->wLength != 1) return false;
uint8_t rv = status;
return tud_control_xfer(rhport, req, &rv, 1);
} break;
case ITU_CMD_I2C_IO: // flags: ki2c_flags
case ITU_CMD_I2C_IO_BEGIN: // addr: I2C address
case ITU_CMD_I2C_IO_END: // len: transfer size
case ITU_CMD_I2C_IO_BEGINEND: { // (transfer dir is in flags)
struct itu_cmd cmd;
cmd.flags = req->wValue;
cmd.addr = req->wIndex;
cmd.len = req->wLength;
cmd.cmd = req->bRequest;
if (cmd.flags & I2C_M_RD) { // read from I2C device
// printf("read addr=%04hx len=%04hx ", cmd.addr, cmd.len);
#ifdef DBOARD_HAS_TEMPSENSOR
if (tempsense_get_active() && tempsense_get_addr() == cmd.addr) {
if (cmd.cmd & ITU_CMD_I2C_IO_BEGIN_F) tempsense_do_start();
int rv = tempsense_do_read(
cmd.len > sizeof txbuf ? sizeof txbuf : cmd.len, txbuf);
if (rv < 0 || rv != cmd.len)
status = ITU_STATUS_ADDR_NAK;
else
status = ITU_STATUS_ADDR_ACK;
if (cmd.cmd & ITU_CMD_I2C_IO_END_F) tempsense_do_stop();
} else
#endif
{
status = i2ctu_read(cmd.flags, cmd.cmd & ITU_CMD_I2C_IO_DIR_MASK, cmd.addr,
txbuf, cmd.len > sizeof txbuf ? sizeof txbuf : cmd.len);
}
// printf("data=%02x %02x...\n", txbuf[0], txbuf[1]);
return tud_control_xfer(
rhport, req, txbuf, cmd.len > sizeof txbuf ? sizeof txbuf : cmd.len);
} else { // write
// printf("write addr=%04hx len=%04hx ", cmd.addr, cmd.len);
if (cmd.len == 0) { // address probe -> do this here
uint8_t bleh = 0;
#ifdef DBOARD_HAS_TEMPSENSOR
if (tempsense_get_active() && tempsense_get_addr() == cmd.addr) {
if (cmd.cmd & ITU_CMD_I2C_IO_BEGIN_F) tempsense_do_start();
int rv = tempsense_do_write(0, &bleh);
if (rv < 0 || rv != cmd.len)
status = ITU_STATUS_ADDR_NAK;
else
status = ITU_STATUS_ADDR_ACK;
if (cmd.cmd & ITU_CMD_I2C_IO_END_F) tempsense_do_stop();
} else
#endif
{
status = i2ctu_write(cmd.flags, cmd.cmd & ITU_CMD_I2C_IO_DIR_MASK,
cmd.addr, &bleh, 0);
}
// printf("probe -> %d\n", status);
return tud_control_status(rhport, req);
} else {
// handled in DATA stage!
curcmd = cmd;
bool rv = tud_control_xfer(rhport, req, rxbuf,
cmd.len > sizeof rxbuf ? sizeof rxbuf : cmd.len);
return rv;
}
}
} break;
default:
// printf("I2C-Tiny-USB: unknown command %02x\n", req->bRequest);
return false;
}
} else
return true; // other stage...
}
// never actually called fsr
static bool iub_xfer(
uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) {
(void)rhport;
(void)ep_addr;
(void)result;
(void)xferred_bytes;
return true;
}
// interfacing stuff for TinyUSB API, actually defines the driver
// clang-format off
static usbd_class_driver_t const i2ctinyusb_driver = {
#if CFG_TUSB_DEBUG >= 2
.name = "i2c-tiny-usb",
#endif
.init = iub_init,
.reset = iub_reset,
.open = iub_open,
.control_xfer_cb = iub_ctl_req,
.xfer_cb = iub_xfer,
.sof = NULL
};
// clang-format on
usbd_class_driver_t const* usbd_app_driver_get_cb(uint8_t* driver_count) {
*driver_count = 1;
return &i2ctinyusb_driver;
}
// we need to implement this one, because tinyusb uses hardcoded stuff for
// endpoint 0, which is what the i2c-tiny-usb kernel module uses
bool tud_vendor_control_xfer_cb(
uint8_t rhport, uint8_t ep_addr, tusb_control_request_t const* req) {
return iub_ctl_req(rhport, ep_addr, req);
}
#endif /* DBOARD_HAS_I2C */