Browse Source

update README

sys64738 4 months ago
  1. 5
  2. 118
  3. 148
  4. 110
  5. 18


@ -2,7 +2,10 @@ The below copyright and permission notice applies to portions of the following
files, which have been modified from their original versions in
<> (the "picoprobe-sump repository")
- bsp/rp2040/m_sump/sump_hw.c
- bsp/rp2040/m_sump/sump_hw.h
- src/m_sump/cdc_sump.c
- src/m_sump/sump.h
The below notice does not apply to any modifications made to the above files
since the versions present in the picoprobe-usb repository, nor to any files


@ -136,30 +136,31 @@ Different serial speeds can be used, too. Serprog support is *techincally*
untested, as in it does output the correct SPI commands as seen by my logic
analyzer, but I don't have a SPI flash chip to test it on.
### I2C-Tiny-USB
### SPI, I2C and temperature sensor
The I2C-Tiny-USB functionality can be used as follows: first, load the
`i2c-dev` and `i2c-tiny-usb` modules (for now you need a patched version of the
latter, can be found in the `i2c-tiny-usb-misc/` folder in this repo). Then you
can use the I2C USB bridge as any other I2C device on your computer. For
example, the `i2cdetect`, `i2cget` and `i2cset` tools from `i2c-tools` should
all work. You can find which I2C device corresponds to the I2C-Tiny-USB, by
running `i2cdetect -l`:
This functionality depends on custom kernel modules being loaded: In the
`host/modules/` directory, one can find the sources and a Makefile.
After loading the modules (and modprobing `i2c-dev` and `spidev`), devices for
these interfaces should appear in `/dev`.
SPI and I2C can be controlled using the standard tools for these (eg. the
utilities from `i2c-tools` package), and the temperature sensor should show
up in `lm_sensors`.
Using `i2cdetect -l`, you should be able to see which I2C device belongs to
the tool:
$ sudo i2cdetect -l
i2c-1 i2c i915 gmbus dpb I2C adapter
i2c-8 i2c Radeon i2c bit bus 0x95 I2C adapter
i2c-15 i2c i2c-tiny-usb at bus 001 device 011 I2C adapter # <---- !
i2c-15 i2c dmj-i2c-1-1:1.0 I2C adapter
i2c-6 i2c Radeon i2c bit bus 0x93 I2C adapter
i2c-13 i2c AUX C/DDI C/PHY C I2C adapter
**NOTE**: I2C functionality sometimes breaks with certain USB hubs. If this is
the case, try unplugging and replugging the entire hub.
#### I2C temperature sensor emulation
If the board/MCU has a builtin temperature sensor, a fake I2C device on the bus
@ -168,7 +169,7 @@ sensor (the exact sensor emulated is the Microchip MCP9808). To have it show
up in `sensors`, do the following (with `BUSNUM` the number from the above
`i2cdetect -l` output):
$ ./ /dev/ttyACM1 --i2ctemp 0x18 # need to give it an address first
$ ./ tempsensor --set 0x18 # need to give it an address first
$ sudo modprobe jc42
$ # now tell the jc42 module that the device can be found at this address
$ echo "jc42 0x18" | sudo tee /sys/bus/i2c/devices/i2c-BUSNUM/new_device
@ -185,38 +186,40 @@ Temperature readout may be a bit higher than the ambient temperature.
### Runtime configuration
Several settings can be applied at runtime, using the `dmctl` Python script.
Settings are communicated over the Serprog USB serial port.
The currently implemented options are:
- `support`: tells you which features this implementation/board supports
- `ctsrts`: Enable/disable CTS/RTS-based hardware flow control for the UART port
- `i2ctemp`: Get or set the I2C address of the fake I2C device of the temperature
sensor. Use 0 for getting the value, 0xff for disabling, and any
other for setting the address. The I2C device emulated is an MCP9808.
When setting a value, the old value is printed.
Settings are communicated over a vendor USB interface.
usage: dmctl [-h] [-v] [--ctsrts [CTSRTS]] tty
Runtime configuration control for DapperMime-JTAG
positional arguments:
tty Path to DapperMime-JTAG Serprog UART device
$ ./ --help
usage: dmctl [-h] [--conn CONN] subcommand ...
optional arguments:
-h, --help show this help message and exit
-v, --verbose Verbose logging (for this utility)
--ctsrts [CTSRTS] Enable or disable CTS/RTS flow control (--ctsrts [true|false])
--i2ctemp [I2CTEMP] Control the builtin I2C temperature controller: get (0),
disable (-1/0xff) or set/enable (other) the current
status and I2C bus address
--support Get list of supported/implemented functionality
-h, --help show this help message and exit
--conn CONN Connection string. Either a dmj-char device in /dev, a USB
bus.device number, or a USB VID:PID pair. Defaults to trying
/dev/dmj-* (if there is only one), and cafe:1312 otherwise.
For more info on each subcommand, run the program with 'subcommand --help' as
subcommand Command to send to the device
Shows device info
get-mode-info Shows mode info. A mode can optionally be specified, default
is the current mode.
set-mode Set the device mode
uart-cts-rts Get, enable/disable UART hardware flow control
tempsensor Get or set the IRC emulation enable/address of the
temperature sensor.
jtag-scan JTAG pinout scanner
SUMP logic analyzer overclock settings
$ ./ /dev/ttyACM1 --ctsrts true
$ ./ --conn cafe:1312 get-device-info
## License
@ -227,18 +230,15 @@ ARM's CMSIS 5 code is licensed under the [Apache 2.0 license](https://opensource
libco is licensed under the [ISC license](
Some code has been incorporated from the [DapperMime](
and [picoprobe-sump](
projects. These respective licenses can be found in
[this](./LICENSE.dappermime) and [this](./LICENSE.picoprobe-sump) file.
- [ ] A name
- [ ] A (VID and) PID, and maybe better subclass & protocol IDs for the vnd cfg itf
- [x] More Pico SDK meta/buildinfo
- [x] CMSIS-DAP JTAG implementation
- [x] Flashrom/SPI support using Serprog
- Parallel ROM flashing support, too, by having the device switch into a
separate mode that temporarily disables all other IO protocols
- Not enough IO, rip.
- [x] UART with CTS/RTS flow control
- [x] Needs configurable stuff as well, as some UART interfaces won't use this.
- [x] Debug interface to send printf stuff directly to USB, instead of having
to use the UART interface as a loopback thing.
- [ ] Second UART port for when stdio UART is disabled?
@ -248,35 +248,11 @@ libco is licensed under the [ISC license](
parts do, but, laziness.
- [x] 10-bit I2C address support (Needs poking at the Pico SDK, as it only
supports 7-bit ones).
- [x] Better USB interface stuff, because I2C-Tiny-USB sucks and serprog can only
do flash chips instead of being a real spidev. General idea can probably be
taken from the DLN2 Linux drivers, except better (dynamic interface
signalled in the protocol (eg. does the device actually have I2C/SPI/..?),
dynamic I2C and SPI capabilities, add 1wire stuff, maybe yeet the GPIO bc
it'll be used for other stuff anyway, etc.). Means a custom Linux driver but
oh well, I2C-Tiny-USB needs patching either way.
- [ ] 1-wire using ↑
- [x] A proper interface for sending commands etc. instead of shoehorning it
into Serprog.
- Can probably be included in the "Better USB interface stuff".
- [ ] 1-wire
- [ ] make modes persistent?
- [ ] JTAG pinout detector
- [x] Host-side script that is an XVC (or hw_server) cable and communicates
with the device to perform the JTAG commands, because Vivado no likey
- CMSIS-DAP interface can be used directly, see CMSIS_5/CMSIS/DoxyGen/DAP/src/dap_USB_cmds.txt
- [x] SUMP logic analyzer mode?
- see also [this](
- [ ] runtime config options for overclocking, logging
- [ ] FT2232 emulation mode?
- watch out, still need a vnd cfg interface! libftdi expects the following stuff: (TODO: acquire detailed protocol description)
- interface 0 ("A"): index 1, epin 0x02, epout 0x81


@ -1,148 +0,0 @@
#!/usr/bin/env python3
import argparse, serial, struct
from typing import *
def auto_int(x):
return int(x, 0)
class RTOpt(NamedTuple):
type: Callable[[Any], Any]
optid: int
desc: str
supportmap = {
2: "UART",
4: "I2C-Tiny-USB",
8: "Temperature sensor",
0x80: "stdio USB-CDC debug interface"
option_table = {
'ctsrts': RTOpt(bool, 1, "Enable or disable CTS/RTS flow control (--ctsrts [true|false])"),
'i2ctemp': RTOpt(auto_int, 2, "Control the builtin I2C temperature controller: get (0), disable (-1/0xff) or set/enable (other) the current status and I2C bus address"),
'support': RTOpt(str, 0xff, "Get list of supported/implemented functionality"),
S_ACK = b'\x06'
S_NAK = b'\x15'
S_CMD_NOP = b'\x00'
S_CMD_Q_IFACE = b'\x01'
S_CMD_Q_CMDMAP = b'\x02'
S_CMD_Q_PGMNAME = b'\x03'
S_CMD_SYNCNOP = b'\x10'
def val2byte(t, v) -> int:
if t == bool:
return 1 if v else 0
if t == int or t == auto_int:
return 0xff if v < 0 else (v & 0xff)
if t == str:
return 0
assert False, "unimplemented type %s" % str(t)
def do_xfer(args, cmd:int, arg:int, port: str, baudrate:int=115200) -> Optional[int]:
with serial.Serial(port, baudrate, timeout=1) as ser:
cmdmap = [0]*32
syncok = False
for i in range(8):
a =
b =
if a == S_NAK and b == S_ACK:
syncok = True
if not syncok:
print("sync failed")
return None
if != S_ACK:
print("nop failed")
return None
if != S_ACK:
print("q_iface failed")
return None
serprogver = struct.unpack('<H',[0]
if serprogver != 1:
print("unknown serprog protocol version %d" % serprogver)
return None
if != S_ACK:
print("q_cmdmap failed")
return None
cmdmap =
if (cmdmap[S_CMD_MAGIC_SETTINGS[0] >> 3] & (1<<(S_CMD_MAGIC_SETTINGS[0]&7))) == 0:
print("serprog programmer has no S_CMD_MAGIC_SETTINGS")
return None
if (cmdmap[S_CMD_Q_PGMNAME[0] >> 3] & (1<<(S_CMD_Q_PGMNAME[0]&7))) != 0:
if != S_ACK:
print("q_pgmname failed")
name ='utf-8')
if args.verbose: print("programmer is '%s'" % name)
acknak =
if acknak == S_ACK:
print("settings command failed")
return None
def main():
parser = argparse.ArgumentParser(prog="dmctl",
description="Runtime configuration control for DapperMime-JTAG")
parser.add_argument('tty', type=str, nargs=1, #'?', #default="/dev/ttyACM1",
help="Path to DapperMime-JTAG Serprog UART device"#+\
#" [/dev/ttyACM1]"
parser.add_argument('-v', '--verbose', default=False, action='store_true',
help="Verbose logging (for this utility)")
for k, v in option_table.items():
if k == "support":
parser.add_argument('--%s'%k, default=None, action='store_true',
parser.add_argument('--%s'%k, type=v.type, nargs='?', default=None,
args = parser.parse_args()
for k, v in option_table.items():
if args.__dict__[k] is not None:
resp = do_xfer(args, v.optid, val2byte(v.type, args.__dict__[k]), args.tty[0])
if resp is None:
return 1
if k == "support":
print(", ".join(kvp[1] for kvp in supportmap.items() if (kvp[0] & resp) != 0))
#if args.verbose:
print("-> %d" % resp)
return 0
#do_xfer(1, 1, "/dev/ttyACM1")
#do_xfer(1, 0, "/dev/ttyACM1")
if __name__ == '__main__':


@ -1,110 +0,0 @@
#!/usr/bin/env python3
# TODO: RIIR, probably
import usb.core
from typing import *
import array
dev = usb.core.find(idVendor=0xcafe, idProduct=0x1312)
#print("set config")
print("get config")
cfg = dev.get_active_configuration()
intf = cfg[(0,0)]
print("get eps")
epout = usb.util.find_descriptor(intf, custom_match = lambda e: usb.util.endpoint_direction(e.bEndpointAddress) == usb.util.ENDPOINT_OUT)
epin = usb.util.find_descriptor(intf, custom_match = lambda e: usb.util.endpoint_direction(e.bEndpointAddress) == usb.util.ENDPOINT_IN )
assert epout is not None
assert epin is not None
def wrusb(ep, data: bytes):
return ep.write(data)
# TODO: buffering read?
def rdresp(ep) -> Tuple[int, bytes]:
acc = bytearray()
# first stuff: header etc
arr = array.array('B')
nrd =
stat = arr[0]
plen = arr[1]
if (plen & 0x80) != 0:
plen &= 0x7f
plen |= arr[2] << 7
for x in arr.tobytes()[3:nrd]:
for x in arr.tobytes()[2:nrd]:
while len(acc) < plen:
for i in range(len(arr)): arr[i] = 0
nrd =
for x in arr.tobytes()[:nrd]:
return (stat, acc)
epout.write(b'\x00') # get version
print('[%s]'%(', '.join(hex(x) for x in # result: status, payload len, version
# 0 2 0x10 0x00 -> ok
epout.write(b'\x01') # get modes
print('[%s]'%(', '.join(hex(x) for x in # result: status, payload len, modes
# 0 2 0x3 0 -> ok
epout.write(b'\x02') # get cur mode
print('[%s]'%(', '.join(hex(x) for x in # result: status, payload len, mode
# 0 1 1 -> ok
epout.write(b'\x04') # get infostr
(stat, res) = rdresp(epin)
epout.write(b'\x10') # get mode1 name
(stat, res) = rdresp(epin)
epout.write(b'\x11') # get mode1 version
(stat, res) = rdresp(epin)
epout.write(b'\x12') # get mode1 features
(stat, res) = rdresp(epin)
epout.write(b'\x40') # get mode4 name
(stat, res) = rdresp(epin)
epout.write(b'\x41') # get mode4 version
(stat, res) = rdresp(epin)
epout.write(b'\x42') # get mode4 features
(stat, res) = rdresp(epin)
#epout.write(b'\x03\x04') # set cur mode
#print('[%s]'%(', '.join(hex(x) for x in # result: status, payload len, mode


@ -1,18 +0,0 @@
#!/usr/bin/env python3
import os, struct, sys
f =[1], os.O_RDWR | os.O_CLOEXEC) # TODO: windows: os.O_BINARY |
os.write(f, b'\x00') # get version
resp =, 4) # response: status, paylaod len (should be 2), payload
print("stat=%d plen=%d ver=%04x" % (resp[0], resp[1], struct.unpack('<H', resp[2:])[0]))
#with open(sys.argv[1], 'rb') as f:
# f.write(b'\x00') # get version
# resp = # response
# print("stat=%d plen=%d ver=%04x" % (resp[0], resp[1], struct.unpack('<H', resp[2:])[0]))