Adding Bus Pirate/..-style debugging & probing features to regular MCU boards such as the Raspberry Pi Pico
Go to file
Triss 4de8c00613 update to use sdk 1.2.0 2021-06-13 20:07:54 +02:00
CMSIS_5@d61cf40e6c was advised to directly use CMSIS_5 submodule 2021-02-01 10:25:49 -06:00
bsp update to use sdk 1.2.0 2021-06-13 20:07:54 +02:00
libco actually add the libco files (oops) 2021-06-08 02:22:54 +02:00
tinyusb@d49938d0f5 update to use sdk 1.2.0 2021-06-13 20:07:54 +02:00
.gitignore fix build stuff, add .gitignore, add JTAG support 2021-05-30 04:16:06 +02:00
.gitmodules was advised to directly use CMSIS_5 submodule 2021-02-01 10:25:49 -06:00
CMakeLists.txt update to use sdk 1.2.0 2021-06-13 20:07:54 +02:00
Makefile definitely not functuonal but hey its something 2021-06-06 05:10:36 +02:00
README.md update README, make dmctl usable 2021-06-12 21:55:16 +02:00
cdc_serprog.c runtime configuration stuff 2021-06-12 21:35:06 +02:00
dmctl.py update to use sdk 1.2.0 2021-06-13 20:07:54 +02:00
main.c update to use sdk 1.2.0 2021-06-13 20:07:54 +02:00
pico_sdk_import.cmake fix build stuff, add .gitignore, add JTAG support 2021-05-30 04:16:06 +02:00
protos.h stdio (optionally) directly over USB-CDC instead of UART loopback 2021-06-12 21:36:11 +02:00
rtconf.c runtime configuration stuff 2021-06-12 21:35:06 +02:00
rtconf.h runtime configuration stuff 2021-06-12 21:35:06 +02:00
serprog.h stdio (optionally) directly over USB-CDC instead of UART loopback 2021-06-12 21:36:11 +02:00
thread.h actually add the libco files (oops) 2021-06-08 02:22:54 +02:00
tusb_config.h stdio (optionally) directly over USB-CDC instead of UART loopback 2021-06-12 21:36:11 +02:00
usb_descriptors.c update to use sdk 1.2.0 2021-06-13 20:07:54 +02:00

README.md

Dapper Mime

This unearths the name of a weekend project that I did in 2014. Both then and now, this is a port of ARM's CMSIS-DAP code to a platform without the need for an expensive proprietary compiler and USB drivers.

Whereas the original code used ST's STM32 USB drivers, this new iteration uses TinyUSB, an open source cross-platform USB stack for embedded systems.

Variants

Most TinyUSB supported MCUs can run this code; a subdirectory under bsp needs to be added for the "BOARD" name with a DAP_config.h to control the SWD/JTAG GPIOs and a unique.h to provide unique serial number (if any) and prefix to the USB product name.

Already added BOARD variants include:

For BOARD=raspberry_pi_pico, this project results in a standards-based CMSIS-DAP alternative to the approaches suggested in Chapter 5 and Appendix A of Getting Started with Raspberry Pi Pico. This uses two RP2040 boards (see wiring loom shown in Figure 34 of Appendix A) where one RP2040 is the debugger and the other RP2040 is being debugged. The instructions in Chapter 5 apply, except no Raspberry Pi is needed.

Alternatively, a special one RP2040 “Raspberry Pi Pico” variant is available here.

For BOARD=stm32f072disco, the inexpensive 32F072BDISCOVERY evaluation board can be used as a CMSIS-DAP SWD debugger.

Building

After initially downloading this project's code, issue the following command to download TinyUSB and CMSIS_5 code:

git submodule update --init --recursive

Follow the TinyUSB build instructions available here, but issue the make command in the base directory of Dapper Mime.

Note that each TinyUSB board name being targeted needs a corresponding subdirectory under the Dapper Mime ./bsp/ subdirectory and a customized version of DAP_config.h for the target.

Alternatively, one can compile with CMake:

mkdir cmake-build && cd cmake-build
cmake -DBOARD=raspberry_pi_pico -DFAMILIY=rp2040 -DCMAKE_BUILD_TYPE=Debug ..

If you have the Pico SDK installed on your system, and the PICO_SDK_PATH environment variable is specified properly, you can omit the --recursive flag in the git submodule invocation (to avoid many many git clones), and pass the -DUSE_SYSTEMWIDE_PICOSDK=On flag to CMake, too.

Usage

These microcontrollers support the following protocols:

MCU SWD JTAG UART SPI (flashrom) I2C AVR programming
RP2040 X X X X Planned Planned
STM32F072B Discovery X X

The original repository (Dapper Mime) supported only SWD and UART, and worked for these two boards. This fork focusses on adding more protocols, but the author of this fork only has a Raspberry Pi Pico.

The pin mapping for the RP2040 is as follows:

Pin number Usage Usage Pin number
GP0 stdio UART TX VBUS
GP1 stdio UART RX VSYS
GND <ground> <ground> GND
GP2 SWCLK/TCK 3V3 EN
GP3 SWDIO/TMS 3V3 OUT
GP4 UART TX ADC VREF
GP5 UART RX GP28 / ADC2
GND <ground> <ground> GND / AGND
GP6 TDI GP27 / ADC1
GP7 TDO GP26 / ADC0
GP8 nTRST RUN
GP9 nRESET GP22
GND <ground> <ground> GND
GP10 UART CTS SCL GP21
GP11 UART RTS SDA GP20
GP12 MISO GP19
GP13 nCS GP18
GND <ground> <ground> GND
GP14 SCLK GP17
GP15 MOSI GP16
<end> <bottom> <bottom> <end>

On the RP2040, two USB CDC interfaces are exposed: the first is the UART interface, the second is for Serprog. If you have no other USB-CDC intefaces, these will be /dev/ttyACM0 and /dev/ttyACM1, respectively.

The UART pins are for connecting to the device to be debugged, the data is echoed back over the USB CDC interface (typically a /dev/ttyACMx device on Linux). If you want to get stdio readout of this program on your computer, connect GP0 to GP5, and GP1 to GP4, or alternatively, use the USE_USBCDC_FOR_STDIO CMake flag, which adds an extra USB-CDC interface for which stdio is used exclusively, while disabling stdio on the UART.

In SWD mode, the pin mapping is entirely as with the standard Picoprobe setup, as described in Chapter 5 and Appendix A of Getting Started with Raspberry Pi Pico

In JTAG mode, TCK and TMS have the same pins as SWCLK and SWDIO, respectively, TDI and TDO are on the next two consecutive free pins.

In your OpenOCD flags, use -f interface/cmsis-dap.cfg. Default transport is JTAG, if OpenOCD doesn't specify a default to the probe.

For Serprog, use the following flashrom options (if /dev/ttyACM1 is the USB serial device on your machine corresponding to the Serprog CDC interface of the Pico):

flashrom -c <flashchip> -p serprog:dev=/dev/ttyACM1:115200 <rest of the read/write cmd>

Different serial speeds can be used, too. Serprog support is techincally untested, as in it does output the correct SPI commands as seen by my logic analyzer, but I don't have a SPI flash chip to test it on.

Runtime configuration

Several settings can be applied at runtime, using the dmctl Python script. Settings are communicated over the Serprog USB serial port.

The currently implemented options are:

  • ctsrts: Enable/disable CTS/RTS-based hardware flow control for the UART port
usage: dmctl [-h] [-v] [--ctsrts [CTSRTS]] tty

Runtime configuration control for DapperMime-JTAG

positional arguments:
  tty                Path to DapperMime-JTAG Serprog UART device

optional arguments:
  -h, --help         show this help message and exit
  -v, --verbose      Verbose logging (for this utility)
  --ctsrts [CTSRTS]  Enable or disable CTS/RTS flow control (--ctsrts [true|false])

example:

$ ./dmctl.py /dev/ttyACM1 --ctsrts true

License

TinyUSB is licensed under the MIT license.

ARM's CMSIS_5 code is licensed under the Apache 2.0 license.

libco is licensed under the ISC license

TODO