target/efm32: general formatting/style cleanup

Signed-off-by: Rafael Silva <perigoso@riseup.net>
This commit is contained in:
Rafael Silva 2022-07-07 18:37:40 +01:00 committed by Rachel Mant
parent 018fc517a1
commit 42d36d9d10
1 changed files with 322 additions and 379 deletions

View File

@ -31,7 +31,6 @@
*/ */
/* Refer to the family reference manuals: /* Refer to the family reference manuals:
*
* *
* Also refer to AN0062 "Programming Internal Flash Over the Serial Wire Debug Interface" * Also refer to AN0062 "Programming Internal Flash Over the Serial Wire Debug Interface"
* http://www.silabs.com/Support%20Documents/TechnicalDocs/an0062.pdf * http://www.silabs.com/Support%20Documents/TechnicalDocs/an0062.pdf
@ -63,201 +62,197 @@ const struct command_s efm32_cmd_list[] = {
{"serial", (cmd_handler)efm32_cmd_serial, "Prints unique number"}, {"serial", (cmd_handler)efm32_cmd_serial, "Prints unique number"},
{"efm_info", (cmd_handler)efm32_cmd_efm_info, "Prints information about the device"}, {"efm_info", (cmd_handler)efm32_cmd_efm_info, "Prints information about the device"},
{"bootloader", (cmd_handler)efm32_cmd_bootloader, "Bootloader status in CLW0"}, {"bootloader", (cmd_handler)efm32_cmd_bootloader, "Bootloader status in CLW0"},
{NULL, NULL, NULL} {NULL, NULL, NULL},
}; };
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
/* Memory System Controller (MSC) Registers */ /* Memory System Controller (MSC) Registers */
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
#define EFM32_MSC_WRITECTRL(msc) (msc+0x008) #define EFM32_MSC_WRITECTRL(msc) (msc + 0x008)
#define EFM32_MSC_WRITECMD(msc) (msc+0x00c) #define EFM32_MSC_WRITECMD(msc) (msc + 0x00c)
#define EFM32_MSC_ADDRB(msc) (msc+0x010) #define EFM32_MSC_ADDRB(msc) (msc + 0x010)
#define EFM32_MSC_WDATA(msc) (msc+0x018) #define EFM32_MSC_WDATA(msc) (msc + 0x018)
#define EFM32_MSC_STATUS(msc) (msc+0x01c) #define EFM32_MSC_STATUS(msc) (msc + 0x01c)
#define EFM32_MSC_IF(msc) (msc+0x030) #define EFM32_MSC_IF(msc) (msc + 0x030)
#define EFM32_MSC_LOCK(msc) (msc+(msc == 0x400c0000?0x3c:0x40)) #define EFM32_MSC_LOCK(msc) (msc + (msc == 0x400c0000 ? 0x3c : 0x40))
#define EFM32_MSC_MASSLOCK(msc) (msc+0x054) #define EFM32_MSC_MASSLOCK(msc) (msc + 0x054)
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71 #define EFM32_MSC_LOCK_LOCKKEY 0x1b71
#define EFM32_MSC_MASSLOCK_LOCKKEY 0x631a #define EFM32_MSC_MASSLOCK_LOCKKEY 0x631a
#define EFM32_MSC_WRITECMD_LADDRIM (1<<0) #define EFM32_MSC_WRITECMD_LADDRIM (1 << 0)
#define EFM32_MSC_WRITECMD_ERASEPAGE (1<<1) #define EFM32_MSC_WRITECMD_ERASEPAGE (1 << 1)
#define EFM32_MSC_WRITECMD_WRITEEND (1<<2) #define EFM32_MSC_WRITECMD_WRITEEND (1 << 2)
#define EFM32_MSC_WRITECMD_WRITEONCE (1<<3) #define EFM32_MSC_WRITECMD_WRITEONCE (1 << 3)
#define EFM32_MSC_WRITECMD_WRITETRIG (1<<4) #define EFM32_MSC_WRITECMD_WRITETRIG (1 << 4)
#define EFM32_MSC_WRITECMD_ERASEABORT (1<<5) #define EFM32_MSC_WRITECMD_ERASEABORT (1 << 5)
#define EFM32_MSC_WRITECMD_ERASEMAIN0 (1<<8) #define EFM32_MSC_WRITECMD_ERASEMAIN0 (1 << 8)
#define EFM32_MSC_STATUS_BUSY (1<<0)
#define EFM32_MSC_STATUS_LOCKED (1<<1)
#define EFM32_MSC_STATUS_INVADDR (1<<2)
#define EFM32_MSC_STATUS_WDATAREADY (1<<3)
#define EFM32_MSC_STATUS_BUSY (1 << 0)
#define EFM32_MSC_STATUS_LOCKED (1 << 1)
#define EFM32_MSC_STATUS_INVADDR (1 << 2)
#define EFM32_MSC_STATUS_WDATAREADY (1 << 3)
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
/* Flash Infomation Area */ /* Flash Infomation Area */
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
#define EFM32_INFO 0x0fe00000 #define EFM32_INFO 0x0fe00000
#define EFM32_USER_DATA (EFM32_INFO+0x0000) #define EFM32_USER_DATA (EFM32_INFO + 0x0000)
#define EFM32_LOCK_BITS (EFM32_INFO+0x4000) #define EFM32_LOCK_BITS (EFM32_INFO + 0x4000)
#define EFM32_V1_DI (EFM32_INFO+0x8000) #define EFM32_V1_DI (EFM32_INFO + 0x8000)
#define EFM32_V2_DI (EFM32_INFO+0x81B0) #define EFM32_V2_DI (EFM32_INFO + 0x81B0)
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
/* Lock Bits (LB) */ /* Lock Bits (LB) */
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
#define EFM32_LOCK_BITS_DLW (EFM32_LOCK_BITS+(4*127)) #define EFM32_LOCK_BITS_DLW (EFM32_LOCK_BITS + (4 * 127))
#define EFM32_LOCK_BITS_ULW (EFM32_LOCK_BITS+(4*126)) #define EFM32_LOCK_BITS_ULW (EFM32_LOCK_BITS + (4 * 126))
#define EFM32_LOCK_BITS_MLW (EFM32_LOCK_BITS+(4*125)) #define EFM32_LOCK_BITS_MLW (EFM32_LOCK_BITS + (4 * 125))
#define EFM32_LOCK_BITS_CLW0 (EFM32_LOCK_BITS+(4*122)) #define EFM32_LOCK_BITS_CLW0 (EFM32_LOCK_BITS + (4 * 122))
#define EFM32_CLW0_BOOTLOADER_ENABLE (1<<1) #define EFM32_CLW0_BOOTLOADER_ENABLE (1 << 1)
#define EFM32_CLW0_PINRESETSOFT (1<<2) #define EFM32_CLW0_PINRESETSOFT (1 << 2)
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
/* Device Information (DI) Area - Version 1 V1 */ /* Device Information (DI) Area - Version 1 */
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
#define EFM32_V1_DI_CMU_LFRCOCTRL (EFM32_V1_DI+0x020) #define EFM32_V1_DI_CMU_LFRCOCTRL (EFM32_V1_DI + 0x020)
#define EFM32_V1_DI_CMU_HFRCOCTRL (EFM32_V1_DI+0x028) #define EFM32_V1_DI_CMU_HFRCOCTRL (EFM32_V1_DI + 0x028)
#define EFM32_V1_DI_CMU_AUXHFRCOCTRL (EFM32_V1_DI+0x030) #define EFM32_V1_DI_CMU_AUXHFRCOCTRL (EFM32_V1_DI + 0x030)
#define EFM32_V1_DI_ADC0_CAL (EFM32_V1_DI+0x040) #define EFM32_V1_DI_ADC0_CAL (EFM32_V1_DI + 0x040)
#define EFM32_V1_DI_ADC0_BIASPROG (EFM32_V1_DI+0x048) #define EFM32_V1_DI_ADC0_BIASPROG (EFM32_V1_DI + 0x048)
#define EFM32_V1_DI_DAC0_CAL (EFM32_V1_DI+0x050) #define EFM32_V1_DI_DAC0_CAL (EFM32_V1_DI + 0x050)
#define EFM32_V1_DI_DAC0_BIASPROG (EFM32_V1_DI+0x058) #define EFM32_V1_DI_DAC0_BIASPROG (EFM32_V1_DI + 0x058)
#define EFM32_V1_DI_ACMP0_CTRL (EFM32_V1_DI+0x060) #define EFM32_V1_DI_ACMP0_CTRL (EFM32_V1_DI + 0x060)
#define EFM32_V1_DI_ACMP1_CTRL (EFM32_V1_DI+0x068) #define EFM32_V1_DI_ACMP1_CTRL (EFM32_V1_DI + 0x068)
#define EFM32_V1_DI_CMU_LCDCTRL (EFM32_V1_DI+0x078) #define EFM32_V1_DI_CMU_LCDCTRL (EFM32_V1_DI + 0x078)
#define EFM32_V1_DI_DAC0_OPACTRL (EFM32_V1_DI+0x0A0) #define EFM32_V1_DI_DAC0_OPACTRL (EFM32_V1_DI + 0x0A0)
#define EFM32_V1_DI_DAC0_OPAOFFSET (EFM32_V1_DI+0x0A8) #define EFM32_V1_DI_DAC0_OPAOFFSET (EFM32_V1_DI + 0x0A8)
#define EFM32_V1_DI_EMU_BUINACT (EFM32_V1_DI+0x0B0) #define EFM32_V1_DI_EMU_BUINACT (EFM32_V1_DI + 0x0B0)
#define EFM32_V1_DI_EMU_BUACT (EFM32_V1_DI+0x0B8) #define EFM32_V1_DI_EMU_BUACT (EFM32_V1_DI + 0x0B8)
#define EFM32_V1_DI_EMU_BUBODBUVINCAL (EFM32_V1_DI+0x0C0) #define EFM32_V1_DI_EMU_BUBODBUVINCAL (EFM32_V1_DI + 0x0C0)
#define EFM32_V1_DI_EMU_BUBODUNREGCAL (EFM32_V1_DI+0x0C8) #define EFM32_V1_DI_EMU_BUBODUNREGCAL (EFM32_V1_DI + 0x0C8)
#define EFM32_V1_DI_MCM_REV_MIN (EFM32_V1_DI+0x1AA) #define EFM32_V1_DI_MCM_REV_MIN (EFM32_V1_DI + 0x1AA)
#define EFM32_V1_DI_MCM_REV_MAJ (EFM32_V1_DI+0x1AB) #define EFM32_V1_DI_MCM_REV_MAJ (EFM32_V1_DI + 0x1AB)
#define EFM32_V1_DI_RADIO_REV_MIN (EFM32_V1_DI+0x1AC) #define EFM32_V1_DI_RADIO_REV_MIN (EFM32_V1_DI + 0x1AC)
#define EFM32_V1_DI_RADIO_REV_MAJ (EFM32_V1_DI+0x1AD) #define EFM32_V1_DI_RADIO_REV_MAJ (EFM32_V1_DI + 0x1AD)
#define EFM32_V1_DI_RADIO_OPN (EFM32_V1_DI+0x1AE) #define EFM32_V1_DI_RADIO_OPN (EFM32_V1_DI + 0x1AE)
#define EFM32_V1_DI_V1_DI_CRC (EFM32_V1_DI+0x1B0) #define EFM32_V1_DI_V1_DI_CRC (EFM32_V1_DI + 0x1B0)
#define EFM32_V1_DI_CAL_TEMP_0 (EFM32_V1_DI+0x1B2) #define EFM32_V1_DI_CAL_TEMP_0 (EFM32_V1_DI + 0x1B2)
#define EFM32_V1_DI_ADC0_CAL_1V25 (EFM32_V1_DI+0x1B4) #define EFM32_V1_DI_ADC0_CAL_1V25 (EFM32_V1_DI + 0x1B4)
#define EFM32_V1_DI_ADC0_CAL_2V5 (EFM32_V1_DI+0x1B6) #define EFM32_V1_DI_ADC0_CAL_2V5 (EFM32_V1_DI + 0x1B6)
#define EFM32_V1_DI_ADC0_CAL_VDD (EFM32_V1_DI+0x1B8) #define EFM32_V1_DI_ADC0_CAL_VDD (EFM32_V1_DI + 0x1B8)
#define EFM32_V1_DI_ADC0_CAL_5VDIFF (EFM32_V1_DI+0x1BA) #define EFM32_V1_DI_ADC0_CAL_5VDIFF (EFM32_V1_DI + 0x1BA)
#define EFM32_V1_DI_ADC0_CAL_2XVDD (EFM32_V1_DI+0x1BC) #define EFM32_V1_DI_ADC0_CAL_2XVDD (EFM32_V1_DI + 0x1BC)
#define EFM32_V1_DI_ADC0_TEMP_0_READ_1V25 (EFM32_V1_DI+0x1BE) #define EFM32_V1_DI_ADC0_TEMP_0_READ_1V25 (EFM32_V1_DI + 0x1BE)
#define EFM32_V1_DI_DAC0_CAL_1V25 (EFM32_V1_DI+0x1C8) #define EFM32_V1_DI_DAC0_CAL_1V25 (EFM32_V1_DI + 0x1C8)
#define EFM32_V1_DI_DAC0_CAL_2V5 (EFM32_V1_DI+0x1CC) #define EFM32_V1_DI_DAC0_CAL_2V5 (EFM32_V1_DI + 0x1CC)
#define EFM32_V1_DI_DAC0_CAL_VDD (EFM32_V1_DI+0x1D0) #define EFM32_V1_DI_DAC0_CAL_VDD (EFM32_V1_DI + 0x1D0)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_1 (EFM32_V1_DI+0x1D4) #define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_1 (EFM32_V1_DI + 0x1D4)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_7 (EFM32_V1_DI+0x1D5) #define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_7 (EFM32_V1_DI + 0x1D5)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_11 (EFM32_V1_DI+0x1D6) #define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_11 (EFM32_V1_DI + 0x1D6)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_14 (EFM32_V1_DI+0x1D7) #define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_14 (EFM32_V1_DI + 0x1D7)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_21 (EFM32_V1_DI+0x1D8) #define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_21 (EFM32_V1_DI + 0x1D8)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_28 (EFM32_V1_DI+0x1D9) #define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_28 (EFM32_V1_DI + 0x1D9)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_1 (EFM32_V1_DI+0x1DC) #define EFM32_V1_DI_HFRCO_CALIB_BAND_1 (EFM32_V1_DI + 0x1DC)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_7 (EFM32_V1_DI+0x1DD) #define EFM32_V1_DI_HFRCO_CALIB_BAND_7 (EFM32_V1_DI + 0x1DD)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_11 (EFM32_V1_DI+0x1DE) #define EFM32_V1_DI_HFRCO_CALIB_BAND_11 (EFM32_V1_DI + 0x1DE)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_14 (EFM32_V1_DI+0x1DF) #define EFM32_V1_DI_HFRCO_CALIB_BAND_14 (EFM32_V1_DI + 0x1DF)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_21 (EFM32_V1_DI+0x1E0) #define EFM32_V1_DI_HFRCO_CALIB_BAND_21 (EFM32_V1_DI + 0x1E0)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_28 (EFM32_V1_DI+0x1E1) #define EFM32_V1_DI_HFRCO_CALIB_BAND_28 (EFM32_V1_DI + 0x1E1)
#define EFM32_V1_DI_MEM_INFO_PAGE_SIZE (EFM32_V1_DI+0x1E7) #define EFM32_V1_DI_MEM_INFO_PAGE_SIZE (EFM32_V1_DI + 0x1E7)
#define EFM32_V1_DI_RADIO_ID (EFM32_V1_DI+0x1EE) #define EFM32_V1_DI_RADIO_ID (EFM32_V1_DI + 0x1EE)
#define EFM32_V1_DI_EUI64_0 (EFM32_V1_DI+0x1F0) #define EFM32_V1_DI_EUI64_0 (EFM32_V1_DI + 0x1F0)
#define EFM32_V1_DI_EUI64_1 (EFM32_V1_DI+0x1F4) #define EFM32_V1_DI_EUI64_1 (EFM32_V1_DI + 0x1F4)
#define EFM32_V1_DI_MEM_INFO_FLASH (EFM32_V1_DI+0x1F8) #define EFM32_V1_DI_MEM_INFO_FLASH (EFM32_V1_DI + 0x1F8)
#define EFM32_V1_DI_MEM_INFO_RAM (EFM32_V1_DI+0x1FA) #define EFM32_V1_DI_MEM_INFO_RAM (EFM32_V1_DI + 0x1FA)
#define EFM32_V1_DI_PART_NUMBER (EFM32_V1_DI+0x1FC) #define EFM32_V1_DI_PART_NUMBER (EFM32_V1_DI + 0x1FC)
#define EFM32_V1_DI_PART_FAMILY (EFM32_V1_DI+0x1FE) #define EFM32_V1_DI_PART_FAMILY (EFM32_V1_DI + 0x1FE)
#define EFM32_V1_DI_PROD_REV (EFM32_V1_DI+0x1FF) #define EFM32_V1_DI_PROD_REV (EFM32_V1_DI + 0x1FF)
/* top 24 bits of eui */ /* top 24 bits of eui */
#define EFM32_V1_DI_EUI_SILABS 0x000b57 #define EFM32_V1_DI_EUI_SILABS 0x000b57
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
/* Device Information (DI) Area - Version 2 V2 */ /* Device Information (DI) Area - Version 2 */
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
#define EFM32_V2_DI_CAL (EFM32_V2_DI+0x000) /* CRC of DI-page and calibration temperature */ #define EFM32_V2_DI_CAL (EFM32_V2_DI + 0x000) /* CRC of DI-page and calibration temperature */
#define EFM32_V2_DI_EXTINFO (EFM32_V2_DI+0x020) /* External Component description */ #define EFM32_V2_DI_EXTINFO (EFM32_V2_DI + 0x020) /* External Component description */
#define EFM32_V2_DI_EUI48L (EFM32_V2_DI+0x028) /* EUI48 OUI and Unique identifier */ #define EFM32_V2_DI_EUI48L (EFM32_V2_DI + 0x028) /* EUI48 OUI and Unique identifier */
#define EFM32_V2_DI_EUI48H (EFM32_V2_DI+0x02C) /* OUI */ #define EFM32_V2_DI_EUI48H (EFM32_V2_DI + 0x02C) /* OUI */
#define EFM32_V2_DI_CUSTOMINFO (EFM32_V2_DI+0x030) /* Custom information */ #define EFM32_V2_DI_CUSTOMINFO (EFM32_V2_DI + 0x030) /* Custom information */
#define EFM32_V2_DI_MEMINFO (EFM32_V2_DI+0x034) /* Flash page size and misc. chip information */ #define EFM32_V2_DI_MEMINFO (EFM32_V2_DI + 0x034) /* Flash page size and misc. chip information */
#define EFM32_V2_DI_UNIQUEL (EFM32_V2_DI+0x040) /* Low 32 bits of device unique number */ #define EFM32_V2_DI_UNIQUEL (EFM32_V2_DI + 0x040) /* Low 32 bits of device unique number */
#define EFM32_V2_DI_UNIQUEH (EFM32_V2_DI+0x044) /* High 32 bits of device unique number */ #define EFM32_V2_DI_UNIQUEH (EFM32_V2_DI + 0x044) /* High 32 bits of device unique number */
#define EFM32_V2_DI_MSIZE (EFM32_V2_DI+0x048) /* Flash and SRAM Memory size in kB */ #define EFM32_V2_DI_MSIZE (EFM32_V2_DI + 0x048) /* Flash and SRAM Memory size in kB */
#define EFM32_V2_DI_PART (EFM32_V2_DI+0x04C) /* Part description */ #define EFM32_V2_DI_PART (EFM32_V2_DI + 0x04C) /* Part description */
#define EFM32_V2_DI_DEVINFOREV (EFM32_V2_DI+0x050) /* Device information page revision */ #define EFM32_V2_DI_DEVINFOREV (EFM32_V2_DI + 0x050) /* Device information page revision */
#define EFM32_V2_DI_EMUTEMP (EFM32_V2_DI+0x054) /* EMU Temperature Calibration Information */ #define EFM32_V2_DI_EMUTEMP (EFM32_V2_DI + 0x054) /* EMU Temperature Calibration Information */
#define EFM32_V2_DI_ADC0CAL0 (EFM32_V2_DI+0x060) /* ADC0 calibration register 0 */ #define EFM32_V2_DI_ADC0CAL0 (EFM32_V2_DI + 0x060) /* ADC0 calibration register 0 */
#define EFM32_V2_DI_ADC0CAL1 (EFM32_V2_DI+0x064) /* ADC0 calibration register 1 */ #define EFM32_V2_DI_ADC0CAL1 (EFM32_V2_DI + 0x064) /* ADC0 calibration register 1 */
#define EFM32_V2_DI_ADC0CAL2 (EFM32_V2_DI+0x068) /* ADC0 calibration register 2 */ #define EFM32_V2_DI_ADC0CAL2 (EFM32_V2_DI + 0x068) /* ADC0 calibration register 2 */
#define EFM32_V2_DI_ADC0CAL3 (EFM32_V2_DI+0x06C) /* ADC0 calibration register 3 */ #define EFM32_V2_DI_ADC0CAL3 (EFM32_V2_DI + 0x06C) /* ADC0 calibration register 3 */
#define EFM32_V2_DI_HFRCOCAL0 (EFM32_V2_DI+0x080) /* HFRCO Calibration Register (4 MHz) */ #define EFM32_V2_DI_HFRCOCAL0 (EFM32_V2_DI + 0x080) /* HFRCO Calibration Register (4 MHz) */
#define EFM32_V2_DI_HFRCOCAL3 (EFM32_V2_DI+0x08C) /* HFRCO Calibration Register (7 MHz) */ #define EFM32_V2_DI_HFRCOCAL3 (EFM32_V2_DI + 0x08C) /* HFRCO Calibration Register (7 MHz) */
#define EFM32_V2_DI_HFRCOCAL6 (EFM32_V2_DI+0x098) /* HFRCO Calibration Register (13 MHz) */ #define EFM32_V2_DI_HFRCOCAL6 (EFM32_V2_DI + 0x098) /* HFRCO Calibration Register (13 MHz) */
#define EFM32_V2_DI_HFRCOCAL7 (EFM32_V2_DI+0x09C) /* HFRCO Calibration Register (16 MHz) */ #define EFM32_V2_DI_HFRCOCAL7 (EFM32_V2_DI + 0x09C) /* HFRCO Calibration Register (16 MHz) */
#define EFM32_V2_DI_HFRCOCAL8 (EFM32_V2_DI+0x0A0) #define EFM32_V2_DI_HFRCOCAL8 (EFM32_V2_DI + 0x0A0)
#define EFM32_V2_DI_HFRCOCAL10 (EFM32_V2_DI+0x0A8) #define EFM32_V2_DI_HFRCOCAL10 (EFM32_V2_DI + 0x0A8)
#define EFM32_V2_DI_HFRCOCAL11 (EFM32_V2_DI+0x0AC) #define EFM32_V2_DI_HFRCOCAL11 (EFM32_V2_DI + 0x0AC)
#define EFM32_V2_DI_HFRCOCAL12 (EFM32_V2_DI+0x0B0) #define EFM32_V2_DI_HFRCOCAL12 (EFM32_V2_DI + 0x0B0)
#define EFM32_V2_DI_AUXHFRCOCAL0 (EFM32_V2_DI+0x0E0) #define EFM32_V2_DI_AUXHFRCOCAL0 (EFM32_V2_DI + 0x0E0)
#define EFM32_V2_DI_AUXHFRCOCAL3 (EFM32_V2_DI+0x0EC) #define EFM32_V2_DI_AUXHFRCOCAL3 (EFM32_V2_DI + 0x0EC)
#define EFM32_V2_DI_AUXHFRCOCAL6 (EFM32_V2_DI+0x0F8) #define EFM32_V2_DI_AUXHFRCOCAL6 (EFM32_V2_DI + 0x0F8)
#define EFM32_V2_DI_AUXHFRCOCAL7 (EFM32_V2_DI+0x0FC) #define EFM32_V2_DI_AUXHFRCOCAL7 (EFM32_V2_DI + 0x0FC)
#define EFM32_V2_DI_AUXHFRCOCAL8 (EFM32_V2_DI+0x100) #define EFM32_V2_DI_AUXHFRCOCAL8 (EFM32_V2_DI + 0x100)
#define EFM32_V2_DI_AUXHFRCOCAL10 (EFM32_V2_DI+0x108) #define EFM32_V2_DI_AUXHFRCOCAL10 (EFM32_V2_DI + 0x108)
#define EFM32_V2_DI_AUXHFRCOCAL11 (EFM32_V2_DI+0x10C) #define EFM32_V2_DI_AUXHFRCOCAL11 (EFM32_V2_DI + 0x10C)
#define EFM32_V2_DI_AUXHFRCOCAL12 (EFM32_V2_DI+0x110) #define EFM32_V2_DI_AUXHFRCOCAL12 (EFM32_V2_DI + 0x110)
#define EFM32_V2_DI_VMONCAL0 (EFM32_V2_DI+0x140) #define EFM32_V2_DI_VMONCAL0 (EFM32_V2_DI + 0x140)
#define EFM32_V2_DI_VMONCAL1 (EFM32_V2_DI+0x144) /* VMON Calibration Register 1 */ #define EFM32_V2_DI_VMONCAL1 (EFM32_V2_DI + 0x144) /* VMON Calibration Register 1 */
#define EFM32_V2_DI_VMONCAL2 (EFM32_V2_DI+0x148) /* VMON Calibration Register 2 */ #define EFM32_V2_DI_VMONCAL2 (EFM32_V2_DI + 0x148) /* VMON Calibration Register 2 */
#define EFM32_V2_DI_IDAC0CAL0 (EFM32_V2_DI+0x158) /* IDAC0 Calibration Register 0 */ #define EFM32_V2_DI_IDAC0CAL0 (EFM32_V2_DI + 0x158) /* IDAC0 Calibration Register 0 */
#define EFM32_V2_DI_IDAC0CAL1 (EFM32_V2_DI+0x15C) /* IDAC0 Calibration Register 1 */ #define EFM32_V2_DI_IDAC0CAL1 (EFM32_V2_DI + 0x15C) /* IDAC0 Calibration Register 1 */
#define EFM32_V2_DI_DCDCLNVCTRL0 (EFM32_V2_DI+0x168) /* DCDC Low-noise VREF Trim Register 0 */ #define EFM32_V2_DI_DCDCLNVCTRL0 (EFM32_V2_DI + 0x168) /* DCDC Low-noise VREF Trim Register 0 */
#define EFM32_V2_DI_DCDCLPVCTRL0 (EFM32_V2_DI+0x16C) /* DCDC Low-power VREF Trim Register 0 */ #define EFM32_V2_DI_DCDCLPVCTRL0 (EFM32_V2_DI + 0x16C) /* DCDC Low-power VREF Trim Register 0 */
#define EFM32_V2_DI_DCDCLPVCTRL1 (EFM32_V2_DI+0x170) /* DCDC Low-power VREF Trim Register 1 */ #define EFM32_V2_DI_DCDCLPVCTRL1 (EFM32_V2_DI + 0x170) /* DCDC Low-power VREF Trim Register 1 */
#define EFM32_V2_DI_DCDCLPVCTRL2 (EFM32_V2_DI+0x174) /* DCDC Low-power VREF Trim Register 2 */ #define EFM32_V2_DI_DCDCLPVCTRL2 (EFM32_V2_DI + 0x174) /* DCDC Low-power VREF Trim Register 2 */
#define EFM32_V2_DI_DCDCLPVCTRL3 (EFM32_V2_DI+0x178) /* DCDC Low-power VREF Trim Register 3 */ #define EFM32_V2_DI_DCDCLPVCTRL3 (EFM32_V2_DI + 0x178) /* DCDC Low-power VREF Trim Register 3 */
#define EFM32_V2_DI_DCDCLPCMPHYSSEL0 (EFM32_V2_DI+0x17C) /* DCDC LPCMPHYSSEL Trim Register 0 */ #define EFM32_V2_DI_DCDCLPCMPHYSSEL0 (EFM32_V2_DI + 0x17C) /* DCDC LPCMPHYSSEL Trim Register 0 */
#define EFM32_V2_DI_DCDCLPCMPHYSSEL1 (EFM32_V2_DI+0x180) /* DCDC LPCMPHYSSEL Trim Register 1 */ #define EFM32_V2_DI_DCDCLPCMPHYSSEL1 (EFM32_V2_DI + 0x180) /* DCDC LPCMPHYSSEL Trim Register 1 */
#define EFM32_V2_DI_VDAC0MAINCAL (EFM32_V2_DI+0x184) /* VDAC0 Cals for Main Path */ #define EFM32_V2_DI_VDAC0MAINCAL (EFM32_V2_DI + 0x184) /* VDAC0 Cals for Main Path */
#define EFM32_V2_DI_VDAC0ALTCAL (EFM32_V2_DI+0x188) /* VDAC0 Cals for Alternate Path */ #define EFM32_V2_DI_VDAC0ALTCAL (EFM32_V2_DI + 0x188) /* VDAC0 Cals for Alternate Path */
#define EFM32_V2_DI_VDAC0CH1CAL (EFM32_V2_DI+0x18C) /* VDAC0 CH1 Error Cal */ #define EFM32_V2_DI_VDAC0CH1CAL (EFM32_V2_DI + 0x18C) /* VDAC0 CH1 Error Cal */
#define EFM32_V2_DI_OPA0CAL0 (EFM32_V2_DI+0x190) /* OPA0 Calibration Register for DRIVESTRENGTH 0, INCBW=1 */ #define EFM32_V2_DI_OPA0CAL0 (EFM32_V2_DI + 0x190) /* OPA0 Calibration Register for DRIVESTRENGTH 0, INCBW=1 */
#define EFM32_V2_DI_OPA0CAL1 (EFM32_V2_DI+0x194) /* OPA0 Calibration Register for DRIVESTRENGTH 1, INCBW=1 */ #define EFM32_V2_DI_OPA0CAL1 (EFM32_V2_DI + 0x194) /* OPA0 Calibration Register for DRIVESTRENGTH 1, INCBW=1 */
#define EFM32_V2_DI_OPA0CAL2 (EFM32_V2_DI+0x198) /* OPA0 Calibration Register for DRIVESTRENGTH 2, INCBW=1 */ #define EFM32_V2_DI_OPA0CAL2 (EFM32_V2_DI + 0x198) /* OPA0 Calibration Register for DRIVESTRENGTH 2, INCBW=1 */
#define EFM32_V2_DI_OPA0CAL3 (EFM32_V2_DI+0x19C) /* OPA0 Calibration Register for DRIVESTRENGTH 3, INCBW=1 */ #define EFM32_V2_DI_OPA0CAL3 (EFM32_V2_DI + 0x19C) /* OPA0 Calibration Register for DRIVESTRENGTH 3, INCBW=1 */
#define EFM32_V2_DI_OPA1CAL0 (EFM32_V2_DI+0x1A0) /* OPA1 Calibration Register for DRIVESTRENGTH 0, INCBW=1 */ #define EFM32_V2_DI_OPA1CAL0 (EFM32_V2_DI + 0x1A0) /* OPA1 Calibration Register for DRIVESTRENGTH 0, INCBW=1 */
#define EFM32_V2_DI_OPA1CAL1 (EFM32_V2_DI+0x1A4) /* OPA1 Calibration Register for DRIVESTRENGTH 1, INCBW=1 */ #define EFM32_V2_DI_OPA1CAL1 (EFM32_V2_DI + 0x1A4) /* OPA1 Calibration Register for DRIVESTRENGTH 1, INCBW=1 */
#define EFM32_V2_DI_OPA1CAL2 (EFM32_V2_DI+0x1A8) #define EFM32_V2_DI_OPA1CAL2 (EFM32_V2_DI + 0x1A8)
#define EFM32_V2_DI_OPA1CAL3 (EFM32_V2_DI+0x1AC) #define EFM32_V2_DI_OPA1CAL3 (EFM32_V2_DI + 0x1AC)
#define EFM32_V2_DI_OPA2CAL0 (EFM32_V2_DI+0x1B0) #define EFM32_V2_DI_OPA2CAL0 (EFM32_V2_DI + 0x1B0)
#define EFM32_V2_DI_OPA2CAL1 (EFM32_V2_DI+0x1B4) #define EFM32_V2_DI_OPA2CAL1 (EFM32_V2_DI + 0x1B4)
#define EFM32_V2_DI_OPA2CAL2 (EFM32_V2_DI+0x1B8) #define EFM32_V2_DI_OPA2CAL2 (EFM32_V2_DI + 0x1B8)
#define EFM32_V2_DI_OPA2CAL3 (EFM32_V2_DI+0x1BC) #define EFM32_V2_DI_OPA2CAL3 (EFM32_V2_DI + 0x1BC)
#define EFM32_V2_DI_CSENGAINCAL (EFM32_V2_DI+0x1C0) #define EFM32_V2_DI_CSENGAINCAL (EFM32_V2_DI + 0x1C0)
#define EFM32_V2_DI_OPA0CAL4 (EFM32_V2_DI+0x1D0) #define EFM32_V2_DI_OPA0CAL4 (EFM32_V2_DI + 0x1D0)
#define EFM32_V2_DI_OPA0CAL5 (EFM32_V2_DI+0x1D4) #define EFM32_V2_DI_OPA0CAL5 (EFM32_V2_DI + 0x1D4)
#define EFM32_V2_DI_OPA0CAL6 (EFM32_V2_DI+0x1D8) #define EFM32_V2_DI_OPA0CAL6 (EFM32_V2_DI + 0x1D8)
#define EFM32_V2_DI_OPA0CAL7 (EFM32_V2_DI+0x1DC) #define EFM32_V2_DI_OPA0CAL7 (EFM32_V2_DI + 0x1DC)
#define EFM32_V2_DI_OPA1CAL4 (EFM32_V2_DI+0x1E0) #define EFM32_V2_DI_OPA1CAL4 (EFM32_V2_DI + 0x1E0)
#define EFM32_V2_DI_OPA1CAL5 (EFM32_V2_DI+0x1E4) #define EFM32_V2_DI_OPA1CAL5 (EFM32_V2_DI + 0x1E4)
#define EFM32_V2_DI_OPA1CAL6 (EFM32_V2_DI+0x1E8) #define EFM32_V2_DI_OPA1CAL6 (EFM32_V2_DI + 0x1E8)
#define EFM32_V2_DI_OPA1CAL7 (EFM32_V2_DI+0x1EC) #define EFM32_V2_DI_OPA1CAL7 (EFM32_V2_DI + 0x1EC)
#define EFM32_V2_DI_OPA2CAL4 (EFM32_V2_DI+0x1F0) #define EFM32_V2_DI_OPA2CAL4 (EFM32_V2_DI + 0x1F0)
#define EFM32_V2_DI_OPA2CAL5 (EFM32_V2_DI+0x1F4) #define EFM32_V2_DI_OPA2CAL5 (EFM32_V2_DI + 0x1F4)
#define EFM32_V2_DI_OPA2CAL6 (EFM32_V2_DI+0x1F8) /* OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=0 */ #define EFM32_V2_DI_OPA2CAL6 (EFM32_V2_DI + 0x1F8) /* OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=0 */
#define EFM32_V2_DI_OPA2CAL7 (EFM32_V2_DI+0x1FC) /* OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=0 */ #define EFM32_V2_DI_OPA2CAL7 (EFM32_V2_DI + 0x1FC) /* OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=0 */
/* top 24 bits of eui */ /* top 24 bits of eui */
#define EFM32_V2_DI_EUI_ENERGYMICRO 0xd0cf5e #define EFM32_V2_DI_EUI_ENERGYMICRO 0xd0cf5e
@ -270,75 +265,74 @@ typedef struct efm32_device_t {
uint8_t family_id; /* Family for device matching */ uint8_t family_id; /* Family for device matching */
bool has_radio; /* Indicates a device has attached radio */ bool has_radio; /* Indicates a device has attached radio */
uint16_t flash_page_size; /* Flash page size */ uint16_t flash_page_size; /* Flash page size */
char* name; /* Friendly device family name */ char *name; /* Friendly device family name */
uint32_t msc_addr; /* MSC Address */ uint32_t msc_addr; /* MSC Address */
uint16_t user_data_size; /* User Data (UD) region size */ uint16_t user_data_size; /* User Data (UD) region size */
uint16_t bootloader_size; /* Bootloader (BL) region size (may be 0 for no BL region) */ uint16_t bootloader_size; /* Bootloader (BL) region size (may be 0 for no BL region) */
char* description; /* Human-readable description */ char *description; /* Human-readable description */
} efm32_device_t; } efm32_device_t;
efm32_device_t const efm32_devices[] = { efm32_device_t const efm32_devices[] = {
/* First gen micros */ /* First gen micros */
{ 71, false, 512, "EFM32G" , 0x400c0000, 512, 0, "Gecko"}, {71, false, 512, "EFM32G", 0x400c0000, 512, 0, "Gecko"},
{ 72, false, 2048, "EFM32GG" , 0x400c0000, 4096, 0, "Giant Gecko"}, {72, false, 2048, "EFM32GG", 0x400c0000, 4096, 0, "Giant Gecko"},
{ 73, false, 512, "EFM32TG" , 0x400c0000, 512, 0, "Tiny Gecko"}, {73, false, 512, "EFM32TG", 0x400c0000, 512, 0, "Tiny Gecko"},
{ 74, false, 2048, "EFM32LG" , 0x400c0000, 2048, 0, "Leopard Gecko"}, {74, false, 2048, "EFM32LG", 0x400c0000, 2048, 0, "Leopard Gecko"},
{ 75, false, 2048, "EFM32WG" , 0x400c0000, 2048, 0, "Wonder Gecko"}, {75, false, 2048, "EFM32WG", 0x400c0000, 2048, 0, "Wonder Gecko"},
{ 76, false, 1024, "EFM32ZG" , 0x400c0000, 1024, 0, "Zero Gecko"}, {76, false, 1024, "EFM32ZG", 0x400c0000, 1024, 0, "Zero Gecko"},
{ 77, false, 1024, "EFM32HG" , 0x400c0000, 1024, 0, "Happy Gecko"}, {77, false, 1024, "EFM32HG", 0x400c0000, 1024, 0, "Happy Gecko"},
/* First (1.5) gen micro + radio */ /* First (1.5) gen micro + radio */
{120, true , 2048, "EZR32WG" , 0x400c0000, 2048, 0, "EZR Wonder Gecko"}, {120, true, 2048, "EZR32WG", 0x400c0000, 2048, 0, "EZR Wonder Gecko"},
{121, true , 2048, "EZR32LG" , 0x400c0000, 2048, 0, "EZR Leopard Gecko"}, {121, true, 2048, "EZR32LG", 0x400c0000, 2048, 0, "EZR Leopard Gecko"},
{122, true , 1024, "EZR32HG" , 0x400c0000, 1024, 0, "EZR Happy Gecko"}, {122, true, 1024, "EZR32HG", 0x400c0000, 1024, 0, "EZR Happy Gecko"},
/* Second gen micros */ /* Second gen micros */
{ 81, false, 2048, "EFM32PG1B" , 0x400e0000, 2048, 10240, "Pearl Gecko"}, {81, false, 2048, "EFM32PG1B", 0x400e0000, 2048, 10240, "Pearl Gecko"},
{ 83, false, 2048, "EFM32JG1B" , 0x400e0000, 2048, 10240, "Jade Gecko"}, {83, false, 2048, "EFM32JG1B", 0x400e0000, 2048, 10240, "Jade Gecko"},
{ 85, false, 2048, "EFM32PG12B", 0x400e0000, 2048, 32768,"Pearl Gecko 12"}, {85, false, 2048, "EFM32PG12B", 0x400e0000, 2048, 32768, "Pearl Gecko 12"},
{ 87, false, 2048, "EFM32JG12B", 0x400e0000, 2048, 32768, "Jade Gecko 12"}, {87, false, 2048, "EFM32JG12B", 0x400e0000, 2048, 32768, "Jade Gecko 12"},
/* Second (2.5) gen micros, with re-located MSC */ /* Second (2.5) gen micros, with re-located MSC */
{100, false, 4096, "EFM32GG11B", 0x40000000, 4096, 32768, "Giant Gecko 11"}, {100, false, 4096, "EFM32GG11B", 0x40000000, 4096, 32768, "Giant Gecko 11"},
{103, false, 2048, "EFM32TG11B", 0x40000000, 2048, 18432, "Tiny Gecko 11"}, {103, false, 2048, "EFM32TG11B", 0x40000000, 2048, 18432, "Tiny Gecko 11"},
{106, false, 2048, "EFM32GG12B", 0x40000000, 2048, 32768, "Giant Gecko 12"}, {106, false, 2048, "EFM32GG12B", 0x40000000, 2048, 32768, "Giant Gecko 12"},
/* Second gen devices micro + radio */ /* Second gen devices micro + radio */
{ 16, true , 2048, "EFR32MG1P" , 0x400e0000, 2048, 10240, "Mighty Gecko"}, {16, true, 2048, "EFR32MG1P", 0x400e0000, 2048, 10240, "Mighty Gecko"},
{ 17, true , 2048, "EFR32MG1B" , 0x400e0000, 2048, 10240, "Mighty Gecko"}, {17, true, 2048, "EFR32MG1B", 0x400e0000, 2048, 10240, "Mighty Gecko"},
{ 18, true , 2048, "EFR32MG1V" , 0x400e0000, 2048, 10240, "Mighty Gecko"}, {18, true, 2048, "EFR32MG1V", 0x400e0000, 2048, 10240, "Mighty Gecko"},
{ 19, true , 2048, "EFR32BG1P" , 0x400e0000, 2048, 10240, "Blue Gecko"}, {19, true, 2048, "EFR32BG1P", 0x400e0000, 2048, 10240, "Blue Gecko"},
{ 20, true , 2048, "EFR32BG1B" , 0x400e0000, 2048, 10240, "Blue Gecko"}, {20, true, 2048, "EFR32BG1B", 0x400e0000, 2048, 10240, "Blue Gecko"},
{ 21, true , 2048, "EFR32BG1V" , 0x400e0000, 2048, 10240, "Blue Gecko"}, {21, true, 2048, "EFR32BG1V", 0x400e0000, 2048, 10240, "Blue Gecko"},
{ 25, true , 2048, "EFR32FG1P" , 0x400e0000, 2048, 10240, "Flex Gecko"}, {25, true, 2048, "EFR32FG1P", 0x400e0000, 2048, 10240, "Flex Gecko"},
{ 26, true , 2048, "EFR32FG1B" , 0x400e0000, 2048, 10240, "Flex Gecko"}, {26, true, 2048, "EFR32FG1B", 0x400e0000, 2048, 10240, "Flex Gecko"},
{ 27, true , 2048, "EFR32FG1V" , 0x400e0000, 2048, 10240, "Flex Gecko"}, {27, true, 2048, "EFR32FG1V", 0x400e0000, 2048, 10240, "Flex Gecko"},
{ 28, true , 2048, "EFR32MG12P", 0x400e0000, 2048, 32768, "Mighty Gecko"}, {28, true, 2048, "EFR32MG12P", 0x400e0000, 2048, 32768, "Mighty Gecko"},
{ 29, true , 2048, "EFR32MG12B", 0x400e0000, 2048, 32768, "Mighty Gecko"}, {29, true, 2048, "EFR32MG12B", 0x400e0000, 2048, 32768, "Mighty Gecko"},
{ 30, true , 2048, "EFR32MG12V", 0x400e0000, 2048, 32768, "Mighty Gecko"}, {30, true, 2048, "EFR32MG12V", 0x400e0000, 2048, 32768, "Mighty Gecko"},
{ 31, true , 2048, "EFR32BG12P", 0x400e0000, 2048, 32768, "Blue Gecko"}, {31, true, 2048, "EFR32BG12P", 0x400e0000, 2048, 32768, "Blue Gecko"},
{ 32, true , 2048, "EFR32BG12B", 0x400e0000, 2048, 32768, "Blue Gecko"}, {32, true, 2048, "EFR32BG12B", 0x400e0000, 2048, 32768, "Blue Gecko"},
{ 33, true , 2048, "EFR32BG12V", 0x400e0000, 2048, 32768, "Blue Gecko"}, {33, true, 2048, "EFR32BG12V", 0x400e0000, 2048, 32768, "Blue Gecko"},
{ 37, true , 2048, "EFR32FG12P", 0x400e0000, 2048, 32768, "Flex Gecko"}, {37, true, 2048, "EFR32FG12P", 0x400e0000, 2048, 32768, "Flex Gecko"},
{ 38, true , 2048, "EFR32FG12B", 0x400e0000, 2048, 32768, "Flex Gecko"}, {38, true, 2048, "EFR32FG12B", 0x400e0000, 2048, 32768, "Flex Gecko"},
{ 39, true , 2048, "EFR32FG12V", 0x400e0000, 2048, 32768, "Flex Gecko"}, {39, true, 2048, "EFR32FG12V", 0x400e0000, 2048, 32768, "Flex Gecko"},
{ 40, true , 2048, "EFR32MG13P", 0x400e0000, 2048, 16384, "Mighty Gecko"}, {40, true, 2048, "EFR32MG13P", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{ 41, true , 2048, "EFR32MG13B", 0x400e0000, 2048, 16384, "Mighty Gecko"}, {41, true, 2048, "EFR32MG13B", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{ 42, true , 2048, "EFR32MG13V", 0x400e0000, 2048, 16384, "Mighty Gecko"}, {42, true, 2048, "EFR32MG13V", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{ 43, true , 2048, "EFR32BG13P", 0x400e0000, 2048, 16384, "Blue Gecko"}, {43, true, 2048, "EFR32BG13P", 0x400e0000, 2048, 16384, "Blue Gecko"},
{ 44, true , 2048, "EFR32BG13B", 0x400e0000, 2048, 16384, "Blue Gecko"}, {44, true, 2048, "EFR32BG13B", 0x400e0000, 2048, 16384, "Blue Gecko"},
{ 45, true , 2048, "EFR32BG13V", 0x400e0000, 2048, 16384, "Blue Gecko"}, {45, true, 2048, "EFR32BG13V", 0x400e0000, 2048, 16384, "Blue Gecko"},
{ 49, true , 2048, "EFR32FG13P", 0x400e0000, 2048, 16384, "Flex Gecko"}, {49, true, 2048, "EFR32FG13P", 0x400e0000, 2048, 16384, "Flex Gecko"},
{ 50, true , 2048, "EFR32FG13B", 0x400e0000, 2048, 16384, "Flex Gecko"}, {50, true, 2048, "EFR32FG13B", 0x400e0000, 2048, 16384, "Flex Gecko"},
{ 51, true , 2048, "EFR32FG13V", 0x400e0000, 2048, 16384, "Flex Gecko"}, {51, true, 2048, "EFR32FG13V", 0x400e0000, 2048, 16384, "Flex Gecko"},
{ 52, true , 2048, "EFR32MG14P", 0x400e0000, 2048, 16384, "Mighty Gecko"}, {52, true, 2048, "EFR32MG14P", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{ 53, true , 2048, "EFR32MG14B", 0x400e0000, 2048, 16384, "Mighty Gecko"}, {53, true, 2048, "EFR32MG14B", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{ 54, true , 2048, "EFR32MG14V", 0x400e0000, 2048, 16384, "Mighty Gecko"}, {54, true, 2048, "EFR32MG14V", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{ 55, true , 2048, "EFR32BG14P", 0x400e0000, 2048, 16384, "Blue Gecko"}, {55, true, 2048, "EFR32BG14P", 0x400e0000, 2048, 16384, "Blue Gecko"},
{ 56, true , 2048, "EFR32BG14B", 0x400e0000, 2048, 16384, "Blue Gecko"}, {56, true, 2048, "EFR32BG14B", 0x400e0000, 2048, 16384, "Blue Gecko"},
{ 57, true , 2048, "EFR32BG14V", 0x400e0000, 2048, 16384, "Blue Gecko"}, {57, true, 2048, "EFR32BG14V", 0x400e0000, 2048, 16384, "Blue Gecko"},
{ 61, true , 2048, "EFR32FG14P", 0x400e0000, 2048, 16384, "Flex Gecko"}, {61, true, 2048, "EFR32FG14P", 0x400e0000, 2048, 16384, "Flex Gecko"},
{ 62, true , 2048, "EFR32FG14B", 0x400e0000, 2048, 16384, "Flex Gecko"}, {62, true, 2048, "EFR32FG14B", 0x400e0000, 2048, 16384, "Flex Gecko"},
{ 63, true , 2048, "EFR32FG14V", 0x400e0000, 2048, 16384, "Flex Gecko"}, {63, true, 2048, "EFR32FG14V", 0x400e0000, 2048, 16384, "Flex Gecko"},
}; };
/* miscchip */ /* miscchip */
typedef struct efm32_v2_di_miscchip_t { typedef struct efm32_v2_di_miscchip_t {
uint8_t pincount; uint8_t pincount;
@ -349,7 +343,7 @@ typedef struct efm32_v2_di_miscchip_t {
/* pkgtype */ /* pkgtype */
typedef struct efm32_v2_di_pkgtype_t { typedef struct efm32_v2_di_pkgtype_t {
uint8_t pkgtype; uint8_t pkgtype;
char* name; char *name;
} efm32_v2_di_pkgtype_t; } efm32_v2_di_pkgtype_t;
efm32_v2_di_pkgtype_t const efm32_v2_di_pkgtypes[] = { efm32_v2_di_pkgtype_t const efm32_v2_di_pkgtypes[] = {
@ -362,23 +356,21 @@ efm32_v2_di_pkgtype_t const efm32_v2_di_pkgtypes[] = {
/* tempgrade */ /* tempgrade */
typedef struct efm32_v2_di_tempgrade_t { typedef struct efm32_v2_di_tempgrade_t {
uint8_t tempgrade; uint8_t tempgrade;
char* name; char *name;
} efm32_v2_di_tempgrade_t; } efm32_v2_di_tempgrade_t;
efm32_v2_di_tempgrade_t const efm32_v2_di_tempgrades[] = { efm32_v2_di_tempgrade_t const efm32_v2_di_tempgrades[] = {
{0, "-40 to 85degC"}, {0, "-40 to 85degC"},
{1, "-40 to 125degC"}, {1, "-40 to 125degC"},
{2, "-40 to 105degC"}, {2, "-40 to 105degC"},
{3, "0 to 70degC"} {3, "0 to 70degC"},
}; };
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
/* Helper functions - Version 1 V1 */ /* Helper functions */
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
/** /* Reads the EFM32 Extended Unique Identifier EUI64 (V1) */
* Reads the EFM32 Extended Unique Identifier EUI64 (V1)
*/
static uint64_t efm32_v1_read_eui64(target *t) static uint64_t efm32_v1_read_eui64(target *t)
{ {
uint64_t eui; uint64_t eui;
@ -389,23 +381,7 @@ static uint64_t efm32_v1_read_eui64(target *t)
return eui; return eui;
} }
#if 0 /* Reads the Unique Number (DI V2 only) */
/**
* Reads the EFM32 Extended Unique Identifier EUI48 (V2)
*/
static uint64_t efm32_v2_read_eui48(target *t)
{
uint64_t eui;
eui = (uint64_t)target_mem_read32(t, EFM32_V2_DI_EUI48H) << 32;
eui |= (uint64_t)target_mem_read32(t, EFM32_V2_DI_EUI48L) << 0;
return eui;
}
#endif
/**
* Reads the Unique Number (DI V2 only)
*/
static uint64_t efm32_v2_read_unique(target *t, uint8_t di_version) static uint64_t efm32_v2_read_unique(target *t, uint8_t di_version)
{ {
uint64_t unique; uint64_t unique;
@ -419,9 +395,7 @@ static uint64_t efm32_v2_read_unique(target *t, uint8_t di_version)
} }
} }
/** /* Reads the EFM32 flash size in kiB */
* Reads the EFM32 flash size in kiB
*/
static uint16_t efm32_read_flash_size(target *t, uint8_t di_version) static uint16_t efm32_read_flash_size(target *t, uint8_t di_version)
{ {
switch (di_version) { switch (di_version) {
@ -433,9 +407,8 @@ static uint16_t efm32_read_flash_size(target *t, uint8_t di_version)
return 0; return 0;
} }
} }
/**
* Reads the EFM32 RAM size in kiB /* Reads the EFM32 RAM size in kiB */
*/
static uint16_t efm32_read_ram_size(target *t, uint8_t di_version) static uint16_t efm32_read_ram_size(target *t, uint8_t di_version)
{ {
switch (di_version) { switch (di_version) {
@ -447,9 +420,10 @@ static uint16_t efm32_read_ram_size(target *t, uint8_t di_version)
return 0; return 0;
} }
} }
/** /**
* Reads the EFM32 reported flash page size in bytes. Note: This * Reads the EFM32 reported flash page size in bytes. Note: This
* driver ignores this value, and uses a conservative hard-coded * driver ignores this value and uses a conservative hard-coded
* value. There are errata on the value reported by the EFM32 * value. There are errata on the value reported by the EFM32
* eg. DI_101 * eg. DI_101
*/ */
@ -471,10 +445,7 @@ static uint32_t efm32_flash_page_size(target *t, uint8_t di_version)
return (1 << (mem_info_page_size + 10)); /* uint8_t ovf here */ return (1 << (mem_info_page_size + 10)); /* uint8_t ovf here */
} }
/* Reads the EFM32 Part Number */
/**
* Reads the EFM32 Part Number
*/
static uint16_t efm32_read_part_number(target *t, uint8_t di_version) static uint16_t efm32_read_part_number(target *t, uint8_t di_version)
{ {
switch (di_version) { switch (di_version) {
@ -486,9 +457,8 @@ static uint16_t efm32_read_part_number(target *t, uint8_t di_version)
return 0; return 0;
} }
} }
/**
* Reads the EFM32 Part Family /* Reads the EFM32 Part Family */
*/
static uint8_t efm32_read_part_family(target *t, uint8_t di_version) static uint8_t efm32_read_part_family(target *t, uint8_t di_version)
{ {
switch (di_version) { switch (di_version) {
@ -500,9 +470,8 @@ static uint8_t efm32_read_part_family(target *t, uint8_t di_version)
return 0; return 0;
} }
} }
/**
* Reads the EFM32 Radio part number (EZR parts with V1 DI only) /* Reads the EFM32 Radio part number (EZR parts with V1 DI only) */
*/
static uint16_t efm32_read_radio_part_number(target *t, uint8_t di_version) static uint16_t efm32_read_radio_part_number(target *t, uint8_t di_version)
{ {
switch (di_version) { switch (di_version) {
@ -513,9 +482,7 @@ static uint16_t efm32_read_radio_part_number(target *t, uint8_t di_version)
} }
} }
/** /* Reads the EFM32 Misc. Chip definitions */
* Reads the EFM32 Misc. Chip definitions
*/
static efm32_v2_di_miscchip_t efm32_v2_read_miscchip(target *t, uint8_t di_version) static efm32_v2_di_miscchip_t efm32_v2_read_miscchip(target *t, uint8_t di_version)
{ {
uint32_t meminfo; uint32_t meminfo;
@ -537,9 +504,7 @@ static efm32_v2_di_miscchip_t efm32_v2_read_miscchip(target *t, uint8_t di_versi
/* Shared Functions */ /* Shared Functions */
/* -------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------- */
static void efm32_add_flash(target *t, target_addr addr, size_t length, size_t page_size)
static void efm32_add_flash(target *t, target_addr addr, size_t length,
size_t page_size)
{ {
struct target_flash *f = calloc(1, sizeof(*f)); struct target_flash *f = calloc(1, sizeof(*f));
if (!f) { /* calloc failed: heap exhaustion */ if (!f) { /* calloc failed: heap exhaustion */
@ -556,9 +521,7 @@ static void efm32_add_flash(target *t, target_addr addr, size_t length,
target_add_flash(t, f); target_add_flash(t, f);
} }
/** /* Lookup device */
* Lookup device
*/
static size_t efm32_lookup_device_index(target *t, uint8_t di_version) static size_t efm32_lookup_device_index(target *t, uint8_t di_version)
{ {
uint8_t part_family = efm32_read_part_family(t, di_version); uint8_t part_family = efm32_read_part_family(t, di_version);
@ -569,11 +532,12 @@ static size_t efm32_lookup_device_index(target *t, uint8_t di_version)
return i; return i;
} }
} }
/* Unknown family */ /* Unknown family */
return 9999; return UINT32_MAX;
} }
static efm32_device_t const * efm32_get_device(size_t index) static efm32_device_t const *efm32_get_device(size_t index)
{ {
if (index >= (sizeof(efm32_devices) / sizeof(efm32_device_t))) { if (index >= (sizeof(efm32_devices) / sizeof(efm32_device_t))) {
return NULL; return NULL;
@ -581,9 +545,7 @@ static efm32_device_t const * efm32_get_device(size_t index)
return &efm32_devices[index]; return &efm32_devices[index];
} }
/** /* Probe */
* Probe
*/
struct efm32_priv_s { struct efm32_priv_s {
char efm32_variant_string[60]; char efm32_variant_string[60];
}; };
@ -605,7 +567,7 @@ bool efm32_probe(target *t)
return false; return false;
} }
/* Check the OUI in the EUI is silabs or energymicro. /* Check if the OUI in the EUI is silabs or energymicro.
* Use this to identify the Device Identification (DI) version */ * Use this to identify the Device Identification (DI) version */
uint64_t oui24 = ((efm32_v1_read_eui64(t) >> 40) & 0xFFFFFF); uint64_t oui24 = ((efm32_v1_read_eui64(t) >> 40) & 0xFFFFFF);
if (oui24 == EFM32_V1_DI_EUI_SILABS) { if (oui24 == EFM32_V1_DI_EUI_SILABS) {
@ -621,11 +583,11 @@ bool efm32_probe(target *t)
/* Read the part family, and reject if unknown */ /* Read the part family, and reject if unknown */
size_t device_index = efm32_lookup_device_index(t, di_version); size_t device_index = efm32_lookup_device_index(t, di_version);
if (device_index > (127-32)) { if (device_index > (127 - 32)) {
/* unknown device family */ /* unknown device family */
return false; return false;
} }
efm32_device_t const* device = &efm32_devices[device_index]; efm32_device_t const *device = &efm32_devices[device_index];
if (device == NULL) { if (device == NULL) {
return false; return false;
} }
@ -641,18 +603,17 @@ bool efm32_probe(target *t)
uint32_t flash_page_size = device->flash_page_size; uint32_t flash_page_size = device->flash_page_size;
struct efm32_priv_s *priv_storage = calloc(1, sizeof(*priv_storage)); struct efm32_priv_s *priv_storage = calloc(1, sizeof(*priv_storage));
t->target_storage = (void*)priv_storage; t->target_storage = (void *)priv_storage;
snprintf(priv_storage->efm32_variant_string, snprintf(priv_storage->efm32_variant_string, sizeof(priv_storage->efm32_variant_string), "%c\b%c\b%s %d F%d %s",
sizeof(priv_storage->efm32_variant_string), "%c\b%c\b%s %d F%d %s", di_version + 48, (uint8_t)device_index + 32, device->name, part_number, flash_kib, device->description);
di_version + 48, (uint8_t)device_index + 32,
device->name, part_number, flash_kib, device->description);
/* Setup Target */ /* Setup Target */
t->target_options |= CORTEXM_TOPT_INHIBIT_NRST; t->target_options |= CORTEXM_TOPT_INHIBIT_NRST;
t->driver = priv_storage->efm32_variant_string; t->driver = priv_storage->efm32_variant_string;
tc_printf(t, "flash size %d page size %d\n", flash_size, flash_page_size); tc_printf(t, "flash size %d page size %d\n", flash_size, flash_page_size);
target_add_ram (t, SRAM_BASE, ram_size);
target_add_ram(t, SRAM_BASE, ram_size);
efm32_add_flash(t, 0x00000000, flash_size, flash_page_size); efm32_add_flash(t, 0x00000000, flash_size, flash_page_size);
if (device->user_data_size) { /* optional User Data (UD) section */ if (device->user_data_size) { /* optional User Data (UD) section */
efm32_add_flash(t, 0x0fe00000, device->user_data_size, flash_page_size); efm32_add_flash(t, 0x0fe00000, device->user_data_size, flash_page_size);
@ -660,18 +621,17 @@ bool efm32_probe(target *t)
if (device->bootloader_size) { /* optional Bootloader (BL) section */ if (device->bootloader_size) { /* optional Bootloader (BL) section */
efm32_add_flash(t, 0x0fe10000, device->bootloader_size, flash_page_size); efm32_add_flash(t, 0x0fe10000, device->bootloader_size, flash_page_size);
} }
target_add_commands(t, efm32_cmd_list, "EFM32"); target_add_commands(t, efm32_cmd_list, "EFM32");
return true; return true;
} }
/** /* Erase flash row by row */
* Erase flash row by row
*/
static int efm32_flash_erase(struct target_flash *f, target_addr addr, size_t len) static int efm32_flash_erase(struct target_flash *f, target_addr addr, size_t len)
{ {
target *t = f->t; target *t = f->t;
efm32_device_t const* device = efm32_get_device(t->driver[2] - 32); efm32_device_t const *device = efm32_get_device(t->driver[2] - 32);
if (device == NULL) { if (device == NULL) {
return true; return true;
} }
@ -680,7 +640,7 @@ static int efm32_flash_erase(struct target_flash *f, target_addr addr, size_t le
/* Unlock */ /* Unlock */
target_mem_write32(t, EFM32_MSC_LOCK(msc), EFM32_MSC_LOCK_LOCKKEY); target_mem_write32(t, EFM32_MSC_LOCK(msc), EFM32_MSC_LOCK_LOCKKEY);
/* Set WREN bit to enabel MSC write and erase functionality */ /* Set WREN bit to enable MSC write and erase functionality */
target_mem_write32(t, EFM32_MSC_WRITECTRL(msc), 1); target_mem_write32(t, EFM32_MSC_WRITECTRL(msc), 1);
while (len) { while (len) {
@ -689,7 +649,7 @@ static int efm32_flash_erase(struct target_flash *f, target_addr addr, size_t le
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_LADDRIM); target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_LADDRIM);
/* Issue the erase command */ /* Issue the erase command */
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_ERASEPAGE ); target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_ERASEPAGE);
/* Poll MSC Busy */ /* Poll MSC Busy */
while ((target_mem_read32(t, EFM32_MSC_STATUS(msc)) & EFM32_MSC_STATUS_BUSY)) { while ((target_mem_read32(t, EFM32_MSC_STATUS(msc)) & EFM32_MSC_STATUS_BUSY)) {
@ -707,39 +667,32 @@ static int efm32_flash_erase(struct target_flash *f, target_addr addr, size_t le
return 0; return 0;
} }
/** /* Write flash page by page */
* Write flash page by page static int efm32_flash_write(struct target_flash *f, target_addr dest, const void *src, size_t len)
*/
static int efm32_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len)
{ {
(void)len; (void)len;
target *t = f->t; target *t = f->t;
efm32_device_t const* device = efm32_get_device(t->driver[2] - 32); efm32_device_t const *device = efm32_get_device(t->driver[2] - 32);
if (device == NULL) { if (device == NULL) {
return true; return true;
} }
/* Write flashloader */ /* Write flashloader */
target_mem_write(t, SRAM_BASE, efm32_flash_write_stub, target_mem_write(t, SRAM_BASE, efm32_flash_write_stub, sizeof(efm32_flash_write_stub));
sizeof(efm32_flash_write_stub));
/* Write Buffer */ /* Write Buffer */
target_mem_write(t, STUB_BUFFER_BASE, src, len); target_mem_write(t, STUB_BUFFER_BASE, src, len);
/* Run flashloader */ /* Run flashloader */
int ret = cortexm_run_stub(t, SRAM_BASE, dest, STUB_BUFFER_BASE, len, int ret = cortexm_run_stub(t, SRAM_BASE, dest, STUB_BUFFER_BASE, len, device->msc_addr);
device->msc_addr);
#ifdef ENABLE_DEBUG #ifdef ENABLE_DEBUG
/* Check the MSC_IF */ /* Check the MSC_IF */
uint32_t msc = device->msc_addr; uint32_t msc = device->msc_addr;
uint32_t msc_if = target_mem_read32(t, EFM32_MSC_IF(msc)); uint32_t msc_if = target_mem_read32(t, EFM32_MSC_IF(msc));
DEBUG_INFO("EFM32: Flash write done MSC_IF=%08"PRIx32"\n", msc_if); DEBUG_INFO("EFM32: Flash write done MSC_IF=%08" PRIx32 "\n", msc_if);
#endif #endif
return ret; return ret;
} }
/** /* Uses the MSC ERASEMAIN0/1 command to erase the entire flash */
* Uses the MSC ERASEMAIN0 command to erase the entire flash
*/
static bool efm32_mass_erase(target *t) static bool efm32_mass_erase(target *t)
{ {
efm32_device_t const* device = efm32_get_device(t->driver[2] - 32); efm32_device_t const* device = efm32_get_device(t->driver[2] - 32);
@ -748,7 +701,7 @@ static bool efm32_mass_erase(target *t)
} }
uint32_t msc = device->msc_addr; uint32_t msc = device->msc_addr;
/* Set WREN bit to enabel MSC write and erase functionality */ /* Set WREN bit to enable MSC write and erase functionality */
target_mem_write32(t, EFM32_MSC_WRITECTRL(msc), 1); target_mem_write32(t, EFM32_MSC_WRITECTRL(msc), 1);
/* Unlock mass erase */ /* Unlock mass erase */
@ -772,9 +725,7 @@ static bool efm32_mass_erase(target *t)
return true; return true;
} }
/** /* Reads the 40-bit unique number */
* Reads the 40-bit unique number
*/
static bool efm32_cmd_serial(target *t, int argc, const char **argv) static bool efm32_cmd_serial(target *t, int argc, const char **argv)
{ {
(void)argc; (void)argc;
@ -797,9 +748,8 @@ static bool efm32_cmd_serial(target *t, int argc, const char **argv)
return true; return true;
} }
/**
* Prints various information we know about the device /* Prints various information we know about the device */
*/
static bool efm32_cmd_efm_info(target *t, int argc, const char **argv) static bool efm32_cmd_efm_info(target *t, int argc, const char **argv)
{ {
(void)argc; (void)argc;
@ -819,7 +769,7 @@ static bool efm32_cmd_efm_info(target *t, int argc, const char **argv)
} }
/* lookup device and part number */ /* lookup device and part number */
efm32_device_t const* device = efm32_get_device(t->driver[2] - 32); efm32_device_t const *device = efm32_get_device(t->driver[2] - 32);
if (device == NULL) { if (device == NULL) {
return true; return true;
} }
@ -831,11 +781,10 @@ static bool efm32_cmd_efm_info(target *t, int argc, const char **argv)
uint32_t flash_page_size_reported = efm32_flash_page_size(t, di_version); uint32_t flash_page_size_reported = efm32_flash_page_size(t, di_version);
uint32_t flash_page_size = device->flash_page_size; uint32_t flash_page_size = device->flash_page_size;
tc_printf(t, "%s %d F%d = %s %dkiB flash, %dkiB ram\n", tc_printf(t, "%s %d F%d = %s %dkiB flash, %dkiB ram\n", device->name, part_number, flash_kib, device->description,
device->name, part_number, flash_kib, flash_kib, ram_kib);
device->description, flash_kib, ram_kib); tc_printf(t, "Device says flash page size is %d bytes, we're using %d bytes\n", flash_page_size_reported,
tc_printf(t, "Device says flash page size is %d bytes, we're using %d bytes\n", flash_page_size);
flash_page_size_reported, flash_page_size);
if (flash_page_size_reported < flash_page_size) { if (flash_page_size_reported < flash_page_size) {
tc_printf(t, "This is bad, flash writes may be corrupted\n"); tc_printf(t, "This is bad, flash writes may be corrupted\n");
} }
@ -843,17 +792,15 @@ static bool efm32_cmd_efm_info(target *t, int argc, const char **argv)
if (di_version == 2) { if (di_version == 2) {
efm32_v2_di_miscchip_t miscchip = efm32_v2_read_miscchip(t, di_version); efm32_v2_di_miscchip_t miscchip = efm32_v2_read_miscchip(t, di_version);
efm32_v2_di_pkgtype_t const* pkgtype = NULL; efm32_v2_di_pkgtype_t const *pkgtype = NULL;
efm32_v2_di_tempgrade_t const* tempgrade; efm32_v2_di_tempgrade_t const *tempgrade;
for (size_t i = 0; i < (sizeof(efm32_v2_di_pkgtypes) / for (size_t i = 0; i < (sizeof(efm32_v2_di_pkgtypes) / sizeof(efm32_v2_di_pkgtype_t)); i++) {
sizeof(efm32_v2_di_pkgtype_t)); i++) {
if (efm32_v2_di_pkgtypes[i].pkgtype == miscchip.pkgtype) { if (efm32_v2_di_pkgtypes[i].pkgtype == miscchip.pkgtype) {
pkgtype = &efm32_v2_di_pkgtypes[i]; pkgtype = &efm32_v2_di_pkgtypes[i];
} }
} }
for (size_t i = 0; i < (sizeof(efm32_v2_di_tempgrades) / for (size_t i = 0; i < (sizeof(efm32_v2_di_tempgrades) / sizeof(efm32_v2_di_tempgrade_t)); i++) {
sizeof(efm32_v2_di_tempgrade_t)); i++) {
if (efm32_v2_di_tempgrades[i].tempgrade == miscchip.tempgrade) { if (efm32_v2_di_tempgrades[i].tempgrade == miscchip.tempgrade) {
tempgrade = &efm32_v2_di_tempgrades[i]; tempgrade = &efm32_v2_di_tempgrades[i];
} }
@ -881,7 +828,7 @@ static bool efm32_cmd_efm_info(target *t, int argc, const char **argv)
static bool efm32_cmd_bootloader(target *t, int argc, const char **argv) static bool efm32_cmd_bootloader(target *t, int argc, const char **argv)
{ {
/* lookup device and part number */ /* lookup device and part number */
efm32_device_t const* device = efm32_get_device(t->driver[2] - 32); efm32_device_t const *device = efm32_get_device(t->driver[2] - 32);
if (device == NULL) { if (device == NULL) {
return true; return true;
} }
@ -893,18 +840,17 @@ static bool efm32_cmd_bootloader(target *t, int argc, const char **argv)
} }
uint32_t clw0 = target_mem_read32(t, EFM32_LOCK_BITS_CLW0); uint32_t clw0 = target_mem_read32(t, EFM32_LOCK_BITS_CLW0);
bool bootloader_status = (clw0 & EFM32_CLW0_BOOTLOADER_ENABLE)?1:0; bool bootloader_status = (clw0 & EFM32_CLW0_BOOTLOADER_ENABLE) ? 1 : 0;
if (argc == 1) { if (argc == 1) {
tc_printf(t, "Bootloader %s\n", tc_printf(t, "Bootloader %s\n", bootloader_status ? "enabled" : "disabled");
bootloader_status ? "enabled" : "disabled");
return true; return true;
} else { } else {
bootloader_status = (argv[1][0] == 'e'); bootloader_status = (argv[1][0] == 'e');
} }
/* Modify bootloader enable bit */ /* Modify bootloader enable bit */
clw0 &= bootloader_status?~0:~EFM32_CLW0_BOOTLOADER_ENABLE; clw0 &= bootloader_status ? ~0 : ~EFM32_CLW0_BOOTLOADER_ENABLE;
/* Unlock */ /* Unlock */
target_mem_write32(t, EFM32_MSC_LOCK(msc), EFM32_MSC_LOCK_LOCKKEY); target_mem_write32(t, EFM32_MSC_LOCK(msc), EFM32_MSC_LOCK_LOCKKEY);
@ -929,10 +875,11 @@ static bool efm32_cmd_bootloader(target *t, int argc, const char **argv)
return true; return true;
} }
/* -------------------------------------------------------------------------- */
/* Authentication Access Port (AAP) */
/* -------------------------------------------------------------------------- */
/*** Authentication Access Port (AAP) **/ /* There's an additional AP on the SW-DP that is accessible when the part
/* There's an additional AP on the SW-DP is accessable when the part
* is almost entirely locked. * is almost entirely locked.
* *
* The AAP can be used to issue a DEVICEERASE command, which erases: * The AAP can be used to issue a DEVICEERASE command, which erases:
@ -945,7 +892,7 @@ static bool efm32_cmd_bootloader(target *t, int argc, const char **argv)
* * Bootloader (BL) if present * * Bootloader (BL) if present
* *
* Once the DEVICEERASE command has completed, the main AP will be * Once the DEVICEERASE command has completed, the main AP will be
* accessable again. If the device has a bootloader, it will attempt * accessible again. If the device has a bootloader, it will attempt
* to boot from this. If you have just unlocked the device the * to boot from this. If you have just unlocked the device the
* bootloader could be anything (even garbage, if the bootloader * bootloader could be anything (even garbage, if the bootloader
* wasn't used before the DEVICEERASE). Therefore you may want to * wasn't used before the DEVICEERASE). Therefore you may want to
@ -972,9 +919,7 @@ static bool efm32_cmd_bootloader(target *t, int argc, const char **argv)
static bool efm32_aap_mass_erase(target *t); static bool efm32_aap_mass_erase(target *t);
/** /* AAP Probe */
* AAP Probe
*/
struct efm32_aap_priv_s { struct efm32_aap_priv_s {
char aap_driver_string[42]; char aap_driver_string[42];
}; };
@ -995,15 +940,13 @@ void efm32_aap_probe(ADIv5_AP_t *ap)
t->mass_erase = efm32_aap_mass_erase; t->mass_erase = efm32_aap_mass_erase;
adiv5_ap_ref(ap); adiv5_ap_ref(ap);
t->priv = ap; t->priv = ap;
t->priv_free = (void*)adiv5_ap_unref; t->priv_free = (void *)adiv5_ap_unref;
/* Read status */ /* Read status */
DEBUG_INFO("EFM32: AAP STATUS=%08"PRIx32"\n", adiv5_ap_read(ap, AAP_STATUS)); DEBUG_INFO("EFM32: AAP STATUS=%08" PRIx32 "\n", adiv5_ap_read(ap, AAP_STATUS));
struct efm32_aap_priv_s *priv_storage = calloc(1, sizeof(*priv_storage)); struct efm32_aap_priv_s *priv_storage = calloc(1, sizeof(*priv_storage));
sprintf(priv_storage->aap_driver_string, sprintf(priv_storage->aap_driver_string, "EFM32 Authentication Access Port rev.%d", aap_revision);
"EFM32 Authentication Access Port rev.%d",
aap_revision);
t->driver = priv_storage->aap_driver_string; t->driver = priv_storage->aap_driver_string;
t->regs_size = 4; t->regs_size = 4;
} }
@ -1015,7 +958,7 @@ static bool efm32_aap_mass_erase(target *t)
/* Read status */ /* Read status */
status = adiv5_ap_read(ap, AAP_STATUS); status = adiv5_ap_read(ap, AAP_STATUS);
DEBUG_INFO("EFM32: AAP STATUS=%08"PRIx32"\n", status); DEBUG_INFO("EFM32: AAP STATUS=%08" PRIx32 "\n", status);
if (status & AAP_STATUS_ERASEBUSY) { if (status & AAP_STATUS_ERASEBUSY) {
DEBUG_WARN("EFM32: AAP Erase in progress\n"); DEBUG_WARN("EFM32: AAP Erase in progress\n");
@ -1037,7 +980,7 @@ static bool efm32_aap_mass_erase(target *t)
/* Read status */ /* Read status */
status = adiv5_ap_read(ap, AAP_STATUS); status = adiv5_ap_read(ap, AAP_STATUS);
DEBUG_INFO("EFM32: AAP STATUS=%08"PRIx32"\n", status); DEBUG_INFO("EFM32: AAP STATUS=%08" PRIx32 "\n", status);
return true; return true;
} }