clang-format on cortexa.c, cortexm.c, gdb_reg.c, and gdb_reg.h

This commit is contained in:
Mikaela Szekely 2022-08-23 08:16:36 -06:00 committed by Rachel Mant
parent bc5a41530e
commit 6217da4eab
4 changed files with 131 additions and 175 deletions

View File

@ -81,13 +81,13 @@ struct cortexa_priv {
};
/* This may be specific to Cortex-A9 */
#define CACHE_LINE_LENGTH (8*4)
#define CACHE_LINE_LENGTH (8 * 4)
/* Debug APB registers */
#define DBGDIDR 0
#define DBGDIDR 0
#define DBGDTRRX 32 /* DCC: Host to target */
#define DBGITR 33
#define DBGDTRRX 32 /* DCC: Host to target */
#define DBGITR 33
#define DBGDSCR 34
#define DBGDSCR_TXFULL (1 << 29)
@ -107,55 +107,53 @@ struct cortexa_priv {
#define DBGDSCR_RESTARTED (1 << 1)
#define DBGDSCR_HALTED (1 << 0)
#define DBGDTRTX 35 /* DCC: Target to host */
#define DBGDTRTX 35 /* DCC: Target to host */
#define DBGDRCR 36
#define DBGDRCR_CSE (1 << 2)
#define DBGDRCR_RRQ (1 << 1)
#define DBGDRCR_HRQ (1 << 0)
#define DBGDRCR 36
#define DBGDRCR_CSE (1 << 2)
#define DBGDRCR_RRQ (1 << 1)
#define DBGDRCR_HRQ (1 << 0)
#define DBGBVR(i) (64+(i))
#define DBGBCR(i) (80+(i))
#define DBGBCR_INST_MISMATCH (4 << 20)
#define DBGBCR_BAS_ANY (0xf << 5)
#define DBGBCR_BAS_LOW_HW (0x3 << 5)
#define DBGBCR_BAS_HIGH_HW (0xc << 5)
#define DBGBCR_EN (1 << 0)
#define DBGBVR(i) (64 + (i))
#define DBGBCR(i) (80 + (i))
#define DBGBCR_INST_MISMATCH (4 << 20)
#define DBGBCR_BAS_ANY (0xf << 5)
#define DBGBCR_BAS_LOW_HW (0x3 << 5)
#define DBGBCR_BAS_HIGH_HW (0xc << 5)
#define DBGBCR_EN (1 << 0)
#define DBGWVR(i) (96+(i))
#define DBGWCR(i) (112+(i))
#define DBGWCR_LSC_LOAD (0b01 << 3)
#define DBGWCR_LSC_STORE (0b10 << 3)
#define DBGWCR_LSC_ANY (0b11 << 3)
#define DBGWCR_BAS_BYTE (0b0001 << 5)
#define DBGWCR_BAS_HALFWORD (0b0011 << 5)
#define DBGWCR_BAS_WORD (0b1111 << 5)
#define DBGWCR_PAC_ANY (0b11 << 1)
#define DBGWCR_EN (1 << 0)
#define DBGWVR(i) (96 + (i))
#define DBGWCR(i) (112 + (i))
#define DBGWCR_LSC_LOAD (0b01 << 3)
#define DBGWCR_LSC_STORE (0b10 << 3)
#define DBGWCR_LSC_ANY (0b11 << 3)
#define DBGWCR_BAS_BYTE (0b0001 << 5)
#define DBGWCR_BAS_HALFWORD (0b0011 << 5)
#define DBGWCR_BAS_WORD (0b1111 << 5)
#define DBGWCR_PAC_ANY (0b11 << 1)
#define DBGWCR_EN (1 << 0)
/* Instruction encodings for accessing the coprocessor interface */
#define MCR 0xee000010
#define MRC 0xee100010
#define CPREG(coproc, opc1, rt, crn, crm, opc2) \
(((opc1) << 21) | ((crn) << 16) | ((rt) << 12) | \
((coproc) << 8) | ((opc2) << 5) | (crm))
(((opc1) << 21) | ((crn) << 16) | ((rt) << 12) | ((coproc) << 8) | ((opc2) << 5) | (crm))
/* Debug registers CP14 */
#define DBGDTRRXint CPREG(14, 0, 0, 0, 5, 0)
#define DBGDTRTXint CPREG(14, 0, 0, 0, 5, 0)
/* Address translation registers CP15 */
#define PAR CPREG(15, 0, 0, 7, 4, 0)
#define ATS1CPR CPREG(15, 0, 0, 7, 8, 0)
#define PAR CPREG(15, 0, 0, 7, 4, 0)
#define ATS1CPR CPREG(15, 0, 0, 7, 8, 0)
/* Cache management registers CP15 */
#define ICIALLU CPREG(15, 0, 0, 7, 5, 0)
#define DCCIMVAC CPREG(15, 0, 0, 7, 14, 1)
#define DCCMVAC CPREG(15, 0, 0, 7, 10, 1)
#define ICIALLU CPREG(15, 0, 0, 7, 5, 0)
#define DCCIMVAC CPREG(15, 0, 0, 7, 14, 1)
#define DCCMVAC CPREG(15, 0, 0, 7, 10, 1)
/* Thumb mode bit in CPSR */
#define CPSR_THUMB (1 << 5)
#define CPSR_THUMB (1 << 5)
/**
* Fields for Cortex-A special purpose registers, used in the generation of GDB's target description XML.
@ -166,12 +164,7 @@ struct cortexa_priv {
*/
// Strings for the names of the Cortex-A's special purpose registers.
static const char *cortex_a_spr_names[] = {
"sp",
"lr",
"pc",
"cpsr"
};
static const char *cortex_a_spr_names[] = {"sp", "lr", "pc", "cpsr"};
// The "type" field for each Cortex-A special purpose register.
static const gdb_reg_type_e cortex_a_spr_types[] = {
@ -181,10 +174,9 @@ static const gdb_reg_type_e cortex_a_spr_types[] = {
GDB_TYPE_UNSPECIFIED // cpsr
};
static_assert(ARRAY_SIZE(cortex_a_spr_types) == ARRAY_SIZE(cortex_a_spr_names),
"SPR array length mixmatch! SPR type array should have the same length as SPR name array."
);
static_assert(ARRAY_SIZE(cortex_a_spr_types) == ARRAY_SIZE(cortex_a_spr_names), "SPR array length mixmatch! SPR type "
"array should have the same length as "
"SPR name array.");
// Creates the target description XML string for a Cortex-A. Like snprintf(), this function
// will write no more than max_len and returns the amount of bytes written. Or, if max_len is 0,
@ -263,15 +255,12 @@ static size_t create_tdesc_cortex_a(char *buffer, size_t max_len)
total += snprintf(buffer, printsz,
"%s feature %s "
"<feature name=\"org.gnu.gdb.arm.core\">",
gdb_arm_preamble_first,
gdb_arm_preamble_second
);
gdb_arm_preamble_first, gdb_arm_preamble_second);
// Then the general purpose registers, which have names of r0 to r12.
for (uint8_t i = 0; i <= 12; ++i) {
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz, "<reg name=\"r%u\" bitsize=\"32\"/>", i);
}
@ -282,42 +271,35 @@ static size_t create_tdesc_cortex_a(char *buffer, size_t max_len)
// have a specified save-restore value. So we only need one "associative array" here.
// NOTE: unlike the other loops, this loop uses a size_t for its counter, as it's used to index into arrays.
for (size_t i = 0; i < ARRAY_SIZE(cortex_a_spr_names); ++i) {
gdb_reg_type_e type = cortex_a_spr_types[i];
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz, "<reg name=\"%s\" bitsize=\"32\"%s/>",
cortex_a_spr_names[i],
gdb_reg_type_strings[type]
);
total += snprintf(buffer + total, printsz, "<reg name=\"%s\" bitsize=\"32\"%s/>", cortex_a_spr_names[i],
gdb_reg_type_strings[type]);
}
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
// Now onto the floating point registers.
// The first register is unique; the rest all follow the same format.
total += snprintf(buffer + total, printsz,
"</feature>"
"<feature name=\"org.gnu.gdb.arm.vfp\">"
"<reg name=\"fpscr\" bitsize=\"32\"/>"
);
"<reg name=\"fpscr\" bitsize=\"32\"/>");
// Now onto the simple ones.
for (uint8_t i = 0; i <= 15; ++i) {
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz,
"<reg name=\"d%u\" bitsize=\"64\" type=\"float\"/>",
i
);
total += snprintf(buffer + total, printsz, "<reg name=\"d%u\" bitsize=\"64\" type=\"float\"/>", i);
}
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz, "</feature></target>");
@ -325,15 +307,14 @@ static size_t create_tdesc_cortex_a(char *buffer, size_t max_len)
// these functions are given static input that should not ever be able to fail -- and if it
// does, then there's nothing we can do about it, so we'll just discard the signedness
// of total when we return it.
return (size_t) total;
return (size_t)total;
}
static void apb_write(target *t, uint16_t reg, uint32_t val)
{
struct cortexa_priv *priv = t->priv;
ADIv5_AP_t *ap = priv->apb;
uint32_t addr = priv->base + 4*reg;
uint32_t addr = priv->base + 4 * reg;
adiv5_ap_write(ap, ADIV5_AP_TAR, addr);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DRW, val);
}
@ -342,7 +323,7 @@ static uint32_t apb_read(target *t, uint16_t reg)
{
struct cortexa_priv *priv = t->priv;
ADIv5_AP_t *ap = priv->apb;
uint32_t addr = priv->base + 4*reg;
uint32_t addr = priv->base + 4 * reg;
adiv5_ap_write(ap, ADIV5_AP_TAR, addr);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_READ, ADIV5_AP_DRW, 0);
return adiv5_dp_low_access(ap->dp, ADIV5_LOW_READ, ADIV5_DP_RDBUFF, 0);
@ -358,8 +339,7 @@ static uint32_t va_to_pa(target *t, uint32_t va)
if (par & 1)
priv->mmu_fault = true;
uint32_t pa = (par & ~0xfff) | (va & 0xfff);
DEBUG_INFO("%s: VA = 0x%08"PRIx32", PAR = 0x%08"PRIx32", PA = 0x%08"PRIX32"\n",
__func__, va, par, pa);
DEBUG_INFO("%s: VA = 0x%08" PRIx32 ", PAR = 0x%08" PRIx32 ", PA = 0x%08" PRIX32 "\n", __func__, va, par, pa);
return pa;
}
@ -387,7 +367,7 @@ static void cortexa_slow_mem_read(target *t, void *dest, target_addr_t src, size
for (unsigned i = 0; i < words; i++)
dest32[i] = apb_read(t, DBGDTRTX);
memcpy(dest, (uint8_t*)dest32 + (src & 3), len);
memcpy(dest, (uint8_t *)dest32 + (src & 3), len);
/* Switch back to stalling DCC mode */
dbgdscr = (dbgdscr & ~DBGDSCR_EXTDCCMODE_MASK) | DBGDSCR_EXTDCCMODE_STALL;
@ -464,7 +444,6 @@ static bool cortexa_check_error(target *t)
return err;
}
bool cortexa_probe(ADIv5_AP_t *apb, uint32_t debug_base)
{
target *t;
@ -476,7 +455,7 @@ bool cortexa_probe(ADIv5_AP_t *apb, uint32_t debug_base)
adiv5_ap_ref(apb);
struct cortexa_priv *priv = calloc(1, sizeof(*priv));
if (!priv) { /* calloc failed: heap exhaustion */
if (!priv) { /* calloc failed: heap exhaustion */
DEBUG_WARN("calloc: failed in %s\n", __func__);
return false;
}
@ -492,8 +471,8 @@ bool cortexa_probe(ADIv5_AP_t *apb, uint32_t debug_base)
uint32_t csw = apb->csw | ADIV5_AP_CSW_SIZE_WORD;
adiv5_ap_write(apb, ADIV5_AP_CSW, csw);
uint32_t dbgdidr = apb_read(t, DBGDIDR);
priv->hw_breakpoint_max = ((dbgdidr >> 24) & 15)+1;
priv->hw_watchpoint_max = ((dbgdidr >> 28) & 15)+1;
priv->hw_breakpoint_max = ((dbgdidr >> 24) & 15) + 1;
priv->hw_watchpoint_max = ((dbgdidr >> 28) & 15) + 1;
t->check_error = cortexa_check_error;
@ -542,17 +521,17 @@ bool cortexa_attach(target *t)
dbgdscr |= DBGDSCR_HDBGEN | DBGDSCR_ITREN;
dbgdscr = (dbgdscr & ~DBGDSCR_EXTDCCMODE_MASK) | DBGDSCR_EXTDCCMODE_STALL;
apb_write(t, DBGDSCR, dbgdscr);
DEBUG_INFO("DBGDSCR = 0x%08"PRIx32"\n", dbgdscr);
DEBUG_INFO("DBGDSCR = 0x%08" PRIx32 "\n", dbgdscr);
target_halt_request(t);
tries = 10;
while(!platform_nrst_get_val() && !target_halt_poll(t, NULL) && --tries)
while (!platform_nrst_get_val() && !target_halt_poll(t, NULL) && --tries)
platform_delay(200);
if(!tries)
if (!tries)
return false;
/* Clear any stale breakpoints */
for(unsigned i = 0; i < priv->hw_breakpoint_max; i++) {
for (unsigned i = 0; i < priv->hw_breakpoint_max; i++) {
apb_write(t, DBGBCR(i), 0);
}
priv->hw_breakpoint_mask = 0;
@ -576,7 +555,7 @@ void cortexa_detach(target *t)
}
/* Clear any stale breakpoints */
for(unsigned i = 0; i < priv->hw_breakpoint_max; i++) {
for (unsigned i = 0; i < priv->hw_breakpoint_max; i++) {
apb_write(t, DBGBCR(i), 0);
}
@ -592,8 +571,7 @@ void cortexa_detach(target *t)
uint32_t dbgdscr;
do {
dbgdscr = apb_read(t, DBGDSCR);
} while (!(dbgdscr & DBGDSCR_INSTRCOMPL) &&
!platform_timeout_is_expired(&to));
} while (!(dbgdscr & DBGDSCR_INSTRCOMPL) && !platform_timeout_is_expired(&to));
/* Disable halting debug mode */
dbgdscr &= ~(DBGDSCR_HDBGEN | DBGDSCR_ITREN);
@ -602,7 +580,6 @@ void cortexa_detach(target *t)
apb_write(t, DBGDRCR, DBGDRCR_CSE | DBGDRCR_RRQ);
}
static uint32_t read_gpreg(target *t, uint8_t regno)
{
/* To read a register we use DBGITR to load an MCR instruction
@ -790,7 +767,7 @@ static enum target_halt_reason cortexa_halt_poll(target *t, target_addr_t *watch
if (!(dbgdscr & DBGDSCR_HALTED)) /* Not halted */
return TARGET_HALT_RUNNING;
DEBUG_INFO("%s: DBGDSCR = 0x%08"PRIx32"\n", __func__, dbgdscr);
DEBUG_INFO("%s: DBGDSCR = 0x%08" PRIx32 "\n", __func__, dbgdscr);
/* Reenable DBGITR */
dbgdscr |= DBGDSCR_ITREN;
apb_write(t, DBGDSCR, dbgdscr);
@ -806,9 +783,8 @@ static enum target_halt_reason cortexa_halt_poll(target *t, target_addr_t *watch
/* How do we know which watchpoint was hit? */
/* If there is only one set, it's that */
for (struct breakwatch *bw = t->bw_list; bw; bw = bw->next) {
if ((bw->type != TARGET_WATCH_READ) &&
(bw->type != TARGET_WATCH_WRITE) &&
(bw->type != TARGET_WATCH_ACCESS))
if ((bw->type != TARGET_WATCH_READ) && (bw->type != TARGET_WATCH_WRITE) &&
(bw->type != TARGET_WATCH_ACCESS))
continue;
if (reason == TARGET_HALT_WATCHPOINT) {
/* More than one watchpoint set,
@ -836,11 +812,10 @@ void cortexa_halt_resume(target *t, bool step)
if (step) {
uint32_t addr = priv->reg_cache.r[15];
uint32_t bas = bp_bas(addr, (priv->reg_cache.cpsr & CPSR_THUMB) ? 2 : 4);
DEBUG_INFO("step 0x%08"PRIx32" %"PRIx32"\n", addr, bas);
DEBUG_INFO("step 0x%08" PRIx32 " %" PRIx32 "\n", addr, bas);
/* Set match any breakpoint */
apb_write(t, DBGBVR(0), priv->reg_cache.r[15] & ~3);
apb_write(t, DBGBCR(0), DBGBCR_INST_MISMATCH | bas |
DBGBCR_EN);
apb_write(t, DBGBCR(0), DBGBCR_INST_MISMATCH | bas | DBGBCR_EN);
} else {
apb_write(t, DBGBVR(0), priv->bvr0);
apb_write(t, DBGBCR(0), priv->bcr0);
@ -858,10 +833,9 @@ void cortexa_halt_resume(target *t, bool step)
uint32_t dbgdscr;
do {
dbgdscr = apb_read(t, DBGDSCR);
} while (!(dbgdscr & DBGDSCR_INSTRCOMPL) &&
!platform_timeout_is_expired(&to));
} while (!(dbgdscr & DBGDSCR_INSTRCOMPL) && !platform_timeout_is_expired(&to));
/* Disable DBGITR. Not sure why, but RRQ is ignored otherwise. */
/* Disable DBGITR. Not sure why, but RRQ is ignored otherwise. */
if (step)
dbgdscr |= DBGDSCR_INTDIS;
else
@ -872,9 +846,8 @@ void cortexa_halt_resume(target *t, bool step)
do {
apb_write(t, DBGDRCR, DBGDRCR_CSE | DBGDRCR_RRQ);
dbgdscr = apb_read(t, DBGDSCR);
DEBUG_INFO("%s: DBGDSCR = 0x%08"PRIx32"\n", __func__, dbgdscr);
} while (!(dbgdscr & DBGDSCR_RESTARTED) &&
!platform_timeout_is_expired(&to));
DEBUG_INFO("%s: DBGDSCR = 0x%08" PRIx32 "\n", __func__, dbgdscr);
} while (!(dbgdscr & DBGDSCR_RESTARTED) && !platform_timeout_is_expired(&to));
}
/* Breakpoints */
@ -922,7 +895,7 @@ static int cortexa_breakwatch_set(target *t, struct breakwatch *bw)
priv->hw_breakpoint_mask |= (1 << i);
uint32_t addr = va_to_pa(t, bw->addr);
uint32_t bcr = bp_bas(addr, bw->size) | DBGBCR_EN;
uint32_t bcr = bp_bas(addr, bw->size) | DBGBCR_EN;
apb_write(t, DBGBVR(i), addr & ~3);
apb_write(t, DBGBCR(i), bcr);
if (i == 0) {
@ -948,28 +921,39 @@ static int cortexa_breakwatch_set(target *t, struct breakwatch *bw)
{
uint32_t wcr = DBGWCR_PAC_ANY | DBGWCR_EN;
uint32_t bas = 0;
switch(bw->size) { /* Convert bytes size to BAS bits */
case 1: bas = DBGWCR_BAS_BYTE; break;
case 2: bas = DBGWCR_BAS_HALFWORD; break;
case 4: bas = DBGWCR_BAS_WORD; break;
default:
return -1;
switch (bw->size) { /* Convert bytes size to BAS bits */
case 1:
bas = DBGWCR_BAS_BYTE;
break;
case 2:
bas = DBGWCR_BAS_HALFWORD;
break;
case 4:
bas = DBGWCR_BAS_WORD;
break;
default:
return -1;
}
/* Apply shift based on address LSBs */
wcr |= bas << (bw->addr & 3);
switch (bw->type) { /* Convert gdb type */
case TARGET_WATCH_WRITE: wcr |= DBGWCR_LSC_STORE; break;
case TARGET_WATCH_READ: wcr |= DBGWCR_LSC_LOAD; break;
case TARGET_WATCH_ACCESS: wcr |= DBGWCR_LSC_ANY; break;
default:
return -1;
case TARGET_WATCH_WRITE:
wcr |= DBGWCR_LSC_STORE;
break;
case TARGET_WATCH_READ:
wcr |= DBGWCR_LSC_LOAD;
break;
case TARGET_WATCH_ACCESS:
wcr |= DBGWCR_LSC_ANY;
break;
default:
return -1;
}
apb_write(t, DBGWCR(i), wcr);
apb_write(t, DBGWVR(i), bw->addr & ~3);
DEBUG_INFO("Watchpoint set WCR = 0x%08"PRIx32", WVR = %08"PRIx32"\n",
apb_read(t, DBGWCR(i)),
DEBUG_INFO("Watchpoint set WCR = 0x%08" PRIx32 ", WVR = %08" PRIx32 "\n", apb_read(t, DBGWCR(i)),
apb_read(t, DBGWVR(i)));
}
return 0;

View File

@ -140,8 +140,6 @@ static const uint32_t regnum_cortex_mf[] = {
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, /* s24-s31 */
};
/**
* Fields for Cortex-M special purpose registers, used in the generation of GDB's target description XML.
* The general purpose registers r0-r12 and the vector floating point registers d0-d15 all follow a very
@ -150,7 +148,6 @@ static const uint32_t regnum_cortex_mf[] = {
* 'associative array'.
*/
// Strings for the names of the Cortex-M's special purpose registers.
static const char *cortex_m_spr_names[] = {
"sp",
@ -179,10 +176,9 @@ static const gdb_reg_type_e cortex_m_spr_types[] = {
GDB_TYPE_UNSPECIFIED, // control
};
static_assert(ARRAY_SIZE(cortex_m_spr_types) == ARRAY_SIZE(cortex_m_spr_names),
"SPR array length mismatch! SPR type array should have the same length as SPR name array."
);
static_assert(ARRAY_SIZE(cortex_m_spr_types) == ARRAY_SIZE(cortex_m_spr_names), "SPR array length mismatch! SPR type "
"array should have the same length as "
"SPR name array.");
// The "save-restore" field of each SPR.
static const gdb_reg_save_restore_e cortex_m_spr_save_restores[] = {
@ -198,10 +194,10 @@ static const gdb_reg_save_restore_e cortex_m_spr_save_restores[] = {
GDB_SAVE_RESTORE_NO, // control
};
static_assert(ARRAY_SIZE(cortex_m_spr_save_restores) == ARRAY_SIZE(cortex_m_spr_names),
"SPR array length mismatch! SPR save-restore array should have the same length as SPR name array."
);
static_assert(ARRAY_SIZE(cortex_m_spr_save_restores) == ARRAY_SIZE(cortex_m_spr_names), "SPR array length mismatch! "
"SPR save-restore array should "
"have the same length as SPR "
"name array.");
// The "bitsize" field of each SPR.
static const uint8_t cortex_m_spr_bitsizes[] = {
@ -211,16 +207,15 @@ static const uint8_t cortex_m_spr_bitsizes[] = {
32, // xpsr
32, // msp
32, // psp
8, // primask
8, // basepri
8, // faultmask
8, // control
8, // primask
8, // basepri
8, // faultmask
8, // control
};
static_assert(ARRAY_SIZE(cortex_m_spr_bitsizes) == ARRAY_SIZE(cortex_m_spr_names),
"SPR array length mismatch! SPR bitsize array should have the same length as SPR name array."
);
static_assert(ARRAY_SIZE(cortex_m_spr_bitsizes) == ARRAY_SIZE(cortex_m_spr_names), "SPR array length mismatch! SPR "
"bitsize array should have the same "
"length as SPR name array.");
// Creates the target description XML string for a Cortex-M. Like snprintf(), this function
// will write no more than max_len and returns the amount of bytes written. Or, if max_len is 0,
@ -284,16 +279,13 @@ static size_t create_tdesc_cortex_m(char *buffer, size_t max_len)
total += snprintf(buffer, printsz,
"%s target %s "
"<feature name=\"org.gnu.gdb.arm.m-profile\">",
gdb_arm_preamble_first,
gdb_arm_preamble_second
);
gdb_arm_preamble_first, gdb_arm_preamble_second);
// Then the general purpose registers, which have names of r0 to r12,
// and all the same bitsize.
for (uint8_t i = 0; i <= 12; ++i) {
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz, "<reg name=\"r%u\" bitsize=\"32\"/>", i);
}
@ -304,23 +296,18 @@ static size_t create_tdesc_cortex_m(char *buffer, size_t max_len)
// We'll use the 'associative arrays' defined for those values.
// NOTE: unlike the other loops, this loop uses a size_t for its counter, as it's used to index into arrays.
for (size_t i = 0; i < ARRAY_SIZE(cortex_m_spr_names); ++i) {
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
gdb_reg_type_e type = cortex_m_spr_types[i];
gdb_reg_save_restore_e save_restore = cortex_m_spr_save_restores[i];
total += snprintf(buffer + total, printsz, "<reg name=\"%s\" bitsize=\"%u\"%s%s/>",
cortex_m_spr_names[i],
cortex_m_spr_bitsizes[i],
gdb_reg_save_restore_strings[save_restore],
gdb_reg_type_strings[type]
);
total += snprintf(buffer + total, printsz, "<reg name=\"%s\" bitsize=\"%u\"%s%s/>", cortex_m_spr_names[i],
cortex_m_spr_bitsizes[i], gdb_reg_save_restore_strings[save_restore], gdb_reg_type_strings[type]);
}
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz, "</feature></target>");
@ -328,7 +315,7 @@ static size_t create_tdesc_cortex_m(char *buffer, size_t max_len)
// these functions are given static input that should not ever be able to fail -- and if it
// does, then there's nothing we can do about it, so we'll just discard the signedness
// of total when we return it.
return (size_t) total;
return (size_t)total;
}
// Creates the target description XML string for a Cortex-MF. Like snprintf(), this function
@ -404,7 +391,7 @@ static size_t create_tdesc_cortex_mf(char *buffer, size_t max_len)
// The first part of the target description for the Cortex-MF is identical to the Cortex-M
// target description.
total = (int) create_tdesc_cortex_m(buffer, max_len);
total = (int)create_tdesc_cortex_m(buffer, max_len);
// We can't just repeatedly pass max_len to snprintf, because we keep changing the start
// of buffer (effectively changing its size), so we have to repeatedly compute the size
@ -418,26 +405,23 @@ static size_t create_tdesc_cortex_mf(char *buffer, size_t max_len)
// Minor hack: subtract the target closing tag, since we have a bit more to add.
total -= strlen("</target>");
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
}
total += snprintf(buffer + total, printsz,
"<feature name=\"org.gnu.gdb.arm.vfp\">"
"<reg name=\"fpscr\" bitsize=\"32\"/>"
);
"<reg name=\"fpscr\" bitsize=\"32\"/>");
// After fpscr, the rest of the vfp registers follow a regular format: d0-d15, bitsize 64, type float.
for (uint8_t i = 0; i <= 15; ++i) {
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz, "<reg name=\"d%u\" bitsize=\"64\" type=\"float\"/>", i);
}
if (max_len != 0)
printsz = max_len - (size_t) total;
printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz, "</feature></target>");
@ -445,10 +429,9 @@ static size_t create_tdesc_cortex_mf(char *buffer, size_t max_len)
// these functions are given static input that should not ever be able to fail -- and if it
// does, then there's nothing we can do about it, so we'll just discard the signedness
// of total when we return it.
return (size_t) total;
return (size_t)total;
}
ADIv5_AP_t *cortexm_ap(target *t)
{
return ((struct cortexm_priv *)t->priv)->ap;
@ -589,7 +572,6 @@ bool cortexm_probe(ADIv5_AP_t *ap)
if (target_mem_read32(t, CORTEXM_CPACR) == cpacr)
is_cortexmf = true;
/* Should probe here to make sure it's Cortex-M3 */
t->regs_read = cortexm_regs_read;
@ -710,7 +692,7 @@ bool cortexm_probe(ADIv5_AP_t *ap)
LPC43xx detection. */
PROBE(lpc546xx_probe);
PROBE(lpc43xx_probe);
PROBE(kinetis_probe); /* Older K-series */
PROBE(kinetis_probe); /* Older K-series */
PROBE(at32fxx_probe);
} else if (t->part_id == 0x4cb) { /* Cortex-M23 ROM */
PROBE(gd32f1_probe); /* GD32E23x uses GD32F1 peripherals */
@ -757,7 +739,6 @@ bool cortexm_attach(target *t)
DEBUG_WARN("Cortex-M: target description already allocated before attach");
}
ADIv5_AP_t *ap = cortexm_ap(t);
ap->dp->fault = 1; /* Force switch to this multi-drop device*/
struct cortexm_priv *priv = t->priv;

View File

@ -20,27 +20,21 @@
#include "gdb_reg.h"
const char *gdb_arm_preamble_first = "<?xml version=\"1.0\"?>"
"<!DOCTYPE";
const char *gdb_arm_preamble_first =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE";
const char *gdb_arm_preamble_second =
"SYSTEM "
"\"gdb-target.dtd\">"
"<target>"
" <architecture>arm</architecture>";
const char *gdb_arm_preamble_second = "SYSTEM "
"\"gdb-target.dtd\">"
"<target>"
" <architecture>arm</architecture>";
const char *gdb_reg_type_strings[] = {
"", // GDB_TYPE_UNSPECIFIED.
"", // GDB_TYPE_UNSPECIFIED.
" type=\"data_ptr\"", // GDB_TYPE_DATA_PTR.
" type=\"code_ptr\"", // GDB_TYPE_CODE_PTR.
};
const char *gdb_reg_save_restore_strings[] = {
"", // GDB_SAVE_RESTORE_UNSPECIFIED.
"", // GDB_SAVE_RESTORE_UNSPECIFIED.
" save-restore=\"no\"" // GDB_SAVE_RESTORE_NO.
};

View File

@ -21,7 +21,6 @@
#ifndef __GDB_REG_H
#define __GDB_REG_H
// The beginning XML for GDB target descriptions that are common to ARM targets,
// save for one word: the word after DOCTYPE, which is "target" for Cortex-M, and "feature"
// for Cortex-A. The "preamble" is thus split into two halves, with this single word missing
@ -34,7 +33,6 @@ extern const char *gdb_arm_preamble_first;
// and as the split point.
extern const char *gdb_arm_preamble_second;
// The "type" field of a register tag.
typedef enum gdb_reg_type {
GDB_TYPE_UNSPECIFIED = 0,
@ -45,7 +43,6 @@ typedef enum gdb_reg_type {
// The strings for the "type" field of a register tag, respective to its gdb_reg_type_e value.
extern const char *gdb_reg_type_strings[];
// The "save-restore" field of a register tag.
typedef enum gdb_reg_save_restore {
GDB_SAVE_RESTORE_UNSPECIFIED = 0,