clang-format on cortexa.c, cortexm.c, gdb_reg.c, and gdb_reg.h

This commit is contained in:
Mikaela Szekely 2022-08-23 08:16:36 -06:00 committed by Rachel Mant
parent bc5a41530e
commit 6217da4eab
4 changed files with 131 additions and 175 deletions

View File

@ -137,8 +137,7 @@ struct cortexa_priv {
#define MCR 0xee000010 #define MCR 0xee000010
#define MRC 0xee100010 #define MRC 0xee100010
#define CPREG(coproc, opc1, rt, crn, crm, opc2) \ #define CPREG(coproc, opc1, rt, crn, crm, opc2) \
(((opc1) << 21) | ((crn) << 16) | ((rt) << 12) | \ (((opc1) << 21) | ((crn) << 16) | ((rt) << 12) | ((coproc) << 8) | ((opc2) << 5) | (crm))
((coproc) << 8) | ((opc2) << 5) | (crm))
/* Debug registers CP14 */ /* Debug registers CP14 */
#define DBGDTRRXint CPREG(14, 0, 0, 0, 5, 0) #define DBGDTRRXint CPREG(14, 0, 0, 0, 5, 0)
@ -156,7 +155,6 @@ struct cortexa_priv {
/* Thumb mode bit in CPSR */ /* Thumb mode bit in CPSR */
#define CPSR_THUMB (1 << 5) #define CPSR_THUMB (1 << 5)
/** /**
* Fields for Cortex-A special purpose registers, used in the generation of GDB's target description XML. * Fields for Cortex-A special purpose registers, used in the generation of GDB's target description XML.
* The general purpose registers r0-r12 and the vector floating point registers d0-d15 all follow a very * The general purpose registers r0-r12 and the vector floating point registers d0-d15 all follow a very
@ -166,12 +164,7 @@ struct cortexa_priv {
*/ */
// Strings for the names of the Cortex-A's special purpose registers. // Strings for the names of the Cortex-A's special purpose registers.
static const char *cortex_a_spr_names[] = { static const char *cortex_a_spr_names[] = {"sp", "lr", "pc", "cpsr"};
"sp",
"lr",
"pc",
"cpsr"
};
// The "type" field for each Cortex-A special purpose register. // The "type" field for each Cortex-A special purpose register.
static const gdb_reg_type_e cortex_a_spr_types[] = { static const gdb_reg_type_e cortex_a_spr_types[] = {
@ -181,10 +174,9 @@ static const gdb_reg_type_e cortex_a_spr_types[] = {
GDB_TYPE_UNSPECIFIED // cpsr GDB_TYPE_UNSPECIFIED // cpsr
}; };
static_assert(ARRAY_SIZE(cortex_a_spr_types) == ARRAY_SIZE(cortex_a_spr_names), static_assert(ARRAY_SIZE(cortex_a_spr_types) == ARRAY_SIZE(cortex_a_spr_names), "SPR array length mixmatch! SPR type "
"SPR array length mixmatch! SPR type array should have the same length as SPR name array." "array should have the same length as "
); "SPR name array.");
// Creates the target description XML string for a Cortex-A. Like snprintf(), this function // Creates the target description XML string for a Cortex-A. Like snprintf(), this function
// will write no more than max_len and returns the amount of bytes written. Or, if max_len is 0, // will write no more than max_len and returns the amount of bytes written. Or, if max_len is 0,
@ -263,13 +255,10 @@ static size_t create_tdesc_cortex_a(char *buffer, size_t max_len)
total += snprintf(buffer, printsz, total += snprintf(buffer, printsz,
"%s feature %s " "%s feature %s "
"<feature name=\"org.gnu.gdb.arm.core\">", "<feature name=\"org.gnu.gdb.arm.core\">",
gdb_arm_preamble_first, gdb_arm_preamble_first, gdb_arm_preamble_second);
gdb_arm_preamble_second
);
// Then the general purpose registers, which have names of r0 to r12. // Then the general purpose registers, which have names of r0 to r12.
for (uint8_t i = 0; i <= 12; ++i) { for (uint8_t i = 0; i <= 12; ++i) {
if (max_len != 0) if (max_len != 0)
printsz = max_len - (size_t)total; printsz = max_len - (size_t)total;
@ -282,16 +271,13 @@ static size_t create_tdesc_cortex_a(char *buffer, size_t max_len)
// have a specified save-restore value. So we only need one "associative array" here. // have a specified save-restore value. So we only need one "associative array" here.
// NOTE: unlike the other loops, this loop uses a size_t for its counter, as it's used to index into arrays. // NOTE: unlike the other loops, this loop uses a size_t for its counter, as it's used to index into arrays.
for (size_t i = 0; i < ARRAY_SIZE(cortex_a_spr_names); ++i) { for (size_t i = 0; i < ARRAY_SIZE(cortex_a_spr_names); ++i) {
gdb_reg_type_e type = cortex_a_spr_types[i]; gdb_reg_type_e type = cortex_a_spr_types[i];
if (max_len != 0) if (max_len != 0)
printsz = max_len - (size_t)total; printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz, "<reg name=\"%s\" bitsize=\"32\"%s/>", total += snprintf(buffer + total, printsz, "<reg name=\"%s\" bitsize=\"32\"%s/>", cortex_a_spr_names[i],
cortex_a_spr_names[i], gdb_reg_type_strings[type]);
gdb_reg_type_strings[type]
);
} }
if (max_len != 0) if (max_len != 0)
@ -302,18 +288,14 @@ static size_t create_tdesc_cortex_a(char *buffer, size_t max_len)
total += snprintf(buffer + total, printsz, total += snprintf(buffer + total, printsz,
"</feature>" "</feature>"
"<feature name=\"org.gnu.gdb.arm.vfp\">" "<feature name=\"org.gnu.gdb.arm.vfp\">"
"<reg name=\"fpscr\" bitsize=\"32\"/>" "<reg name=\"fpscr\" bitsize=\"32\"/>");
);
// Now onto the simple ones. // Now onto the simple ones.
for (uint8_t i = 0; i <= 15; ++i) { for (uint8_t i = 0; i <= 15; ++i) {
if (max_len != 0) if (max_len != 0)
printsz = max_len - (size_t)total; printsz = max_len - (size_t)total;
total += snprintf(buffer + total, printsz, total += snprintf(buffer + total, printsz, "<reg name=\"d%u\" bitsize=\"64\" type=\"float\"/>", i);
"<reg name=\"d%u\" bitsize=\"64\" type=\"float\"/>",
i
);
} }
if (max_len != 0) if (max_len != 0)
@ -328,7 +310,6 @@ static size_t create_tdesc_cortex_a(char *buffer, size_t max_len)
return (size_t)total; return (size_t)total;
} }
static void apb_write(target *t, uint16_t reg, uint32_t val) static void apb_write(target *t, uint16_t reg, uint32_t val)
{ {
struct cortexa_priv *priv = t->priv; struct cortexa_priv *priv = t->priv;
@ -358,8 +339,7 @@ static uint32_t va_to_pa(target *t, uint32_t va)
if (par & 1) if (par & 1)
priv->mmu_fault = true; priv->mmu_fault = true;
uint32_t pa = (par & ~0xfff) | (va & 0xfff); uint32_t pa = (par & ~0xfff) | (va & 0xfff);
DEBUG_INFO("%s: VA = 0x%08"PRIx32", PAR = 0x%08"PRIx32", PA = 0x%08"PRIX32"\n", DEBUG_INFO("%s: VA = 0x%08" PRIx32 ", PAR = 0x%08" PRIx32 ", PA = 0x%08" PRIX32 "\n", __func__, va, par, pa);
__func__, va, par, pa);
return pa; return pa;
} }
@ -464,7 +444,6 @@ static bool cortexa_check_error(target *t)
return err; return err;
} }
bool cortexa_probe(ADIv5_AP_t *apb, uint32_t debug_base) bool cortexa_probe(ADIv5_AP_t *apb, uint32_t debug_base)
{ {
target *t; target *t;
@ -592,8 +571,7 @@ void cortexa_detach(target *t)
uint32_t dbgdscr; uint32_t dbgdscr;
do { do {
dbgdscr = apb_read(t, DBGDSCR); dbgdscr = apb_read(t, DBGDSCR);
} while (!(dbgdscr & DBGDSCR_INSTRCOMPL) && } while (!(dbgdscr & DBGDSCR_INSTRCOMPL) && !platform_timeout_is_expired(&to));
!platform_timeout_is_expired(&to));
/* Disable halting debug mode */ /* Disable halting debug mode */
dbgdscr &= ~(DBGDSCR_HDBGEN | DBGDSCR_ITREN); dbgdscr &= ~(DBGDSCR_HDBGEN | DBGDSCR_ITREN);
@ -602,7 +580,6 @@ void cortexa_detach(target *t)
apb_write(t, DBGDRCR, DBGDRCR_CSE | DBGDRCR_RRQ); apb_write(t, DBGDRCR, DBGDRCR_CSE | DBGDRCR_RRQ);
} }
static uint32_t read_gpreg(target *t, uint8_t regno) static uint32_t read_gpreg(target *t, uint8_t regno)
{ {
/* To read a register we use DBGITR to load an MCR instruction /* To read a register we use DBGITR to load an MCR instruction
@ -806,8 +783,7 @@ static enum target_halt_reason cortexa_halt_poll(target *t, target_addr_t *watch
/* How do we know which watchpoint was hit? */ /* How do we know which watchpoint was hit? */
/* If there is only one set, it's that */ /* If there is only one set, it's that */
for (struct breakwatch *bw = t->bw_list; bw; bw = bw->next) { for (struct breakwatch *bw = t->bw_list; bw; bw = bw->next) {
if ((bw->type != TARGET_WATCH_READ) && if ((bw->type != TARGET_WATCH_READ) && (bw->type != TARGET_WATCH_WRITE) &&
(bw->type != TARGET_WATCH_WRITE) &&
(bw->type != TARGET_WATCH_ACCESS)) (bw->type != TARGET_WATCH_ACCESS))
continue; continue;
if (reason == TARGET_HALT_WATCHPOINT) { if (reason == TARGET_HALT_WATCHPOINT) {
@ -839,8 +815,7 @@ void cortexa_halt_resume(target *t, bool step)
DEBUG_INFO("step 0x%08" PRIx32 " %" PRIx32 "\n", addr, bas); DEBUG_INFO("step 0x%08" PRIx32 " %" PRIx32 "\n", addr, bas);
/* Set match any breakpoint */ /* Set match any breakpoint */
apb_write(t, DBGBVR(0), priv->reg_cache.r[15] & ~3); apb_write(t, DBGBVR(0), priv->reg_cache.r[15] & ~3);
apb_write(t, DBGBCR(0), DBGBCR_INST_MISMATCH | bas | apb_write(t, DBGBCR(0), DBGBCR_INST_MISMATCH | bas | DBGBCR_EN);
DBGBCR_EN);
} else { } else {
apb_write(t, DBGBVR(0), priv->bvr0); apb_write(t, DBGBVR(0), priv->bvr0);
apb_write(t, DBGBCR(0), priv->bcr0); apb_write(t, DBGBCR(0), priv->bcr0);
@ -858,8 +833,7 @@ void cortexa_halt_resume(target *t, bool step)
uint32_t dbgdscr; uint32_t dbgdscr;
do { do {
dbgdscr = apb_read(t, DBGDSCR); dbgdscr = apb_read(t, DBGDSCR);
} while (!(dbgdscr & DBGDSCR_INSTRCOMPL) && } while (!(dbgdscr & DBGDSCR_INSTRCOMPL) && !platform_timeout_is_expired(&to));
!platform_timeout_is_expired(&to));
/* Disable DBGITR. Not sure why, but RRQ is ignored otherwise. */ /* Disable DBGITR. Not sure why, but RRQ is ignored otherwise. */
if (step) if (step)
@ -873,8 +847,7 @@ void cortexa_halt_resume(target *t, bool step)
apb_write(t, DBGDRCR, DBGDRCR_CSE | DBGDRCR_RRQ); apb_write(t, DBGDRCR, DBGDRCR_CSE | DBGDRCR_RRQ);
dbgdscr = apb_read(t, DBGDSCR); dbgdscr = apb_read(t, DBGDSCR);
DEBUG_INFO("%s: DBGDSCR = 0x%08" PRIx32 "\n", __func__, dbgdscr); DEBUG_INFO("%s: DBGDSCR = 0x%08" PRIx32 "\n", __func__, dbgdscr);
} while (!(dbgdscr & DBGDSCR_RESTARTED) && } while (!(dbgdscr & DBGDSCR_RESTARTED) && !platform_timeout_is_expired(&to));
!platform_timeout_is_expired(&to));
} }
/* Breakpoints */ /* Breakpoints */
@ -949,9 +922,15 @@ static int cortexa_breakwatch_set(target *t, struct breakwatch *bw)
uint32_t wcr = DBGWCR_PAC_ANY | DBGWCR_EN; uint32_t wcr = DBGWCR_PAC_ANY | DBGWCR_EN;
uint32_t bas = 0; uint32_t bas = 0;
switch (bw->size) { /* Convert bytes size to BAS bits */ switch (bw->size) { /* Convert bytes size to BAS bits */
case 1: bas = DBGWCR_BAS_BYTE; break; case 1:
case 2: bas = DBGWCR_BAS_HALFWORD; break; bas = DBGWCR_BAS_BYTE;
case 4: bas = DBGWCR_BAS_WORD; break; break;
case 2:
bas = DBGWCR_BAS_HALFWORD;
break;
case 4:
bas = DBGWCR_BAS_WORD;
break;
default: default:
return -1; return -1;
} }
@ -959,17 +938,22 @@ static int cortexa_breakwatch_set(target *t, struct breakwatch *bw)
wcr |= bas << (bw->addr & 3); wcr |= bas << (bw->addr & 3);
switch (bw->type) { /* Convert gdb type */ switch (bw->type) { /* Convert gdb type */
case TARGET_WATCH_WRITE: wcr |= DBGWCR_LSC_STORE; break; case TARGET_WATCH_WRITE:
case TARGET_WATCH_READ: wcr |= DBGWCR_LSC_LOAD; break; wcr |= DBGWCR_LSC_STORE;
case TARGET_WATCH_ACCESS: wcr |= DBGWCR_LSC_ANY; break; break;
case TARGET_WATCH_READ:
wcr |= DBGWCR_LSC_LOAD;
break;
case TARGET_WATCH_ACCESS:
wcr |= DBGWCR_LSC_ANY;
break;
default: default:
return -1; return -1;
} }
apb_write(t, DBGWCR(i), wcr); apb_write(t, DBGWCR(i), wcr);
apb_write(t, DBGWVR(i), bw->addr & ~3); apb_write(t, DBGWVR(i), bw->addr & ~3);
DEBUG_INFO("Watchpoint set WCR = 0x%08"PRIx32", WVR = %08"PRIx32"\n", DEBUG_INFO("Watchpoint set WCR = 0x%08" PRIx32 ", WVR = %08" PRIx32 "\n", apb_read(t, DBGWCR(i)),
apb_read(t, DBGWCR(i)),
apb_read(t, DBGWVR(i))); apb_read(t, DBGWVR(i)));
} }
return 0; return 0;

View File

@ -140,8 +140,6 @@ static const uint32_t regnum_cortex_mf[] = {
0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, /* s24-s31 */ 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, /* s24-s31 */
}; };
/** /**
* Fields for Cortex-M special purpose registers, used in the generation of GDB's target description XML. * Fields for Cortex-M special purpose registers, used in the generation of GDB's target description XML.
* The general purpose registers r0-r12 and the vector floating point registers d0-d15 all follow a very * The general purpose registers r0-r12 and the vector floating point registers d0-d15 all follow a very
@ -150,7 +148,6 @@ static const uint32_t regnum_cortex_mf[] = {
* 'associative array'. * 'associative array'.
*/ */
// Strings for the names of the Cortex-M's special purpose registers. // Strings for the names of the Cortex-M's special purpose registers.
static const char *cortex_m_spr_names[] = { static const char *cortex_m_spr_names[] = {
"sp", "sp",
@ -179,10 +176,9 @@ static const gdb_reg_type_e cortex_m_spr_types[] = {
GDB_TYPE_UNSPECIFIED, // control GDB_TYPE_UNSPECIFIED, // control
}; };
static_assert(ARRAY_SIZE(cortex_m_spr_types) == ARRAY_SIZE(cortex_m_spr_names), static_assert(ARRAY_SIZE(cortex_m_spr_types) == ARRAY_SIZE(cortex_m_spr_names), "SPR array length mismatch! SPR type "
"SPR array length mismatch! SPR type array should have the same length as SPR name array." "array should have the same length as "
); "SPR name array.");
// The "save-restore" field of each SPR. // The "save-restore" field of each SPR.
static const gdb_reg_save_restore_e cortex_m_spr_save_restores[] = { static const gdb_reg_save_restore_e cortex_m_spr_save_restores[] = {
@ -198,10 +194,10 @@ static const gdb_reg_save_restore_e cortex_m_spr_save_restores[] = {
GDB_SAVE_RESTORE_NO, // control GDB_SAVE_RESTORE_NO, // control
}; };
static_assert(ARRAY_SIZE(cortex_m_spr_save_restores) == ARRAY_SIZE(cortex_m_spr_names), static_assert(ARRAY_SIZE(cortex_m_spr_save_restores) == ARRAY_SIZE(cortex_m_spr_names), "SPR array length mismatch! "
"SPR array length mismatch! SPR save-restore array should have the same length as SPR name array." "SPR save-restore array should "
); "have the same length as SPR "
"name array.");
// The "bitsize" field of each SPR. // The "bitsize" field of each SPR.
static const uint8_t cortex_m_spr_bitsizes[] = { static const uint8_t cortex_m_spr_bitsizes[] = {
@ -217,10 +213,9 @@ static const uint8_t cortex_m_spr_bitsizes[] = {
8, // control 8, // control
}; };
static_assert(ARRAY_SIZE(cortex_m_spr_bitsizes) == ARRAY_SIZE(cortex_m_spr_names), static_assert(ARRAY_SIZE(cortex_m_spr_bitsizes) == ARRAY_SIZE(cortex_m_spr_names), "SPR array length mismatch! SPR "
"SPR array length mismatch! SPR bitsize array should have the same length as SPR name array." "bitsize array should have the same "
); "length as SPR name array.");
// Creates the target description XML string for a Cortex-M. Like snprintf(), this function // Creates the target description XML string for a Cortex-M. Like snprintf(), this function
// will write no more than max_len and returns the amount of bytes written. Or, if max_len is 0, // will write no more than max_len and returns the amount of bytes written. Or, if max_len is 0,
@ -284,14 +279,11 @@ static size_t create_tdesc_cortex_m(char *buffer, size_t max_len)
total += snprintf(buffer, printsz, total += snprintf(buffer, printsz,
"%s target %s " "%s target %s "
"<feature name=\"org.gnu.gdb.arm.m-profile\">", "<feature name=\"org.gnu.gdb.arm.m-profile\">",
gdb_arm_preamble_first, gdb_arm_preamble_first, gdb_arm_preamble_second);
gdb_arm_preamble_second
);
// Then the general purpose registers, which have names of r0 to r12, // Then the general purpose registers, which have names of r0 to r12,
// and all the same bitsize. // and all the same bitsize.
for (uint8_t i = 0; i <= 12; ++i) { for (uint8_t i = 0; i <= 12; ++i) {
if (max_len != 0) if (max_len != 0)
printsz = max_len - (size_t)total; printsz = max_len - (size_t)total;
@ -304,19 +296,14 @@ static size_t create_tdesc_cortex_m(char *buffer, size_t max_len)
// We'll use the 'associative arrays' defined for those values. // We'll use the 'associative arrays' defined for those values.
// NOTE: unlike the other loops, this loop uses a size_t for its counter, as it's used to index into arrays. // NOTE: unlike the other loops, this loop uses a size_t for its counter, as it's used to index into arrays.
for (size_t i = 0; i < ARRAY_SIZE(cortex_m_spr_names); ++i) { for (size_t i = 0; i < ARRAY_SIZE(cortex_m_spr_names); ++i) {
if (max_len != 0) if (max_len != 0)
printsz = max_len - (size_t)total; printsz = max_len - (size_t)total;
gdb_reg_type_e type = cortex_m_spr_types[i]; gdb_reg_type_e type = cortex_m_spr_types[i];
gdb_reg_save_restore_e save_restore = cortex_m_spr_save_restores[i]; gdb_reg_save_restore_e save_restore = cortex_m_spr_save_restores[i];
total += snprintf(buffer + total, printsz, "<reg name=\"%s\" bitsize=\"%u\"%s%s/>", total += snprintf(buffer + total, printsz, "<reg name=\"%s\" bitsize=\"%u\"%s%s/>", cortex_m_spr_names[i],
cortex_m_spr_names[i], cortex_m_spr_bitsizes[i], gdb_reg_save_restore_strings[save_restore], gdb_reg_type_strings[type]);
cortex_m_spr_bitsizes[i],
gdb_reg_save_restore_strings[save_restore],
gdb_reg_type_strings[type]
);
} }
if (max_len != 0) if (max_len != 0)
@ -421,15 +408,12 @@ static size_t create_tdesc_cortex_mf(char *buffer, size_t max_len)
printsz = max_len - (size_t)total; printsz = max_len - (size_t)total;
} }
total += snprintf(buffer + total, printsz, total += snprintf(buffer + total, printsz,
"<feature name=\"org.gnu.gdb.arm.vfp\">" "<feature name=\"org.gnu.gdb.arm.vfp\">"
"<reg name=\"fpscr\" bitsize=\"32\"/>" "<reg name=\"fpscr\" bitsize=\"32\"/>");
);
// After fpscr, the rest of the vfp registers follow a regular format: d0-d15, bitsize 64, type float. // After fpscr, the rest of the vfp registers follow a regular format: d0-d15, bitsize 64, type float.
for (uint8_t i = 0; i <= 15; ++i) { for (uint8_t i = 0; i <= 15; ++i) {
if (max_len != 0) if (max_len != 0)
printsz = max_len - (size_t)total; printsz = max_len - (size_t)total;
@ -448,7 +432,6 @@ static size_t create_tdesc_cortex_mf(char *buffer, size_t max_len)
return (size_t)total; return (size_t)total;
} }
ADIv5_AP_t *cortexm_ap(target *t) ADIv5_AP_t *cortexm_ap(target *t)
{ {
return ((struct cortexm_priv *)t->priv)->ap; return ((struct cortexm_priv *)t->priv)->ap;
@ -589,7 +572,6 @@ bool cortexm_probe(ADIv5_AP_t *ap)
if (target_mem_read32(t, CORTEXM_CPACR) == cpacr) if (target_mem_read32(t, CORTEXM_CPACR) == cpacr)
is_cortexmf = true; is_cortexmf = true;
/* Should probe here to make sure it's Cortex-M3 */ /* Should probe here to make sure it's Cortex-M3 */
t->regs_read = cortexm_regs_read; t->regs_read = cortexm_regs_read;
@ -757,7 +739,6 @@ bool cortexm_attach(target *t)
DEBUG_WARN("Cortex-M: target description already allocated before attach"); DEBUG_WARN("Cortex-M: target description already allocated before attach");
} }
ADIv5_AP_t *ap = cortexm_ap(t); ADIv5_AP_t *ap = cortexm_ap(t);
ap->dp->fault = 1; /* Force switch to this multi-drop device*/ ap->dp->fault = 1; /* Force switch to this multi-drop device*/
struct cortexm_priv *priv = t->priv; struct cortexm_priv *priv = t->priv;

View File

@ -20,26 +20,20 @@
#include "gdb_reg.h" #include "gdb_reg.h"
const char *gdb_arm_preamble_first = "<?xml version=\"1.0\"?>"
const char *gdb_arm_preamble_first =
"<?xml version=\"1.0\"?>"
"<!DOCTYPE"; "<!DOCTYPE";
const char *gdb_arm_preamble_second = const char *gdb_arm_preamble_second = "SYSTEM "
"SYSTEM "
"\"gdb-target.dtd\">" "\"gdb-target.dtd\">"
"<target>" "<target>"
" <architecture>arm</architecture>"; " <architecture>arm</architecture>";
const char *gdb_reg_type_strings[] = { const char *gdb_reg_type_strings[] = {
"", // GDB_TYPE_UNSPECIFIED. "", // GDB_TYPE_UNSPECIFIED.
" type=\"data_ptr\"", // GDB_TYPE_DATA_PTR. " type=\"data_ptr\"", // GDB_TYPE_DATA_PTR.
" type=\"code_ptr\"", // GDB_TYPE_CODE_PTR. " type=\"code_ptr\"", // GDB_TYPE_CODE_PTR.
}; };
const char *gdb_reg_save_restore_strings[] = { const char *gdb_reg_save_restore_strings[] = {
"", // GDB_SAVE_RESTORE_UNSPECIFIED. "", // GDB_SAVE_RESTORE_UNSPECIFIED.
" save-restore=\"no\"" // GDB_SAVE_RESTORE_NO. " save-restore=\"no\"" // GDB_SAVE_RESTORE_NO.

View File

@ -21,7 +21,6 @@
#ifndef __GDB_REG_H #ifndef __GDB_REG_H
#define __GDB_REG_H #define __GDB_REG_H
// The beginning XML for GDB target descriptions that are common to ARM targets, // The beginning XML for GDB target descriptions that are common to ARM targets,
// save for one word: the word after DOCTYPE, which is "target" for Cortex-M, and "feature" // save for one word: the word after DOCTYPE, which is "target" for Cortex-M, and "feature"
// for Cortex-A. The "preamble" is thus split into two halves, with this single word missing // for Cortex-A. The "preamble" is thus split into two halves, with this single word missing
@ -34,7 +33,6 @@ extern const char *gdb_arm_preamble_first;
// and as the split point. // and as the split point.
extern const char *gdb_arm_preamble_second; extern const char *gdb_arm_preamble_second;
// The "type" field of a register tag. // The "type" field of a register tag.
typedef enum gdb_reg_type { typedef enum gdb_reg_type {
GDB_TYPE_UNSPECIFIED = 0, GDB_TYPE_UNSPECIFIED = 0,
@ -45,7 +43,6 @@ typedef enum gdb_reg_type {
// The strings for the "type" field of a register tag, respective to its gdb_reg_type_e value. // The strings for the "type" field of a register tag, respective to its gdb_reg_type_e value.
extern const char *gdb_reg_type_strings[]; extern const char *gdb_reg_type_strings[];
// The "save-restore" field of a register tag. // The "save-restore" field of a register tag.
typedef enum gdb_reg_save_restore { typedef enum gdb_reg_save_restore {
GDB_SAVE_RESTORE_UNSPECIFIED = 0, GDB_SAVE_RESTORE_UNSPECIFIED = 0,