Merge pull request #372 from richardeoin/efm32-1

[efm32] Add support for EFM32 devices with different DI and MSC layouts
This commit is contained in:
Gareth McMullin 2018-07-27 11:41:58 +12:00 committed by GitHub
commit a988bba035
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 585 additions and 242 deletions

View File

@ -18,14 +18,15 @@
*/
/* This file implements EFM32 target specific functions for
* detecting the device, providing the XML memory map and Flash memory
* detecting the device, providing the memory map and Flash memory
* programming.
*
* Both EFM32 (microcontroller only) and EZR32 (microcontroller+radio)
* devices should be supported through this driver.
* EFM32, EZR32 and EFR32 devices are all currently supported through
* this driver.
*
* Tested with:
* * EZR32LG230 (EZR Leopard Gecko M3)
* * EFR32BG13P532F512GM32 (EFR Blue Gecko)
* *
*/
@ -54,10 +55,12 @@ static const uint16_t efm32_flash_write_stub[] = {
static bool efm32_cmd_erase_all(target *t);
static bool efm32_cmd_serial(target *t);
static bool efm32_cmd_efm_info(target *t);
const struct command_s efm32_cmd_list[] = {
{"erase_mass", (cmd_handler)efm32_cmd_erase_all, "Erase entire flash memory"},
{"serial", (cmd_handler)efm32_cmd_serial, "Prints unique number"},
{"efm_info", (cmd_handler)efm32_cmd_efm_info, "Prints information about the device"},
{NULL, NULL, NULL}
};
@ -67,16 +70,13 @@ const struct command_s efm32_cmd_list[] = {
/* Memory System Controller (MSC) Registers */
/* -------------------------------------------------------------------------- */
#define EFM32_MSC 0x400c0000
#define EFM32_MSC_WRITECTRL (EFM32_MSC+0x008)
#define EFM32_MSC_WRITECMD (EFM32_MSC+0x00c)
#define EFM32_MSC_ADDRB (EFM32_MSC+0x010)
#define EFM32_MSC_WDATA (EFM32_MSC+0x018)
#define EFM32_MSC_STATUS (EFM32_MSC+0x01c)
#define EFM32_MSC_LOCK (EFM32_MSC+0x03c)
#define EFM32_MSC_CMD (EFM32_MSC+0x040)
#define EFM32_MSC_TIMEBASE (EFM32_MSC+0x050)
#define EFM32_MSC_MASSLOCK (EFM32_MSC+0x054)
#define EFM32_MSC_WRITECTRL(msc) (msc+0x008)
#define EFM32_MSC_WRITECMD(msc) (msc+0x00c)
#define EFM32_MSC_ADDRB(msc) (msc+0x010)
#define EFM32_MSC_WDATA(msc) (msc+0x018)
#define EFM32_MSC_STATUS(msc) (msc+0x01c)
#define EFM32_MSC_LOCK(msc) (msc+(msc == 0x400e0000?0x40:0x3c))
#define EFM32_MSC_MASSLOCK(msc) (msc+0x054)
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71
#define EFM32_MSC_MASSLOCK_LOCKKEY 0x631a
@ -100,135 +100,418 @@ const struct command_s efm32_cmd_list[] = {
/* -------------------------------------------------------------------------- */
#define EFM32_INFO 0x0fe00000
#define EFM32_USER_DATA (EFM32_INFO+0x0000)
#define EFM32_LOCK_BITS (EFM32_INFO+0x4000)
#define EFM32_DI (EFM32_INFO+0x8000)
#define EFM32_USER_DATA (EFM32_INFO+0x0000)
#define EFM32_LOCK_BITS (EFM32_INFO+0x4000)
#define EFM32_V1_DI (EFM32_INFO+0x8000)
#define EFM32_V2_DI (EFM32_INFO+0x81B0)
/* -------------------------------------------------------------------------- */
/* Device Information (DI) Area */
/* Device Information (DI) Area - Version 1 V1 */
/* -------------------------------------------------------------------------- */
#define EFM32_DI_CMU_LFRCOCTRL (EFM32_DI+0x020)
#define EFM32_DI_CMU_HFRCOCTRL (EFM32_DI+0x028)
#define EFM32_DI_CMU_AUXHFRCOCTRL (EFM32_DI+0x030)
#define EFM32_DI_ADC0_CAL (EFM32_DI+0x040)
#define EFM32_DI_ADC0_BIASPROG (EFM32_DI+0x048)
#define EFM32_DI_DAC0_CAL (EFM32_DI+0x050)
#define EFM32_DI_DAC0_BIASPROG (EFM32_DI+0x058)
#define EFM32_DI_ACMP0_CTRL (EFM32_DI+0x060)
#define EFM32_DI_ACMP1_CTRL (EFM32_DI+0x068)
#define EFM32_DI_CMU_LCDCTRL (EFM32_DI+0x078)
#define EFM32_DI_DAC0_OPACTRL (EFM32_DI+0x0A0)
#define EFM32_DI_DAC0_OPAOFFSET (EFM32_DI+0x0A8)
#define EFM32_DI_EMU_BUINACT (EFM32_DI+0x0B0)
#define EFM32_DI_EMU_BUACT (EFM32_DI+0x0B8)
#define EFM32_DI_EMU_BUBODBUVINCAL (EFM32_DI+0x0C0)
#define EFM32_DI_EMU_BUBODUNREGCAL (EFM32_DI+0x0C8)
#define EFM32_DI_MCM_REV_MIN (EFM32_DI+0x1AA)
#define EFM32_DI_MCM_REV_MAJ (EFM32_DI+0x1AB)
#define EFM32_DI_RADIO_REV_MIN (EFM32_DI+0x1AC)
#define EFM32_DI_RADIO_REV_MAJ (EFM32_DI+0x1AD)
#define EFM32_DI_RADIO_OPN (EFM32_DI+0x1AE)
#define EFM32_DI_DI_CRC (EFM32_DI+0x1B0)
#define EFM32_DI_CAL_TEMP_0 (EFM32_DI+0x1B2)
#define EFM32_DI_ADC0_CAL_1V25 (EFM32_DI+0x1B4)
#define EFM32_DI_ADC0_CAL_2V5 (EFM32_DI+0x1B6)
#define EFM32_DI_ADC0_CAL_VDD (EFM32_DI+0x1B8)
#define EFM32_DI_ADC0_CAL_5VDIFF (EFM32_DI+0x1BA)
#define EFM32_DI_ADC0_CAL_2XVDD (EFM32_DI+0x1BC)
#define EFM32_DI_ADC0_TEMP_0_READ_1V25 (EFM32_DI+0x1BE)
#define EFM32_DI_DAC0_CAL_1V25 (EFM32_DI+0x1C8)
#define EFM32_DI_DAC0_CAL_2V5 (EFM32_DI+0x1CC)
#define EFM32_DI_DAC0_CAL_VDD (EFM32_DI+0x1D0)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_1 (EFM32_DI+0x1D4)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_7 (EFM32_DI+0x1D5)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_11 (EFM32_DI+0x1D6)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_14 (EFM32_DI+0x1D7)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_21 (EFM32_DI+0x1D8)
#define EFM32_DI_AUXHFRCO_CALIB_BAND_28 (EFM32_DI+0x1D9)
#define EFM32_DI_HFRCO_CALIB_BAND_1 (EFM32_DI+0x1DC)
#define EFM32_DI_HFRCO_CALIB_BAND_7 (EFM32_DI+0x1DD)
#define EFM32_DI_HFRCO_CALIB_BAND_11 (EFM32_DI+0x1DE)
#define EFM32_DI_HFRCO_CALIB_BAND_14 (EFM32_DI+0x1DF)
#define EFM32_DI_HFRCO_CALIB_BAND_21 (EFM32_DI+0x1E0)
#define EFM32_DI_HFRCO_CALIB_BAND_28 (EFM32_DI+0x1E1)
#define EFM32_DI_MEM_INFO_PAGE_SIZE (EFM32_DI+0x1E7)
#define EFM32_DI_RADIO_ID (EFM32_DI+0x1EE)
#define EFM32_DI_EUI64_0 (EFM32_DI+0x1F0)
#define EFM32_DI_EUI64_1 (EFM32_DI+0x1F4)
#define EFM32_DI_MEM_INFO_FLASH (EFM32_DI+0x1F8)
#define EFM32_DI_MEM_INFO_RAM (EFM32_DI+0x1FA)
#define EFM32_DI_PART_NUMBER (EFM32_DI+0x1FC)
#define EFM32_DI_PART_FAMILY (EFM32_DI+0x1FE)
#define EFM32_DI_PROD_REV (EFM32_DI+0x1FF)
#define EFM32_V1_DI_CMU_LFRCOCTRL (EFM32_V1_DI+0x020)
#define EFM32_V1_DI_CMU_HFRCOCTRL (EFM32_V1_DI+0x028)
#define EFM32_V1_DI_CMU_AUXHFRCOCTRL (EFM32_V1_DI+0x030)
#define EFM32_V1_DI_ADC0_CAL (EFM32_V1_DI+0x040)
#define EFM32_V1_DI_ADC0_BIASPROG (EFM32_V1_DI+0x048)
#define EFM32_V1_DI_DAC0_CAL (EFM32_V1_DI+0x050)
#define EFM32_V1_DI_DAC0_BIASPROG (EFM32_V1_DI+0x058)
#define EFM32_V1_DI_ACMP0_CTRL (EFM32_V1_DI+0x060)
#define EFM32_V1_DI_ACMP1_CTRL (EFM32_V1_DI+0x068)
#define EFM32_V1_DI_CMU_LCDCTRL (EFM32_V1_DI+0x078)
#define EFM32_V1_DI_DAC0_OPACTRL (EFM32_V1_DI+0x0A0)
#define EFM32_V1_DI_DAC0_OPAOFFSET (EFM32_V1_DI+0x0A8)
#define EFM32_V1_DI_EMU_BUINACT (EFM32_V1_DI+0x0B0)
#define EFM32_V1_DI_EMU_BUACT (EFM32_V1_DI+0x0B8)
#define EFM32_V1_DI_EMU_BUBODBUVINCAL (EFM32_V1_DI+0x0C0)
#define EFM32_V1_DI_EMU_BUBODUNREGCAL (EFM32_V1_DI+0x0C8)
#define EFM32_V1_DI_MCM_REV_MIN (EFM32_V1_DI+0x1AA)
#define EFM32_V1_DI_MCM_REV_MAJ (EFM32_V1_DI+0x1AB)
#define EFM32_V1_DI_RADIO_REV_MIN (EFM32_V1_DI+0x1AC)
#define EFM32_V1_DI_RADIO_REV_MAJ (EFM32_V1_DI+0x1AD)
#define EFM32_V1_DI_RADIO_OPN (EFM32_V1_DI+0x1AE)
#define EFM32_V1_DI_V1_DI_CRC (EFM32_V1_DI+0x1B0)
#define EFM32_V1_DI_CAL_TEMP_0 (EFM32_V1_DI+0x1B2)
#define EFM32_V1_DI_ADC0_CAL_1V25 (EFM32_V1_DI+0x1B4)
#define EFM32_V1_DI_ADC0_CAL_2V5 (EFM32_V1_DI+0x1B6)
#define EFM32_V1_DI_ADC0_CAL_VDD (EFM32_V1_DI+0x1B8)
#define EFM32_V1_DI_ADC0_CAL_5VDIFF (EFM32_V1_DI+0x1BA)
#define EFM32_V1_DI_ADC0_CAL_2XVDD (EFM32_V1_DI+0x1BC)
#define EFM32_V1_DI_ADC0_TEMP_0_READ_1V25 (EFM32_V1_DI+0x1BE)
#define EFM32_V1_DI_DAC0_CAL_1V25 (EFM32_V1_DI+0x1C8)
#define EFM32_V1_DI_DAC0_CAL_2V5 (EFM32_V1_DI+0x1CC)
#define EFM32_V1_DI_DAC0_CAL_VDD (EFM32_V1_DI+0x1D0)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_1 (EFM32_V1_DI+0x1D4)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_7 (EFM32_V1_DI+0x1D5)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_11 (EFM32_V1_DI+0x1D6)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_14 (EFM32_V1_DI+0x1D7)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_21 (EFM32_V1_DI+0x1D8)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_28 (EFM32_V1_DI+0x1D9)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_1 (EFM32_V1_DI+0x1DC)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_7 (EFM32_V1_DI+0x1DD)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_11 (EFM32_V1_DI+0x1DE)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_14 (EFM32_V1_DI+0x1DF)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_21 (EFM32_V1_DI+0x1E0)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_28 (EFM32_V1_DI+0x1E1)
#define EFM32_V1_DI_MEM_INFO_PAGE_SIZE (EFM32_V1_DI+0x1E7)
#define EFM32_V1_DI_RADIO_ID (EFM32_V1_DI+0x1EE)
#define EFM32_V1_DI_EUI64_0 (EFM32_V1_DI+0x1F0)
#define EFM32_V1_DI_EUI64_1 (EFM32_V1_DI+0x1F4)
#define EFM32_V1_DI_MEM_INFO_FLASH (EFM32_V1_DI+0x1F8)
#define EFM32_V1_DI_MEM_INFO_RAM (EFM32_V1_DI+0x1FA)
#define EFM32_V1_DI_PART_NUMBER (EFM32_V1_DI+0x1FC)
#define EFM32_V1_DI_PART_FAMILY (EFM32_V1_DI+0x1FE)
#define EFM32_V1_DI_PROD_REV (EFM32_V1_DI+0x1FF)
/* top 24 bits of eui */
#define EFM32_DI_EUI_SILABS 0x000b57
#define EFM32_DI_PART_FAMILY_GECKO 71
#define EFM32_DI_PART_FAMILY_GIANT_GECKO 72
#define EFM32_DI_PART_FAMILY_TINY_GECKO 73
#define EFM32_DI_PART_FAMILY_LEOPARD_GECKO 74
#define EFM32_DI_PART_FAMILY_WONDER_GECKO 75
#define EFM32_DI_PART_FAMILY_ZERO_GECKO 76
#define EFM32_DI_PART_FAMILY_HAPPY_GECKO 77
#define EFM32_DI_PART_FAMILY_EZR_WONDER_GECKO 120
#define EFM32_DI_PART_FAMILY_EZR_LEOPARD_GECKO 121
#define EFM32_V1_DI_EUI_SILABS 0x000b57
/* -------------------------------------------------------------------------- */
/* Helper functions */
/* Device Information (DI) Area - Version 2 V2 */
/* -------------------------------------------------------------------------- */
#define EFM32_V2_DI_CAL (EFM32_V2_DI+0x000) /* CRC of DI-page and calibration temperature */
#define EFM32_V2_DI_EXTINFO (EFM32_V2_DI+0x020) /* External Component description */
#define EFM32_V2_DI_EUI48L (EFM32_V2_DI+0x028) /* EUI48 OUI and Unique identifier */
#define EFM32_V2_DI_EUI48H (EFM32_V2_DI+0x02C) /* OUI */
#define EFM32_V2_DI_CUSTOMINFO (EFM32_V2_DI+0x030) /* Custom information */
#define EFM32_V2_DI_MEMINFO (EFM32_V2_DI+0x034) /* Flash page size and misc. chip information */
#define EFM32_V2_DI_UNIQUEL (EFM32_V2_DI+0x040) /* Low 32 bits of device unique number */
#define EFM32_V2_DI_UNIQUEH (EFM32_V2_DI+0x044) /* High 32 bits of device unique number */
#define EFM32_V2_DI_MSIZE (EFM32_V2_DI+0x048) /* Flash and SRAM Memory size in kB */
#define EFM32_V2_DI_PART (EFM32_V2_DI+0x04C) /* Part description */
#define EFM32_V2_DI_DEVINFOREV (EFM32_V2_DI+0x050) /* Device information page revision */
#define EFM32_V2_DI_EMUTEMP (EFM32_V2_DI+0x054) /* EMU Temperature Calibration Information */
#define EFM32_V2_DI_ADC0CAL0 (EFM32_V2_DI+0x060) /* ADC0 calibration register 0 */
#define EFM32_V2_DI_ADC0CAL1 (EFM32_V2_DI+0x064) /* ADC0 calibration register 1 */
#define EFM32_V2_DI_ADC0CAL2 (EFM32_V2_DI+0x068) /* ADC0 calibration register 2 */
#define EFM32_V2_DI_ADC0CAL3 (EFM32_V2_DI+0x06C) /* ADC0 calibration register 3 */
#define EFM32_V2_DI_HFRCOCAL0 (EFM32_V2_DI+0x080) /* HFRCO Calibration Register (4 MHz) */
#define EFM32_V2_DI_HFRCOCAL3 (EFM32_V2_DI+0x08C) /* HFRCO Calibration Register (7 MHz) */
#define EFM32_V2_DI_HFRCOCAL6 (EFM32_V2_DI+0x098) /* HFRCO Calibration Register (13 MHz) */
#define EFM32_V2_DI_HFRCOCAL7 (EFM32_V2_DI+0x09C) /* HFRCO Calibration Register (16 MHz) */
#define EFM32_V2_DI_HFRCOCAL8 (EFM32_V2_DI+0x0A0)
#define EFM32_V2_DI_HFRCOCAL10 (EFM32_V2_DI+0x0A8)
#define EFM32_V2_DI_HFRCOCAL11 (EFM32_V2_DI+0x0AC)
#define EFM32_V2_DI_HFRCOCAL12 (EFM32_V2_DI+0x0B0)
#define EFM32_V2_DI_AUXHFRCOCAL0 (EFM32_V2_DI+0x0E0)
#define EFM32_V2_DI_AUXHFRCOCAL3 (EFM32_V2_DI+0x0EC)
#define EFM32_V2_DI_AUXHFRCOCAL6 (EFM32_V2_DI+0x0F8)
#define EFM32_V2_DI_AUXHFRCOCAL7 (EFM32_V2_DI+0x0FC)
#define EFM32_V2_DI_AUXHFRCOCAL8 (EFM32_V2_DI+0x100)
#define EFM32_V2_DI_AUXHFRCOCAL10 (EFM32_V2_DI+0x108)
#define EFM32_V2_DI_AUXHFRCOCAL11 (EFM32_V2_DI+0x10C)
#define EFM32_V2_DI_AUXHFRCOCAL12 (EFM32_V2_DI+0x110)
#define EFM32_V2_DI_VMONCAL0 (EFM32_V2_DI+0x140)
#define EFM32_V2_DI_VMONCAL1 (EFM32_V2_DI+0x144) /* VMON Calibration Register 1 */
#define EFM32_V2_DI_VMONCAL2 (EFM32_V2_DI+0x148) /* VMON Calibration Register 2 */
#define EFM32_V2_DI_IDAC0CAL0 (EFM32_V2_DI+0x158) /* IDAC0 Calibration Register 0 */
#define EFM32_V2_DI_IDAC0CAL1 (EFM32_V2_DI+0x15C) /* IDAC0 Calibration Register 1 */
#define EFM32_V2_DI_DCDCLNVCTRL0 (EFM32_V2_DI+0x168) /* DCDC Low-noise VREF Trim Register 0 */
#define EFM32_V2_DI_DCDCLPVCTRL0 (EFM32_V2_DI+0x16C) /* DCDC Low-power VREF Trim Register 0 */
#define EFM32_V2_DI_DCDCLPVCTRL1 (EFM32_V2_DI+0x170) /* DCDC Low-power VREF Trim Register 1 */
#define EFM32_V2_DI_DCDCLPVCTRL2 (EFM32_V2_DI+0x174) /* DCDC Low-power VREF Trim Register 2 */
#define EFM32_V2_DI_DCDCLPVCTRL3 (EFM32_V2_DI+0x178) /* DCDC Low-power VREF Trim Register 3 */
#define EFM32_V2_DI_DCDCLPCMPHYSSEL0 (EFM32_V2_DI+0x17C) /* DCDC LPCMPHYSSEL Trim Register 0 */
#define EFM32_V2_DI_DCDCLPCMPHYSSEL1 (EFM32_V2_DI+0x180) /* DCDC LPCMPHYSSEL Trim Register 1 */
#define EFM32_V2_DI_VDAC0MAINCAL (EFM32_V2_DI+0x184) /* VDAC0 Cals for Main Path */
#define EFM32_V2_DI_VDAC0ALTCAL (EFM32_V2_DI+0x188) /* VDAC0 Cals for Alternate Path */
#define EFM32_V2_DI_VDAC0CH1CAL (EFM32_V2_DI+0x18C) /* VDAC0 CH1 Error Cal */
#define EFM32_V2_DI_OPA0CAL0 (EFM32_V2_DI+0x190) /* OPA0 Calibration Register for DRIVESTRENGTH 0, INCBW=1 */
#define EFM32_V2_DI_OPA0CAL1 (EFM32_V2_DI+0x194) /* OPA0 Calibration Register for DRIVESTRENGTH 1, INCBW=1 */
#define EFM32_V2_DI_OPA0CAL2 (EFM32_V2_DI+0x198) /* OPA0 Calibration Register for DRIVESTRENGTH 2, INCBW=1 */
#define EFM32_V2_DI_OPA0CAL3 (EFM32_V2_DI+0x19C) /* OPA0 Calibration Register for DRIVESTRENGTH 3, INCBW=1 */
#define EFM32_V2_DI_OPA1CAL0 (EFM32_V2_DI+0x1A0) /* OPA1 Calibration Register for DRIVESTRENGTH 0, INCBW=1 */
#define EFM32_V2_DI_OPA1CAL1 (EFM32_V2_DI+0x1A4) /* OPA1 Calibration Register for DRIVESTRENGTH 1, INCBW=1 */
#define EFM32_V2_DI_OPA1CAL2 (EFM32_V2_DI+0x1A8)
#define EFM32_V2_DI_OPA1CAL3 (EFM32_V2_DI+0x1AC)
#define EFM32_V2_DI_OPA2CAL0 (EFM32_V2_DI+0x1B0)
#define EFM32_V2_DI_OPA2CAL1 (EFM32_V2_DI+0x1B4)
#define EFM32_V2_DI_OPA2CAL2 (EFM32_V2_DI+0x1B8)
#define EFM32_V2_DI_OPA2CAL3 (EFM32_V2_DI+0x1BC)
#define EFM32_V2_DI_CSENGAINCAL (EFM32_V2_DI+0x1C0)
#define EFM32_V2_DI_OPA0CAL4 (EFM32_V2_DI+0x1D0)
#define EFM32_V2_DI_OPA0CAL5 (EFM32_V2_DI+0x1D4)
#define EFM32_V2_DI_OPA0CAL6 (EFM32_V2_DI+0x1D8)
#define EFM32_V2_DI_OPA0CAL7 (EFM32_V2_DI+0x1DC)
#define EFM32_V2_DI_OPA1CAL4 (EFM32_V2_DI+0x1E0)
#define EFM32_V2_DI_OPA1CAL5 (EFM32_V2_DI+0x1E4)
#define EFM32_V2_DI_OPA1CAL6 (EFM32_V2_DI+0x1E8)
#define EFM32_V2_DI_OPA1CAL7 (EFM32_V2_DI+0x1EC)
#define EFM32_V2_DI_OPA2CAL4 (EFM32_V2_DI+0x1F0)
#define EFM32_V2_DI_OPA2CAL5 (EFM32_V2_DI+0x1F4)
#define EFM32_V2_DI_OPA2CAL6 (EFM32_V2_DI+0x1F8) /* OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=0 */
#define EFM32_V2_DI_OPA2CAL7 (EFM32_V2_DI+0x1FC) /* OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=0 */
/* top 24 bits of eui */
#define EFM32_V2_DI_EUI_ENERGYMICRO 0xd0cf5e
/* -------------------------------------------------------------------------- */
/* Constants */
/* -------------------------------------------------------------------------- */
typedef struct efm32_device_t {
uint16_t family_id; /* Family for device matching */
char* name; /* Friendly device family name */
uint32_t flash_page_size; /* Flash page size */
uint32_t msc_addr; /* MSC Address */
bool has_radio; /* Indicates a device has attached radio */
uint32_t user_data_size; /* User Data (UD) region size */
uint32_t bootloader_size; /* Bootloader (BL) region size (may be 0 for no BL region) */
char* description; /* Human-readable description */
} efm32_device_t;
efm32_device_t const efm32_devices[] = {
/* First gen micros */
{71, "EFM32G", 512, 0x400c0000, false, 512, 0, "Gecko"},
{72, "EFM32GG", 2048, 0x400c0000, false, 4096, 0, "Giant Gecko"},
{73, "EFM32TG", 512, 0x400c0000, false, 512, 0, "Tiny Gecko"},
{74, "EFM32LG", 2048, 0x400c0000, false, 2048, 0, "Leopard Gecko"},
{75, "EFM32WG", 2048, 0x400c0000, false, 2048, 0, "Wonder Gecko"},
{76, "EFM32ZG", 1024, 0x400c0000, false, 1024, 0, "Zero Gecko"},
{77, "EFM32HG", 1024, 0x400c0000, false, 1024, 0, "Happy Gecko"},
/* First (1.5) gen micro + radio */
{120, "EZR32WG", 2048, 0x400c0000, true, 2048, 0, "EZR Wonder Gecko"},
{121, "EZR32LG", 2048, 0x400c0000, true, 2048, 0, "EZR Leopard Gecko"},
{122, "EZR32HG", 1024, 0x400c0000, true, 1024, 0, "EZR Happy Gecko"},
/* Second gen micros */
{81, "EFM32PG1B", 2048, 0x400e0000, false, 2048, 10240, "Pearl Gecko"},
{83, "EFM32JG1B", 2048, 0x400e0000, false, 2048, 10240, "Jade Gecko"},
/* Second gen devices micro + radio */
{16, "EFR32MG1P", 2048, 0x400e0000, true, 2048, 10240, "Mighty Gecko"},
{17, "EFR32MG1B", 2048, 0x400e0000, true, 2048, 10240, "Mighty Gecko"},
{18, "EFR32MG1V", 2048, 0x400e0000, true, 2048, 10240, "Mighty Gecko"},
{19, "EFR32BG1P", 2048, 0x400e0000, true, 2048, 10240, "Blue Gecko"},
{20, "EFR32BG1B", 2048, 0x400e0000, true, 2048, 10240, "Blue Gecko"},
{21, "EFR32BG1V", 2048, 0x400e0000, true, 2048, 10240, "Blue Gecko"},
{25, "EFR32FG1P", 2048, 0x400e0000, true, 2048, 10240, "Flex Gecko"},
{26, "EFR32FG1B", 2048, 0x400e0000, true, 2048, 10240, "Flex Gecko"},
{27, "EFR32FG1V", 2048, 0x400e0000, true, 2048, 10240, "Flex Gecko"},
{28, "EFR32MG12P", 2048, 0x400e0000, true, 2048, 32768, "Mighty Gecko"},
{29, "EFR32MG12B", 2048, 0x400e0000, true, 2048, 32768, "Mighty Gecko"},
{30, "EFR32MG12V", 2048, 0x400e0000, true, 2048, 32768, "Mighty Gecko"},
{31, "EFR32BG12P", 2048, 0x400e0000, true, 2048, 32768, "Blue Gecko"},
{32, "EFR32BG12B", 2048, 0x400e0000, true, 2048, 32768, "Blue Gecko"},
{33, "EFR32BG12V", 2048, 0x400e0000, true, 2048, 32768, "Blue Gecko"},
{37, "EFR32FG12P", 2048, 0x400e0000, true, 2048, 32768, "Flex Gecko"},
{38, "EFR32FG12B", 2048, 0x400e0000, true, 2048, 32768, "Flex Gecko"},
{39, "EFR32FG12V", 2048, 0x400e0000, true, 2048, 32768, "Flex Gecko"},
{40, "EFR32MG13P", 2048, 0x400e0000, true, 2048, 16384, "Mighty Gecko"},
{41, "EFR32MG13B", 2048, 0x400e0000, true, 2048, 16384, "Mighty Gecko"},
{42, "EFR32MG13V", 2048, 0x400e0000, true, 2048, 16384, "Mighty Gecko"},
{43, "EFR32BG13P", 2048, 0x400e0000, true, 2048, 16384, "Blue Gecko"},
{44, "EFR32BG13B", 2048, 0x400e0000, true, 2048, 16384, "Blue Gecko"},
{45, "EFR32BG13V", 2048, 0x400e0000, true, 2048, 16384, "Blue Gecko"},
{49, "EFR32FG13P", 2048, 0x400e0000, true, 2048, 16384, "Flex Gecko"},
{50, "EFR32FG13B", 2048, 0x400e0000, true, 2048, 16384, "Flex Gecko"},
{51, "EFR32FG13V", 2048, 0x400e0000, true, 2048, 16384, "Flex Gecko"},
{52, "EFR32MG14P", 2048, 0x400e0000, true, 2048, 16384, "Mighty Gecko"},
{53, "EFR32MG14B", 2048, 0x400e0000, true, 2048, 16384, "Mighty Gecko"},
{54, "EFR32MG14V", 2048, 0x400e0000, true, 2048, 16384, "Mighty Gecko"},
{55, "EFR32BG14P", 2048, 0x400e0000, true, 2048, 16384, "Blue Gecko"},
{56, "EFR32BG14B", 2048, 0x400e0000, true, 2048, 16384, "Blue Gecko"},
{57, "EFR32BG14V", 2048, 0x400e0000, true, 2048, 16384, "Blue Gecko"},
{61, "EFR32FG14P", 2048, 0x400e0000, true, 2048, 16384, "Flex Gecko"},
{62, "EFR32FG14B", 2048, 0x400e0000, true, 2048, 16384, "Flex Gecko"},
{63, "EFR32FG14V", 2048, 0x400e0000, true, 2048, 16384, "Flex Gecko"},
};
/* miscchip */
typedef struct efm32_v2_di_miscchip_t {
uint8_t pincount;
uint8_t pkgtype;
uint8_t tempgrade;
} efm32_v2_di_miscchip_t;
/* pkgtype */
typedef struct efm32_v2_di_pkgtype_t {
uint8_t pkgtype;
char* name;
} efm32_v2_di_pkgtype_t;
efm32_v2_di_pkgtype_t const efm32_v2_di_pkgtypes[] = {
{74, "WLCSP"}, /* WLCSP package */
{76, "BGA"}, /* BGA package */
{77, "QFN"}, /* QFN package */
{81, "QFxP"}, /* QFP package */
};
/* tempgrade */
typedef struct efm32_v2_di_tempgrade_t {
uint8_t tempgrade;
char* name;
} efm32_v2_di_tempgrade_t;
efm32_v2_di_tempgrade_t const efm32_v2_di_tempgrades[] = {
{0, "-40 to 85degC"},
{1, "-40 to 125degC"},
{2, "-40 to 105degC"},
{3, "0 to 70degC"}
};
/* -------------------------------------------------------------------------- */
/* Helper functions - Version 1 V1 */
/* -------------------------------------------------------------------------- */
/**
* Reads the EFM32 Extended Unique Identifier
* Reads the EFM32 Extended Unique Identifier EUI64 (V1)
*/
uint64_t efm32_read_eui(target *t)
{
uint64_t eui;
uint64_t efm32_v1_read_eui64(target *t)
{
uint64_t eui;
eui = (uint64_t)target_mem_read32(t, EFM32_DI_EUI64_1) << 32;
eui |= (uint64_t)target_mem_read32(t, EFM32_DI_EUI64_0) << 0;
eui = (uint64_t)target_mem_read32(t, EFM32_V1_DI_EUI64_1) << 32;
eui |= (uint64_t)target_mem_read32(t, EFM32_V1_DI_EUI64_0) << 0;
return eui;
return eui;
}
/**
* Reads the EFM32 Extended Unique Identifier EUI48 (V2)
*/
uint64_t efm32_v2_read_eui48(target *t)
{
uint64_t eui;
eui = (uint64_t)target_mem_read32(t, EFM32_V2_DI_EUI48H) << 32;
eui |= (uint64_t)target_mem_read32(t, EFM32_V2_DI_EUI48L) << 0;
return eui;
}
/**
* Reads the Unique Number (DI V2 only)
*/
uint64_t efm32_v2_read_unique(target *t, uint8_t di_version)
{
uint64_t unique;
switch (di_version) {
case 2:
unique = (uint64_t)target_mem_read32(t, EFM32_V2_DI_UNIQUEH) << 32;
unique |= (uint64_t)target_mem_read32(t, EFM32_V2_DI_UNIQUEL) << 0;
return unique;
default:
return 0;
}
}
/**
* Reads the EFM32 flash size in kiB
*/
uint16_t efm32_read_flash_size(target *t)
uint16_t efm32_read_flash_size(target *t, uint8_t di_version)
{
return target_mem_read16(t, EFM32_DI_MEM_INFO_FLASH);
switch (di_version) {
case 1:
return target_mem_read16(t, EFM32_V1_DI_MEM_INFO_FLASH);
case 2:
return (target_mem_read32(t, EFM32_V2_DI_MSIZE) >> 0) & 0xFFFF;
default:
return 0;
}
}
/**
* Reads the EFM32 RAM size in kiB
*/
uint16_t efm32_read_ram_size(target *t)
uint16_t efm32_read_ram_size(target *t, uint8_t di_version)
{
return target_mem_read16(t, EFM32_DI_MEM_INFO_RAM);
switch (di_version) {
case 1:
return target_mem_read16(t, EFM32_V1_DI_MEM_INFO_RAM);
case 2:
return (target_mem_read32(t, EFM32_V2_DI_MSIZE) >> 16) & 0xFFFF;
default:
return 0;
}
}
/**
* Reads the EFM32 reported flash page size in bytes. Note: This
* driver ignores this value, and uses a conservative hard-coded
* value. There are errata on the value reported by the EFM32
* eg. DI_101
*/
uint32_t efm32_flash_page_size(target *t, uint8_t di_version)
{
uint8_t mem_info_page_size;
switch (di_version) {
case 1:
mem_info_page_size = target_mem_read8(t, EFM32_V1_DI_MEM_INFO_PAGE_SIZE);
break;
case 2:
mem_info_page_size = (target_mem_read32(t, EFM32_V2_DI_MEMINFO) >> 24) & 0xFF;
break;
default:
return 0;
}
return (1 << (mem_info_page_size + 10)); /* uint8_t ovf here */
}
/**
* Reads the EFM32 Part Number
*/
uint16_t efm32_read_part_number(target *t)
uint16_t efm32_read_part_number(target *t, uint8_t di_version)
{
return target_mem_read16(t, EFM32_DI_PART_NUMBER);
switch (di_version) {
case 1:
return target_mem_read8(t, EFM32_V1_DI_PART_NUMBER);
case 2:
return target_mem_read32(t, EFM32_V2_DI_PART) & 0xFFFF;
default:
return 0;
}
}
/**
* Reads the EFM32 Part Family
*/
uint8_t efm32_read_part_family(target *t)
uint8_t efm32_read_part_family(target *t, uint8_t di_version)
{
return target_mem_read8(t, EFM32_DI_PART_FAMILY);
switch (di_version) {
case 1:
return target_mem_read8(t, EFM32_V1_DI_PART_FAMILY);
case 2:
return (target_mem_read32(t, EFM32_V2_DI_PART) >> 16) & 0xFF;
default:
return 0;
}
}
/**
* Reads the EFM32 Radio part number (EZR parts only)
* Reads the EFM32 Radio part number (EZR parts with V1 DI only)
*/
uint16_t efm32_read_radio_part_number(target *t)
uint16_t efm32_read_radio_part_number(target *t, uint8_t di_version)
{
return target_mem_read16(t, EFM32_DI_RADIO_OPN);
switch (di_version) {
case 1:
return target_mem_read16(t, EFM32_V1_DI_RADIO_OPN);
default:
return 0;
}
}
/**
* Reads the EFM32 Misc. Chip definitions
*/
efm32_v2_di_miscchip_t efm32_v2_read_miscchip(target *t, uint8_t di_version)
{
uint32_t meminfo;
efm32_v2_di_miscchip_t miscchip;
memset(&miscchip, 0, sizeof(efm32_v2_di_miscchip_t) / sizeof(char));
switch (di_version) {
case 2:
meminfo = target_mem_read32(t, EFM32_V2_DI_MEMINFO);
miscchip.pincount = (meminfo >> 16) & 0xFF;
miscchip.pkgtype = (meminfo >> 8) & 0xFF;
miscchip.tempgrade = (meminfo >> 0) & 0xFF;
}
return miscchip;
}
/* -------------------------------------------------------------------------- */
/* Shared Functions */
/* -------------------------------------------------------------------------- */
static void efm32_add_flash(target *t, target_addr addr, size_t length,
@ -244,9 +527,38 @@ static void efm32_add_flash(target *t, target_addr addr, size_t length,
target_add_flash(t, f);
}
char variant_string[40];
/**
* Lookup device
*/
size_t efm32_lookup_device_index(target *t, uint8_t di_version)
{
uint8_t part_family = efm32_read_part_family(t, di_version);
/* Search for family */
for (size_t i = 0; i < (sizeof(efm32_devices) / sizeof(efm32_device_t)); i++) {
if (efm32_devices[i].family_id == part_family) {
return i;
}
}
/* Unknown family */
return 9999;
}
efm32_device_t const * efm32_get_device(size_t index)
{
if (index >= (sizeof(efm32_devices) / sizeof(efm32_device_t))) {
return NULL;
}
return &efm32_devices[index];
}
/**
* Probe
*/
char variant_string[60];
bool efm32_probe(target *t)
{
uint8_t di_version = 1;
/* Read the IDCODE register from the SW-DP */
ADIv5_AP_t *ap = cortexm_ap(t);
uint32_t ap_idcode = ap->dp->idcode;
@ -260,79 +572,43 @@ bool efm32_probe(target *t)
return false;
}
/* Check the EUI is silabs. Identify the Device Identification (DI) version */
if (((efm32_v1_read_eui64(t) >> 40) & 0xFFFFFF) == EFM32_V1_DI_EUI_SILABS) {
/* Device Identification (DI) version 1 */
di_version = 1;
} else if (((efm32_v2_read_eui48(t) >> 24) & 0xFFFFFF) == EFM32_V2_DI_EUI_ENERGYMICRO) {
/* Device Identification (DI) version 2 */
di_version = 2;
} else {
/* unknown device */
/* sprintf(variant_string, */
/* "EFM32 DI Version ?? 0x%016llx 0x%016llx", */
/* efm32_v1_read_eui64(t), efm32_v2_read_eui48(t)); */
return false;
}
/* Read the part number and family */
uint16_t part_number = efm32_read_part_number(t);
uint8_t part_family = efm32_read_part_family(t);
uint16_t radio_number, radio_number_short; /* optional, for ezr parts */
uint32_t flash_page_size; uint16_t flash_kb;
switch(part_family) {
case EFM32_DI_PART_FAMILY_GECKO:
sprintf(variant_string,
"EFM32 Gecko");
flash_page_size = 512;
break;
case EFM32_DI_PART_FAMILY_GIANT_GECKO:
sprintf(variant_string,
"EFM32 Giant Gecko");
flash_page_size = 2048; /* Could be 2048 or 4096, assume 2048 */
break;
case EFM32_DI_PART_FAMILY_TINY_GECKO:
sprintf(variant_string,
"EFM32 Tiny Gecko");
flash_page_size = 512;
break;
case EFM32_DI_PART_FAMILY_LEOPARD_GECKO:
sprintf(variant_string,
"EFM32 Leopard Gecko");
flash_page_size = 2048; /* Could be 2048 or 4096, assume 2048 */
break;
case EFM32_DI_PART_FAMILY_WONDER_GECKO:
sprintf(variant_string,
"EFM32 Wonder Gecko");
flash_page_size = 2048;
break;
case EFM32_DI_PART_FAMILY_ZERO_GECKO:
sprintf(variant_string,
"EFM32 Zero Gecko");
flash_page_size = 1024;
break;
case EFM32_DI_PART_FAMILY_HAPPY_GECKO:
sprintf(variant_string,
"EFM32 Happy Gecko");
flash_page_size = 1024;
break;
case EFM32_DI_PART_FAMILY_EZR_WONDER_GECKO:
radio_number = efm32_read_radio_part_number(t); /* on-chip radio */
radio_number_short = radio_number % 100;
flash_kb = efm32_read_flash_size(t);
sprintf(variant_string,
"EZR32WG%dF%dR%d (radio si%d)",
part_number, flash_kb,
radio_number_short, radio_number);
flash_page_size = 2048;
break;
case EFM32_DI_PART_FAMILY_EZR_LEOPARD_GECKO:
radio_number = efm32_read_radio_part_number(t); /* on-chip radio */
radio_number_short = radio_number % 100;
flash_kb = efm32_read_flash_size(t);
sprintf(variant_string,
"EZR32LG%dF%dR%d (radio si%d)",
part_number, flash_kb,
radio_number_short, radio_number);
flash_page_size = 2048;
break;
default: /* Unknown family */
return false;
uint16_t part_number = efm32_read_part_number(t, di_version);
size_t device_index = efm32_lookup_device_index(t, di_version);
if (device_index > (127-32)) {
/* too big to encode in printable ascii */
return false;
}
efm32_device_t const* device = &efm32_devices[device_index];
if (device == NULL) {
return false;
}
/* Read memory sizes, convert to bytes */
uint32_t flash_size = efm32_read_flash_size(t) * 0x400;
uint32_t ram_size = efm32_read_ram_size(t) * 0x400;
uint16_t flash_kib = efm32_read_flash_size(t, di_version);
uint32_t flash_size = flash_kib * 0x400;
uint16_t ram_kib = efm32_read_ram_size(t, di_version);
uint32_t ram_size = ram_kib * 0x400;
uint32_t flash_page_size = device->flash_page_size;
sprintf(variant_string, "%c\b%c\b%s %d F%d %s",
di_version + 48, (uint8_t)device_index + 32,
device->name, part_number, flash_kib, device->description);
/* Setup Target */
t->target_options |= CORTEXM_TOPT_INHIBIT_SRST;
@ -340,6 +616,12 @@ bool efm32_probe(target *t)
tc_printf(t, "flash size %d page size %d\n", flash_size, flash_page_size);
target_add_ram (t, SRAM_BASE, ram_size);
efm32_add_flash(t, 0x00000000, flash_size, flash_page_size);
if (device->user_data_size) { /* optional User Data (UD) section */
efm32_add_flash(t, 0x0fe00000, device->user_data_size, flash_page_size);
}
if (device->bootloader_size) { /* optional Bootloader (BL) section */
efm32_add_flash(t, 0x0fe10000, device->bootloader_size, flash_page_size);
}
target_add_commands(t, efm32_cmd_list, "EFM32");
return true;
@ -351,20 +633,28 @@ bool efm32_probe(target *t)
static int efm32_flash_erase(struct target_flash *f, target_addr addr, size_t len)
{
target *t = f->t;
efm32_device_t const* device = efm32_get_device(t->driver[2] - 32);
if (device == NULL) {
return true;
}
uint32_t msc = device->msc_addr;
/* Unlock */
target_mem_write32(t, EFM32_MSC_LOCK(msc), EFM32_MSC_LOCK_LOCKKEY);
/* Set WREN bit to enabel MSC write and erase functionality */
target_mem_write32(t, EFM32_MSC_WRITECTRL, 1);
target_mem_write32(t, EFM32_MSC_WRITECTRL(msc), 1);
while (len) {
/* Write address of first word in row to erase it */
target_mem_write32(t, EFM32_MSC_ADDRB, addr);
target_mem_write32(t, EFM32_MSC_WRITECMD, EFM32_MSC_WRITECMD_LADDRIM);
target_mem_write32(t, EFM32_MSC_ADDRB(msc), addr);
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_LADDRIM);
/* Issue the erase command */
target_mem_write32(t, EFM32_MSC_WRITECMD, EFM32_MSC_WRITECMD_ERASEPAGE );
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_ERASEPAGE );
/* Poll MSC Busy */
while ((target_mem_read32(t, EFM32_MSC_STATUS) & EFM32_MSC_STATUS_BUSY)) {
while ((target_mem_read32(t, EFM32_MSC_STATUS(msc)) & EFM32_MSC_STATUS_BUSY)) {
if (target_check_error(t))
return -1;
}
@ -384,6 +674,10 @@ static int efm32_flash_write(struct target_flash *f,
{
(void)len;
target *t = f->t;
efm32_device_t const* device = efm32_get_device(t->driver[2] - 32);
if (device == NULL) {
return true;
}
/* Write flashloader */
target_mem_write(t, SRAM_BASE, efm32_flash_write_stub,
@ -391,7 +685,7 @@ static int efm32_flash_write(struct target_flash *f,
/* Write Buffer */
target_mem_write(t, STUB_BUFFER_BASE, src, len);
/* Run flashloader */
return cortexm_run_stub(t, SRAM_BASE, dest, STUB_BUFFER_BASE, len, 0);
return cortexm_run_stub(t, SRAM_BASE, dest, STUB_BUFFER_BASE, len, device->msc_addr);
return 0;
}
@ -401,23 +695,29 @@ static int efm32_flash_write(struct target_flash *f,
*/
static bool efm32_cmd_erase_all(target *t)
{
efm32_device_t const* device = efm32_get_device(t->driver[2] - 32);
if (device == NULL) {
return true;
}
uint32_t msc = device->msc_addr;
/* Set WREN bit to enabel MSC write and erase functionality */
target_mem_write32(t, EFM32_MSC_WRITECTRL, 1);
target_mem_write32(t, EFM32_MSC_WRITECTRL(msc), 1);
/* Unlock mass erase */
target_mem_write32(t, EFM32_MSC_MASSLOCK, EFM32_MSC_MASSLOCK_LOCKKEY);
target_mem_write32(t, EFM32_MSC_MASSLOCK(msc), EFM32_MSC_MASSLOCK_LOCKKEY);
/* Erase operation */
target_mem_write32(t, EFM32_MSC_WRITECMD, EFM32_MSC_WRITECMD_ERASEMAIN0);
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_ERASEMAIN0);
/* Poll MSC Busy */
while ((target_mem_read32(t, EFM32_MSC_STATUS) & EFM32_MSC_STATUS_BUSY)) {
while ((target_mem_read32(t, EFM32_MSC_STATUS(msc)) & EFM32_MSC_STATUS_BUSY)) {
if (target_check_error(t))
return false;
}
/* Relock mass erase */
target_mem_write32(t, EFM32_MSC_MASSLOCK, 0);
target_mem_write32(t, EFM32_MSC_MASSLOCK(msc), 0);
tc_printf(t, "Erase successful!\n");
@ -429,11 +729,94 @@ static bool efm32_cmd_erase_all(target *t)
*/
static bool efm32_cmd_serial(target *t)
{
/* Read the extended unique identifier */
uint64_t eui = efm32_read_eui(t);
uint64_t unique = 0;
uint8_t di_version = t->driver[0] - 48; /* di version hidden in driver str */
/* 64 bits of unique number */
tc_printf(t, "Unique Number: 0x%016llx\n", eui);
switch (di_version) {
case 1:
/* Read the eui */
unique = efm32_v1_read_eui64(t);
break;
case 2:
/* Read unique number */
unique = efm32_v2_read_unique(t, di_version);
break;
}
tc_printf(t, "Unique Number: 0x%016llx\n", unique);
return true;
}
/**
* Prints various information we know about the device
*/
static bool efm32_cmd_efm_info(target *t)
{
uint8_t di_version = t->driver[0] - 48; /* hidden in driver str */
switch (di_version) {
case 1:
tc_printf(t, "DI version 1 (silabs remix?) base 0x%08x\n\n", EFM32_V1_DI);
break;
case 2:
tc_printf(t, "DI version 2 (energy micro remix?) base 0x%08x\n\n", EFM32_V2_DI);
break;
default:
tc_printf(t, "Bad DI version %d! This driver doesn't know about this DI version\n", di_version);
return true; /* finish */
}
/* lookup device and part number */
efm32_device_t const* device = efm32_get_device(t->driver[2] - 32);
if (device == NULL) {
return true;
}
uint16_t part_number = efm32_read_part_number(t, di_version);
/* Read memory sizes, convert to bytes */
uint16_t flash_kib = efm32_read_flash_size(t, di_version);
uint16_t ram_kib = efm32_read_ram_size(t, di_version);
uint32_t flash_page_size_reported = efm32_flash_page_size(t, di_version);
uint32_t flash_page_size = device->flash_page_size;
tc_printf(t, "%s %d F%d = %s %dkiB flash, %dkiB ram\n",
device->name, part_number, flash_kib,
device->description, flash_kib, ram_kib);
tc_printf(t, "Device says flash page size is %d bytes, we're using %d bytes\n",
flash_page_size_reported, flash_page_size);
if (flash_page_size_reported < flash_page_size) {
tc_printf(t, "This is bad, flash writes may be corrupted\n");
}
tc_printf(t, "\n");
if (di_version == 2) {
efm32_v2_di_miscchip_t miscchip = efm32_v2_read_miscchip(t, di_version);
efm32_v2_di_pkgtype_t const* pkgtype;
efm32_v2_di_tempgrade_t const* tempgrade;
for (size_t i = 0; i < (sizeof(efm32_v2_di_pkgtypes) /
sizeof(efm32_v2_di_pkgtype_t)); i++) {
if (efm32_v2_di_pkgtypes[i].pkgtype == miscchip.pkgtype) {
pkgtype = &efm32_v2_di_pkgtypes[i];
}
}
for (size_t i = 0; i < (sizeof(efm32_v2_di_tempgrades) /
sizeof(efm32_v2_di_tempgrade_t)); i++) {
if (efm32_v2_di_tempgrades[i].tempgrade == miscchip.tempgrade) {
tempgrade = &efm32_v2_di_tempgrades[i];
}
}
tc_printf(t, "Package %s %d pins\n", pkgtype->name, miscchip.pincount);
tc_printf(t, "Temperature grade %s\n", tempgrade->name);
tc_printf(t, "\n");
}
if (di_version == 1 && device->has_radio) {
uint16_t radio_number = efm32_read_radio_part_number(t, di_version); /* on-chip radio */
tc_printf(t, "Radio si%d\n", radio_number);
tc_printf(t, "\n");
}
return true;
}

View File

@ -19,13 +19,13 @@
#include <stdint.h>
#include "stub.h"
#define EFM32_MSC ((volatile uint32_t *)0x400c0000)
#define EFM32_MSC_WRITECTRL EFM32_MSC[2]
#define EFM32_MSC_WRITECMD EFM32_MSC[3]
#define EFM32_MSC_ADDRB EFM32_MSC[4]
#define EFM32_MSC_WDATA EFM32_MSC[6]
#define EFM32_MSC_STATUS EFM32_MSC[7]
#define EFM32_MSC_LOCK EFM32_MSC[15]
#define EFM32_MSC_WRITECTRL(msc) *((volatile uint32_t *)(msc+0x008))
#define EFM32_MSC_WRITECMD(msc) *((volatile uint32_t *)(msc+0x00c))
#define EFM32_MSC_ADDRB(msc) *((volatile uint32_t *)(msc+0x010))
#define EFM32_MSC_WDATA(msc) *((volatile uint32_t *)(msc+0x018))
#define EFM32_MSC_STATUS(msc) *((volatile uint32_t *)(msc+0x01c))
#define EFM32_MSC_LOCK(msc) *((volatile uint32_t *)(msc+(msc == 0x400e0000?0x40:0x3c)))
#define EFM32_MSC_MASSLOCK(msc) *((volatile uint32_t *)(msc+0x054))
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71
@ -43,25 +43,25 @@
#define EFM32_MSC_STATUS_WORDTIMEOUT (1<<4)
void __attribute__((naked))
efm32_flash_write_stub(uint32_t *dest, uint32_t *src, uint32_t size)
efm32_flash_write_stub(uint32_t *dest, uint32_t *src, uint32_t size, uint32_t msc)
{
uint32_t i;
EFM32_MSC_LOCK = EFM32_MSC_LOCK_LOCKKEY;
EFM32_MSC_WRITECTRL = 1;
EFM32_MSC_LOCK(msc) = EFM32_MSC_LOCK_LOCKKEY;
EFM32_MSC_WRITECTRL(msc) = 1;
for (i = 0; i < size/4; i++) {
EFM32_MSC_ADDRB = (uint32_t)&dest[i];;
EFM32_MSC_WRITECMD = EFM32_MSC_WRITECMD_LADDRIM;
EFM32_MSC_ADDRB(msc) = (uint32_t)&dest[i];
EFM32_MSC_WRITECMD(msc) = EFM32_MSC_WRITECMD_LADDRIM;
/* Wait for WDATAREADY */
while ((EFM32_MSC_STATUS & EFM32_MSC_STATUS_WDATAREADY) == 0);
while ((EFM32_MSC_STATUS(msc) & EFM32_MSC_STATUS_WDATAREADY) == 0);
EFM32_MSC_WDATA = src[i];
EFM32_MSC_WRITECMD = EFM32_MSC_WRITECMD_WRITEONCE;
EFM32_MSC_WDATA(msc) = src[i];
EFM32_MSC_WRITECMD(msc) = EFM32_MSC_WRITECMD_WRITEONCE;
/* Wait for BUSY */
while ((EFM32_MSC_STATUS & EFM32_MSC_STATUS_BUSY));
while ((EFM32_MSC_STATUS(msc) & EFM32_MSC_STATUS_BUSY));
}
stub_exit(0);

View File

@ -1,41 +1 @@
[0x0/2] = 0x4c10,
[0x2/2] = 0x4b11,
[0x4/2] = 0x0892,
[0x6/2] = 0x601c,
[0x8/2] = 0x2401,
[0xa/2] = 0x4b10,
[0xc/2] = 0x0092,
[0xe/2] = 0x601c,
[0x10/2] = 0x2400,
[0x12/2] = 0x4294,
[0x14/2] = 0xd015,
[0x16/2] = 0x4d0e,
[0x18/2] = 0x1903,
[0x1a/2] = 0x602b,
[0x1c/2] = 0x2501,
[0x1e/2] = 0x4b0d,
[0x20/2] = 0x601d,
[0x22/2] = 0x2608,
[0x24/2] = 0x4d0c,
[0x26/2] = 0x682f,
[0x28/2] = 0x46ac,
[0x2a/2] = 0x4237,
[0x2c/2] = 0xd0f9,
[0x2e/2] = 0x590d,
[0x30/2] = 0x4f0a,
[0x32/2] = 0x603d,
[0x34/2] = 0x601e,
[0x36/2] = 0x4663,
[0x38/2] = 0x681b,
[0x3a/2] = 0x07db,
[0x3c/2] = 0xd4fb,
[0x3e/2] = 0x3404,
[0x40/2] = 0xe7e7,
[0x42/2] = 0xbe00,
[0x44/2] = 0x1b71, 0x0000,
[0x48/2] = 0x003c, 0x400c,
[0x4c/2] = 0x0008, 0x400c,
[0x50/2] = 0x0010, 0x400c,
[0x54/2] = 0x000c, 0x400c,
[0x58/2] = 0x001c, 0x400c,
[0x5c/2] = 0x0018, 0x400c,
0x4D10, 0x2440, 0x42AB, 0xD000, 0x3C04, 0x4D0F, 0x18E4, 0x6025, 0x2401, 0x609C, 0x2400, 0x0892, 0x0092, 0x4294, 0xD011, 0x1905, 0x611D, 0x2501, 0x60DD, 0x1C1E, 0x2508, 0x69DF, 0x361C, 0x422F, 0xD0F9, 0x590F, 0x619F, 0x60DD, 0x6835, 0x07ED, 0xD4FC, 0x3404, 0xE7EB, 0xBE00, 0x0000, 0x400E, 0x1B71, 0x0000,