Merge pull request #285 from UweBonnes/f4_rework

F4 rework
This commit is contained in:
Gareth McMullin 2017-10-03 07:23:52 +13:00 committed by GitHub
commit eb7547111a
1 changed files with 149 additions and 82 deletions

View File

@ -40,21 +40,20 @@ static bool stm32f4_cmd_option(target *t, int argc, char *argv[]);
static bool stm32f4_cmd_psize(target *t, int argc, char *argv[]); static bool stm32f4_cmd_psize(target *t, int argc, char *argv[]);
const struct command_s stm32f4_cmd_list[] = { const struct command_s stm32f4_cmd_list[] = {
{"erase_mass", (cmd_handler)stm32f4_cmd_erase_mass, "Erase entire flash memory"}, {"erase_mass", (cmd_handler)stm32f4_cmd_erase_mass,
"Erase entire flash memory"},
{"option", (cmd_handler)stm32f4_cmd_option, "Manipulate option bytes"}, {"option", (cmd_handler)stm32f4_cmd_option, "Manipulate option bytes"},
{"psize", (cmd_handler)stm32f4_cmd_psize, "Configure flash write parallelism: (x8|x32)"}, {"psize", (cmd_handler)stm32f4_cmd_psize,
"Configure flash write parallelism: (x8|x32(default))"},
{NULL, NULL, NULL} {NULL, NULL, NULL}
}; };
static int stm32f4_flash_erase(struct target_flash *f, target_addr addr, size_t len); static int stm32f4_flash_erase(struct target_flash *f, target_addr addr,
size_t len);
static int stm32f4_flash_write(struct target_flash *f, static int stm32f4_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len); target_addr dest, const void *src, size_t len);
static const char stm32f4_driver_str[] = "STM32F4xx";
static const char stm32f7_driver_str[] = "STM32F7xx";
static const char stm32f2_driver_str[] = "STM32F2xx";
/* Flash Program ad Erase Controller Register Map */ /* Flash Program ad Erase Controller Register Map */
#define FPEC_BASE 0x40023C00 #define FPEC_BASE 0x40023C00
#define FLASH_ACR (FPEC_BASE+0x00) #define FLASH_ACR (FPEC_BASE+0x00)
@ -71,6 +70,7 @@ static const char stm32f2_driver_str[] = "STM32F2xx";
#define FLASH_CR_PSIZE16 (1 << 8) #define FLASH_CR_PSIZE16 (1 << 8)
#define FLASH_CR_PSIZE32 (2 << 8) #define FLASH_CR_PSIZE32 (2 << 8)
#define FLASH_CR_PSIZE64 (3 << 8) #define FLASH_CR_PSIZE64 (3 << 8)
#define FLASH_CR_MER1 (1 << 15)
#define FLASH_CR_STRT (1 << 16) #define FLASH_CR_STRT (1 << 16)
#define FLASH_CR_EOPIE (1 << 24) #define FLASH_CR_EOPIE (1 << 24)
#define FLASH_CR_ERRIE (1 << 25) #define FLASH_CR_ERRIE (1 << 25)
@ -81,6 +81,8 @@ static const char stm32f2_driver_str[] = "STM32F2xx";
#define FLASH_OPTCR_OPTLOCK (1 << 0) #define FLASH_OPTCR_OPTLOCK (1 << 0)
#define FLASH_OPTCR_OPTSTRT (1 << 1) #define FLASH_OPTCR_OPTSTRT (1 << 1)
#define FLASH_OPTCR_nDBANK (1 << 29)
#define FLASH_OPTCR_DB1M (1 << 30)
#define KEY1 0x45670123 #define KEY1 0x45670123
#define KEY2 0xCDEF89AB #define KEY2 0xCDEF89AB
@ -91,6 +93,9 @@ static const char stm32f2_driver_str[] = "STM32F2xx";
#define SR_ERROR_MASK 0xF2 #define SR_ERROR_MASK 0xF2
#define SR_EOP 0x01 #define SR_EOP 0x01
#define F4_FLASHSIZE 0x1FFF7A22
#define F7_FLASHSIZE 0x1FF0F442
#define F72X_FLASHSIZE 0x1FF07A22
#define DBGMCU_IDCODE 0xE0042000 #define DBGMCU_IDCODE 0xE0042000
#define ARM_CPUID 0xE000ED00 #define ARM_CPUID 0xE000ED00
@ -125,6 +130,7 @@ struct stm32f4_flash {
struct target_flash f; struct target_flash f;
uint8_t base_sector; uint8_t base_sector;
uint8_t psize; uint8_t psize;
uint8_t bank_split;
}; };
enum ID_STM32F47 { enum ID_STM32F47 {
@ -146,7 +152,7 @@ enum ID_STM32F47 {
static void stm32f4_add_flash(target *t, static void stm32f4_add_flash(target *t,
uint32_t addr, size_t length, size_t blocksize, uint32_t addr, size_t length, size_t blocksize,
uint8_t base_sector) unsigned int base_sector, int split)
{ {
struct stm32f4_flash *sf = calloc(1, sizeof(*sf)); struct stm32f4_flash *sf = calloc(1, sizeof(*sf));
struct target_flash *f = &sf->f; struct target_flash *f = &sf->f;
@ -159,104 +165,155 @@ static void stm32f4_add_flash(target *t,
f->erased = 0xff; f->erased = 0xff;
sf->base_sector = base_sector; sf->base_sector = base_sector;
sf->psize = 32; sf->psize = 32;
sf->bank_split = split;
target_add_flash(t, f); target_add_flash(t, f);
} }
bool stm32f4_probe(target *t) bool stm32f4_probe(target *t)
{ {
bool f2 = false;
uint32_t idcode; uint32_t idcode;
const char* designator = NULL;
bool dual_bank = false;
bool has_ccmram = false;
bool is_f7 = false;
bool large_sectors = false;
uint32_t flashsize_base = F4_FLASHSIZE;
idcode = target_mem_read32(t, DBGMCU_IDCODE); idcode = target_mem_read32(t, DBGMCU_IDCODE);
idcode &= 0xFFF; idcode &= 0xFFF;
if (idcode == ID_STM32F20X) if (idcode == ID_STM32F20X) {
{
/* F405 revision A have a wrong IDCODE, use ARM_CPUID to make the /* F405 revision A have a wrong IDCODE, use ARM_CPUID to make the
* distinction with F205. Revision is also wrong (0x2000 instead * distinction with F205. Revision is also wrong (0x2000 instead
* of 0x1000). See F40x/F41x errata. */ * of 0x1000). See F40x/F41x errata. */
uint32_t cpuid = target_mem_read32(t, ARM_CPUID); uint32_t cpuid = target_mem_read32(t, ARM_CPUID);
if ((cpuid & 0xFFF0) == 0xC240) if ((cpuid & 0xFFF0) == 0xC240)
idcode = ID_STM32F40X; idcode = ID_STM32F40X;
else
f2 = true;
} }
switch(idcode) { switch(idcode) {
case ID_STM32F40X:
designator = "STM32F40x";
has_ccmram = true;
break;
case ID_STM32F42X: /* 427/437 */ case ID_STM32F42X: /* 427/437 */
designator = "STM32F42x";
has_ccmram = true;
dual_bank = true;
break;
case ID_STM32F46X: /* 469/479 */ case ID_STM32F46X: /* 469/479 */
/* Second bank for 2M parts. */ designator = "STM32F47x";
stm32f4_add_flash(t, 0x8100000, 0x10000, 0x4000, 12); has_ccmram = true;
stm32f4_add_flash(t, 0x8110000, 0x10000, 0x10000, 16); dual_bank = true;
stm32f4_add_flash(t, 0x8120000, 0xE0000, 0x20000, 17); break;
/* Fall through for stuff common to F40x/F41x */
case ID_STM32F20X: /* F205 */ case ID_STM32F20X: /* F205 */
case ID_STM32F40X: /* F405 */ designator = "STM32F2";
if (!f2) break;
target_add_ram(t, 0x10000000, 0x10000);
/* Fall through for devices w/o CCMRAM */
case ID_STM32F446: /* F446 */ case ID_STM32F446: /* F446 */
designator = "STM32F446";
break;
case ID_STM32F401C: /* F401 B/C RM0368 Rev.3 */ case ID_STM32F401C: /* F401 B/C RM0368 Rev.3 */
designator = "STM32F401C";
break;
case ID_STM32F411: /* F411 RM0383 Rev.4 */ case ID_STM32F411: /* F411 RM0383 Rev.4 */
designator = "STM32F411";
break;
case ID_STM32F412: /* F412 RM0402 Rev.4, 256 kB Ram */ case ID_STM32F412: /* F412 RM0402 Rev.4, 256 kB Ram */
designator = "STM32F412";
break;
case ID_STM32F401E: /* F401 D/E RM0368 Rev.3 */ case ID_STM32F401E: /* F401 D/E RM0368 Rev.3 */
t->driver = f2 ? stm32f2_driver_str : stm32f4_driver_str; designator = "STM32F401E";
target_add_ram(t, 0x20000000, 0x40000);
stm32f4_add_flash(t, 0x8000000, 0x10000, 0x4000, 0);
stm32f4_add_flash(t, 0x8010000, 0x10000, 0x10000, 4);
stm32f4_add_flash(t, 0x8020000, 0xE0000, 0x20000, 5);
target_add_commands(t, stm32f4_cmd_list, f2 ? "STM32F2" :
"STM32F4");
break; break;
case ID_STM32F413: /* F413 RM0430 Rev.2, 320 kB Ram, 1.5 MB flash. */ case ID_STM32F413: /* F413 RM0430 Rev.2, 320 kB Ram, 1.5 MB flash. */
t->driver = stm32f4_driver_str; designator = "STM32F413";
target_add_ram(t, 0x20000000, 0x50000);
stm32f4_add_flash(t, 0x8000000, 0x10000, 0x4000, 0);
stm32f4_add_flash(t, 0x8010000, 0x10000, 0x10000, 4);
stm32f4_add_flash(t, 0x8020000, 0x160000, 0x20000, 5);
target_add_commands(t, stm32f4_cmd_list, "STM32F413");
break; break;
case ID_STM32F74X: /* F74x RM0385 Rev.4 */ case ID_STM32F74X: /* F74x RM0385 Rev.4 */
t->driver = stm32f7_driver_str; designator = "STM32F74x";
target_add_ram(t, 0x00000000, 0x4000); is_f7 = true;
target_add_ram(t, 0x20000000, 0x50000); large_sectors = true;
/* AXIM Flash access */ flashsize_base = F7_FLASHSIZE;
stm32f4_add_flash(t, 0x8000000, 0x20000, 0x8000, 0);
stm32f4_add_flash(t, 0x8020000, 0x20000, 0x20000, 4);
stm32f4_add_flash(t, 0x8040000, 0xC0000, 0x40000, 5);
/* Flash aliased as ITCM */
stm32f4_add_flash(t, 0x0200000, 0x20000, 0x8000, 0);
stm32f4_add_flash(t, 0x0220000, 0x20000, 0x20000, 4);
stm32f4_add_flash(t, 0x0240000, 0xC0000, 0x40000, 5);
target_add_commands(t, stm32f4_cmd_list, "STM32F74x");
break; break;
case ID_STM32F76X: /* F76x F77x RM0410 */ case ID_STM32F76X: /* F76x F77x RM0410 */
t->driver = stm32f7_driver_str; designator = "STM32F76x";
target_add_ram(t, 0x00000000, 0x4000); is_f7 = true;
target_add_ram(t, 0x20000000, 0x80000); dual_bank = true;
/* AXIM Flash access */ flashsize_base = F7_FLASHSIZE;
stm32f4_add_flash(t, 0x8000000, 0x020000, 0x8000, 0);
stm32f4_add_flash(t, 0x8020000, 0x020000, 0x20000, 4);
stm32f4_add_flash(t, 0x8040000, 0x1C0000, 0x40000, 5);
/* Flash aliased as ITCM */
stm32f4_add_flash(t, 0x200000, 0x020000, 0x8000, 0);
stm32f4_add_flash(t, 0x220000, 0x020000, 0x20000, 4);
stm32f4_add_flash(t, 0x240000, 0x1C0000, 0x40000, 5);
target_add_commands(t, stm32f4_cmd_list, "STM32F76x");
break; break;
case ID_STM32F72X: /* F72x F73x RM0431 */ case ID_STM32F72X: /* F72x F73x RM0431 */
t->driver = stm32f7_driver_str; designator = "STM32F72x";
target_add_ram(t, 0x00000000, 0x2000); is_f7 = true;
target_add_ram(t, 0x20000000, 0x40000); flashsize_base = F72X_FLASHSIZE;
stm32f4_add_flash(t, 0x8000000, 0x010000, 0x4000, 0);
stm32f4_add_flash(t, 0x8010000, 0x010000, 0x10000, 4);
stm32f4_add_flash(t, 0x8020000, 0x060000, 0x20000, 3);
target_add_commands(t, stm32f4_cmd_list, "STM32F72x");
break; break;
default: default:
return false; return false;
} }
target_mem_write32(t, DBGMCU_CR, DBG_STANDBY| DBG_STOP | DBG_SLEEP);
t->driver = designator;
target_add_commands(t, stm32f4_cmd_list, designator);
t->idcode = idcode; t->idcode = idcode;
bool use_dual_bank = false;
uint32_t flashsize = target_mem_read32(t, flashsize_base) & 0xffff;
if (is_f7) {
target_add_ram(t, 0x00000000, 0x4000); /* 16 k ITCM Ram */
target_add_ram(t, 0x20000000, 0x10000); /* 64 k DTCM Ram */
if (dual_bank) {
uint32_t optcr;
optcr = target_mem_read32(t, FLASH_OPTCR);
use_dual_bank = !(optcr & FLASH_OPTCR_nDBANK);
}
} else {
if (has_ccmram)
target_add_ram(t, 0x10000000, 0x10000); /* 64 k CCM Ram*/
target_add_ram(t, 0x20000000, 0x10000); /* 64 k RAM */
if (dual_bank) {
use_dual_bank = true;
if (flashsize < 0x800) {
/* Check Dual-bank on 1 Mbyte Flash memory devices*/
uint32_t optcr;
optcr = target_mem_read32(t, FLASH_OPTCR);
use_dual_bank = !(optcr & FLASH_OPTCR_DB1M);
}
}
}
int split = 0;
uint32_t banksize;
if (use_dual_bank) {
banksize = flashsize << 9; /* flas split on two sectors. */
split = (flashsize == 0x400) ? 8 : 12;
}
else
banksize = flashsize << 10;
if (large_sectors) {
uint32_t remains = banksize - 0x40000;
/* 256 k in small sectors.*/
stm32f4_add_flash(t, ITCM_BASE, 0x20000, 0x8000, 0, split);
stm32f4_add_flash(t, 0x0220000, 0x20000, 0x20000, 4, split);
stm32f4_add_flash(t, 0x0240000, remains, 0x40000, 5, split);
stm32f4_add_flash(t, AXIM_BASE, 0x20000, 0x8000, 0, split);
stm32f4_add_flash(t, 0x8020000, 0x20000, 0x20000, 4, split);
stm32f4_add_flash(t, 0x8040000, remains, 0x40000, 5, split);
} else {
uint32_t remains = banksize - 0x20000; /* 128 k in small sectors.*/
if (is_f7) {
stm32f4_add_flash(t, ITCM_BASE, 0x10000, 0x4000, 0, split);
stm32f4_add_flash(t, 0x0210000, 0x10000, 0x10000, 4, split);
stm32f4_add_flash(t, 0x0220000, remains, 0x20000, 5, split);
}
stm32f4_add_flash(t, 0x8000000, 0x10000, 0x4000, 0, split);
stm32f4_add_flash(t, 0x8010000, 0x10000, 0x10000, 4, split);
stm32f4_add_flash(t, 0x8020000, remains, 0x20000, 5, split);
if (use_dual_bank) {
if (is_f7) {
uint32_t bk1 = ITCM_BASE + banksize;
stm32f4_add_flash(t, bk1 , 0x10000, 0x4000, 0, split);
stm32f4_add_flash(t, bk1 + 0x10000, 0x10000, 0x10000, 4, split);
stm32f4_add_flash(t, bk1 + 0x20000, remains, 0x20000, 5, split);
}
uint32_t bk2 = 0x8000000 + banksize;
stm32f4_add_flash(t, bk2 , 0x10000, 0x4000, 16, split);
stm32f4_add_flash(t, bk2 + 0x10000, 0x10000, 0x10000, 20, split);
stm32f4_add_flash(t, bk2 + 0x20000, remains, 0x20000, 21, split);
}
}
return true; return true;
} }
@ -269,14 +326,14 @@ static void stm32f4_flash_unlock(target *t)
} }
} }
static int stm32f4_flash_erase(struct target_flash *f, target_addr addr, size_t len) static int stm32f4_flash_erase(struct target_flash *f, target_addr addr,
size_t len)
{ {
target *t = f->t; target *t = f->t;
uint16_t sr; struct stm32f4_flash *sf = (struct stm32f4_flash *)f;
uint32_t sr;
/* No address translation is needed here, as we erase by sector number */ /* No address translation is needed here, as we erase by sector number */
uint8_t sector = ((struct stm32f4_flash *)f)->base_sector + uint8_t sector = sf->base_sector + (addr - f->start)/f->blocksize;
(addr - f->start)/f->blocksize;
stm32f4_flash_unlock(t); stm32f4_flash_unlock(t);
while(len) { while(len) {
@ -289,18 +346,22 @@ static int stm32f4_flash_erase(struct target_flash *f, target_addr addr, size_t
/* Read FLASH_SR to poll for BSY bit */ /* Read FLASH_SR to poll for BSY bit */
while(target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY) while(target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t)) if(target_check_error(t)) {
DEBUG("stm32f4 flash erase: comm error\n");
return -1; return -1;
}
len -= f->blocksize; len -= f->blocksize;
sector++; sector++;
if ((sf->bank_split) && (sector == sf->bank_split))
sector = 16;
} }
/* Check for error */ /* Check for error */
sr = target_mem_read32(t, FLASH_SR); sr = target_mem_read32(t, FLASH_SR);
if(sr & SR_ERROR_MASK) if(sr & SR_ERROR_MASK) {
DEBUG("stm32f4 flash erase: sr error: 0x%" PRIu32 "\n", sr);
return -1; return -1;
}
return 0; return 0;
} }
@ -328,13 +389,18 @@ static bool stm32f4_cmd_erase_mass(target *t)
{ {
const char spinner[] = "|/-\\"; const char spinner[] = "|/-\\";
int spinindex = 0; int spinindex = 0;
struct target_flash *f = t->flash;
struct stm32f4_flash *sf = (struct stm32f4_flash *)f;
tc_printf(t, "Erasing flash... This may take a few seconds. "); tc_printf(t, "Erasing flash... This may take a few seconds. ");
stm32f4_flash_unlock(t); stm32f4_flash_unlock(t);
/* Flash mass erase start instruction */ /* Flash mass erase start instruction */
target_mem_write32(t, FLASH_CR, FLASH_CR_MER); uint32_t cr = FLASH_CR_MER;
target_mem_write32(t, FLASH_CR, FLASH_CR_STRT | FLASH_CR_MER); if (sf->bank_split)
cr |= FLASH_CR_MER1;
target_mem_write32(t, FLASH_CR, cr);
target_mem_write32(t, FLASH_CR, cr | FLASH_CR_STRT);
/* Read FLASH_SR to poll for BSY bit */ /* Read FLASH_SR to poll for BSY bit */
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY) { while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY) {
@ -347,7 +413,7 @@ static bool stm32f4_cmd_erase_mass(target *t)
tc_printf(t, "\n"); tc_printf(t, "\n");
/* Check for error */ /* Check for error */
uint16_t sr = target_mem_read32(t, FLASH_SR); uint32_t sr = target_mem_read32(t, FLASH_SR);
if ((sr & SR_ERROR_MASK) || !(sr & SR_EOP)) if ((sr & SR_ERROR_MASK) || !(sr & SR_EOP))
return false; return false;
@ -529,8 +595,9 @@ static bool stm32f4_cmd_option(target *t, int argc, char *argv[])
val[0] |= (target_mem_read32(t, start ) & 0xffff); val[0] |= (target_mem_read32(t, start ) & 0xffff);
if (readcount > 1) { if (readcount > 1) {
if (start == 0x1FFFC000) /* F4 */ { if (start == 0x1FFFC000) /* F4 */ {
val[1] = target_mem_read32(t, start + 8 - 0x10000); val[1] = target_mem_read32(t, 0x1ffec008);
val[1] &= 0xffff; val[1] &= 0xffff;
val[1] <<= 16;
} else { } else {
val[1] = (target_mem_read32(t, start + 0x18) & 0xffff) << 16; val[1] = (target_mem_read32(t, start + 0x18) & 0xffff) << 16;
val[1] |= (target_mem_read32(t, start + 0x10) & 0xffff); val[1] |= (target_mem_read32(t, start + 0x10) & 0xffff);
@ -543,9 +610,9 @@ static bool stm32f4_cmd_option(target *t, int argc, char *argv[])
optcr_mask(t, val); optcr_mask(t, val);
tc_printf(t, "OPTCR: 0x%08X ", val[0]); tc_printf(t, "OPTCR: 0x%08X ", val[0]);
if (readcount > 1) if (readcount > 1)
tc_printf(t, "OPTCR1: 0x%08X ", val[1]); tc_printf(t, "OPTCR1: 0x%08lx ", val[1]);
if (readcount > 2) if (readcount > 2)
tc_printf(t, "OPTCR2: 0x%08X" , val[2]); tc_printf(t, "OPTCR2: 0x%08lx" , val[2]);
tc_printf(t, "\n"); tc_printf(t, "\n");
return true; return true;
} }