blackmagic/src/target/efm32.c

1000 lines
38 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2015 Richard Meadows <richardeoin>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements EFM32 target specific functions for
* detecting the device, providing the memory map and Flash memory
* programming.
*
* EFM32, EZR32 and EFR32 devices are all currently supported through
* this driver.
*
* Tested with:
* * EZR32LG230 (EZR Leopard Gecko M3)
* * EFR32BG13P532F512GM32 (EFR Blue Gecko)
* *
*/
/* Refer to the family reference manuals:
*
* Also refer to AN0062 "Programming Internal Flash Over the Serial Wire Debug Interface"
* http://www.silabs.com/Support%20Documents/TechnicalDocs/an0062.pdf
*/
#include "general.h"
#include "target.h"
#include "target_internal.h"
#include "cortexm.h"
#include "adiv5.h"
#define SRAM_BASE 0x20000000
#define STUB_BUFFER_BASE ALIGN(SRAM_BASE + sizeof(efm32_flash_write_stub), 4)
static int efm32_flash_erase(target_flash_s *f, target_addr addr, size_t len);
static int efm32_flash_write(target_flash_s *f, target_addr dest, const void *src, size_t len);
static bool efm32_mass_erase(target *t);
static const uint16_t efm32_flash_write_stub[] = {
#include "flashstub/efm32.stub"
};
static bool efm32_cmd_serial(target *t, int argc, const char **argv);
static bool efm32_cmd_efm_info(target *t, int argc, const char **argv);
static bool efm32_cmd_bootloader(target *t, int argc, const char **argv);
const struct command_s efm32_cmd_list[] = {
{"serial", (cmd_handler)efm32_cmd_serial, "Prints unique number"},
{"efm_info", (cmd_handler)efm32_cmd_efm_info, "Prints information about the device"},
{"bootloader", (cmd_handler)efm32_cmd_bootloader, "Bootloader status in CLW0"},
{NULL, NULL, NULL},
};
/* -------------------------------------------------------------------------- */
/* Memory System Controller (MSC) Registers */
/* -------------------------------------------------------------------------- */
#define EFM32_MSC_WRITECTRL(msc) (msc + 0x008)
#define EFM32_MSC_WRITECMD(msc) (msc + 0x00c)
#define EFM32_MSC_ADDRB(msc) (msc + 0x010)
#define EFM32_MSC_WDATA(msc) (msc + 0x018)
#define EFM32_MSC_STATUS(msc) (msc + 0x01c)
#define EFM32_MSC_IF(msc) (msc + 0x030)
#define EFM32_MSC_LOCK(msc) (msc + (msc == 0x400c0000 ? 0x3c : 0x40))
#define EFM32_MSC_MASSLOCK(msc) (msc + 0x054)
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71
#define EFM32_MSC_MASSLOCK_LOCKKEY 0x631a
#define EFM32_MSC_WRITECMD_LADDRIM (1 << 0)
#define EFM32_MSC_WRITECMD_ERASEPAGE (1 << 1)
#define EFM32_MSC_WRITECMD_WRITEEND (1 << 2)
#define EFM32_MSC_WRITECMD_WRITEONCE (1 << 3)
#define EFM32_MSC_WRITECMD_WRITETRIG (1 << 4)
#define EFM32_MSC_WRITECMD_ERASEABORT (1 << 5)
#define EFM32_MSC_WRITECMD_ERASEMAIN0 (1 << 8)
#define EFM32_MSC_WRITECMD_ERASEMAIN1 (1 << 9)
#define EFM32_MSC_STATUS_BUSY (1 << 0)
#define EFM32_MSC_STATUS_LOCKED (1 << 1)
#define EFM32_MSC_STATUS_INVADDR (1 << 2)
#define EFM32_MSC_STATUS_WDATAREADY (1 << 3)
/* -------------------------------------------------------------------------- */
/* Flash Infomation Area */
/* -------------------------------------------------------------------------- */
#define EFM32_INFO 0x0fe00000
#define EFM32_USER_DATA (EFM32_INFO + 0x0000)
#define EFM32_LOCK_BITS (EFM32_INFO + 0x4000)
#define EFM32_V1_DI (EFM32_INFO + 0x8000)
#define EFM32_V2_DI (EFM32_INFO + 0x81B0)
/* -------------------------------------------------------------------------- */
/* Lock Bits (LB) */
/* -------------------------------------------------------------------------- */
#define EFM32_LOCK_BITS_DLW (EFM32_LOCK_BITS + (4U * 127U))
#define EFM32_LOCK_BITS_ULW (EFM32_LOCK_BITS + (4U * 126U))
#define EFM32_LOCK_BITS_MLW (EFM32_LOCK_BITS + (4U * 125U))
#define EFM32_LOCK_BITS_CLW0 (EFM32_LOCK_BITS + (4U * 122U))
#define EFM32_CLW0_BOOTLOADER_ENABLE (1 << 1)
#define EFM32_CLW0_PINRESETSOFT (1 << 2)
/* -------------------------------------------------------------------------- */
/* Device Information (DI) Area - Version 1 */
/* -------------------------------------------------------------------------- */
#define EFM32_V1_DI_CMU_LFRCOCTRL (EFM32_V1_DI + 0x020)
#define EFM32_V1_DI_CMU_HFRCOCTRL (EFM32_V1_DI + 0x028)
#define EFM32_V1_DI_CMU_AUXHFRCOCTRL (EFM32_V1_DI + 0x030)
#define EFM32_V1_DI_ADC0_CAL (EFM32_V1_DI + 0x040)
#define EFM32_V1_DI_ADC0_BIASPROG (EFM32_V1_DI + 0x048)
#define EFM32_V1_DI_DAC0_CAL (EFM32_V1_DI + 0x050)
#define EFM32_V1_DI_DAC0_BIASPROG (EFM32_V1_DI + 0x058)
#define EFM32_V1_DI_ACMP0_CTRL (EFM32_V1_DI + 0x060)
#define EFM32_V1_DI_ACMP1_CTRL (EFM32_V1_DI + 0x068)
#define EFM32_V1_DI_CMU_LCDCTRL (EFM32_V1_DI + 0x078)
#define EFM32_V1_DI_DAC0_OPACTRL (EFM32_V1_DI + 0x0A0)
#define EFM32_V1_DI_DAC0_OPAOFFSET (EFM32_V1_DI + 0x0A8)
#define EFM32_V1_DI_EMU_BUINACT (EFM32_V1_DI + 0x0B0)
#define EFM32_V1_DI_EMU_BUACT (EFM32_V1_DI + 0x0B8)
#define EFM32_V1_DI_EMU_BUBODBUVINCAL (EFM32_V1_DI + 0x0C0)
#define EFM32_V1_DI_EMU_BUBODUNREGCAL (EFM32_V1_DI + 0x0C8)
#define EFM32_V1_DI_MCM_REV_MIN (EFM32_V1_DI + 0x1AA)
#define EFM32_V1_DI_MCM_REV_MAJ (EFM32_V1_DI + 0x1AB)
#define EFM32_V1_DI_RADIO_REV_MIN (EFM32_V1_DI + 0x1AC)
#define EFM32_V1_DI_RADIO_REV_MAJ (EFM32_V1_DI + 0x1AD)
#define EFM32_V1_DI_RADIO_OPN (EFM32_V1_DI + 0x1AE)
#define EFM32_V1_DI_V1_DI_CRC (EFM32_V1_DI + 0x1B0)
#define EFM32_V1_DI_CAL_TEMP_0 (EFM32_V1_DI + 0x1B2)
#define EFM32_V1_DI_ADC0_CAL_1V25 (EFM32_V1_DI + 0x1B4)
#define EFM32_V1_DI_ADC0_CAL_2V5 (EFM32_V1_DI + 0x1B6)
#define EFM32_V1_DI_ADC0_CAL_VDD (EFM32_V1_DI + 0x1B8)
#define EFM32_V1_DI_ADC0_CAL_5VDIFF (EFM32_V1_DI + 0x1BA)
#define EFM32_V1_DI_ADC0_CAL_2XVDD (EFM32_V1_DI + 0x1BC)
#define EFM32_V1_DI_ADC0_TEMP_0_READ_1V25 (EFM32_V1_DI + 0x1BE)
#define EFM32_V1_DI_DAC0_CAL_1V25 (EFM32_V1_DI + 0x1C8)
#define EFM32_V1_DI_DAC0_CAL_2V5 (EFM32_V1_DI + 0x1CC)
#define EFM32_V1_DI_DAC0_CAL_VDD (EFM32_V1_DI + 0x1D0)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_1 (EFM32_V1_DI + 0x1D4)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_7 (EFM32_V1_DI + 0x1D5)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_11 (EFM32_V1_DI + 0x1D6)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_14 (EFM32_V1_DI + 0x1D7)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_21 (EFM32_V1_DI + 0x1D8)
#define EFM32_V1_DI_AUXHFRCO_CALIB_BAND_28 (EFM32_V1_DI + 0x1D9)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_1 (EFM32_V1_DI + 0x1DC)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_7 (EFM32_V1_DI + 0x1DD)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_11 (EFM32_V1_DI + 0x1DE)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_14 (EFM32_V1_DI + 0x1DF)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_21 (EFM32_V1_DI + 0x1E0)
#define EFM32_V1_DI_HFRCO_CALIB_BAND_28 (EFM32_V1_DI + 0x1E1)
#define EFM32_V1_DI_MEM_INFO_PAGE_SIZE (EFM32_V1_DI + 0x1E7)
#define EFM32_V1_DI_RADIO_ID (EFM32_V1_DI + 0x1EE)
#define EFM32_V1_DI_EUI64_0 (EFM32_V1_DI + 0x1F0)
#define EFM32_V1_DI_EUI64_1 (EFM32_V1_DI + 0x1F4)
#define EFM32_V1_DI_MEM_INFO_FLASH (EFM32_V1_DI + 0x1F8)
#define EFM32_V1_DI_MEM_INFO_RAM (EFM32_V1_DI + 0x1FA)
#define EFM32_V1_DI_PART_NUMBER (EFM32_V1_DI + 0x1FC)
#define EFM32_V1_DI_PART_FAMILY (EFM32_V1_DI + 0x1FE)
#define EFM32_V1_DI_PROD_REV (EFM32_V1_DI + 0x1FF)
/* top 24 bits of eui */
#define EFM32_V1_DI_EUI_SILABS 0x000b57
/* -------------------------------------------------------------------------- */
/* Device Information (DI) Area - Version 2 */
/* -------------------------------------------------------------------------- */
#define EFM32_V2_DI_CAL (EFM32_V2_DI + 0x000) /* CRC of DI-page and calibration temperature */
#define EFM32_V2_DI_EXTINFO (EFM32_V2_DI + 0x020) /* External Component description */
#define EFM32_V2_DI_EUI48L (EFM32_V2_DI + 0x028) /* EUI48 OUI and Unique identifier */
#define EFM32_V2_DI_EUI48H (EFM32_V2_DI + 0x02C) /* OUI */
#define EFM32_V2_DI_CUSTOMINFO (EFM32_V2_DI + 0x030) /* Custom information */
#define EFM32_V2_DI_MEMINFO (EFM32_V2_DI + 0x034) /* Flash page size and misc. chip information */
#define EFM32_V2_DI_UNIQUEL (EFM32_V2_DI + 0x040) /* Low 32 bits of device unique number */
#define EFM32_V2_DI_UNIQUEH (EFM32_V2_DI + 0x044) /* High 32 bits of device unique number */
#define EFM32_V2_DI_MSIZE (EFM32_V2_DI + 0x048) /* Flash and SRAM Memory size in kB */
#define EFM32_V2_DI_PART (EFM32_V2_DI + 0x04C) /* Part description */
#define EFM32_V2_DI_DEVINFOREV (EFM32_V2_DI + 0x050) /* Device information page revision */
#define EFM32_V2_DI_EMUTEMP (EFM32_V2_DI + 0x054) /* EMU Temperature Calibration Information */
#define EFM32_V2_DI_ADC0CAL0 (EFM32_V2_DI + 0x060) /* ADC0 calibration register 0 */
#define EFM32_V2_DI_ADC0CAL1 (EFM32_V2_DI + 0x064) /* ADC0 calibration register 1 */
#define EFM32_V2_DI_ADC0CAL2 (EFM32_V2_DI + 0x068) /* ADC0 calibration register 2 */
#define EFM32_V2_DI_ADC0CAL3 (EFM32_V2_DI + 0x06C) /* ADC0 calibration register 3 */
#define EFM32_V2_DI_HFRCOCAL0 (EFM32_V2_DI + 0x080) /* HFRCO Calibration Register (4 MHz) */
#define EFM32_V2_DI_HFRCOCAL3 (EFM32_V2_DI + 0x08C) /* HFRCO Calibration Register (7 MHz) */
#define EFM32_V2_DI_HFRCOCAL6 (EFM32_V2_DI + 0x098) /* HFRCO Calibration Register (13 MHz) */
#define EFM32_V2_DI_HFRCOCAL7 (EFM32_V2_DI + 0x09C) /* HFRCO Calibration Register (16 MHz) */
#define EFM32_V2_DI_HFRCOCAL8 (EFM32_V2_DI + 0x0A0)
#define EFM32_V2_DI_HFRCOCAL10 (EFM32_V2_DI + 0x0A8)
#define EFM32_V2_DI_HFRCOCAL11 (EFM32_V2_DI + 0x0AC)
#define EFM32_V2_DI_HFRCOCAL12 (EFM32_V2_DI + 0x0B0)
#define EFM32_V2_DI_AUXHFRCOCAL0 (EFM32_V2_DI + 0x0E0)
#define EFM32_V2_DI_AUXHFRCOCAL3 (EFM32_V2_DI + 0x0EC)
#define EFM32_V2_DI_AUXHFRCOCAL6 (EFM32_V2_DI + 0x0F8)
#define EFM32_V2_DI_AUXHFRCOCAL7 (EFM32_V2_DI + 0x0FC)
#define EFM32_V2_DI_AUXHFRCOCAL8 (EFM32_V2_DI + 0x100)
#define EFM32_V2_DI_AUXHFRCOCAL10 (EFM32_V2_DI + 0x108)
#define EFM32_V2_DI_AUXHFRCOCAL11 (EFM32_V2_DI + 0x10C)
#define EFM32_V2_DI_AUXHFRCOCAL12 (EFM32_V2_DI + 0x110)
#define EFM32_V2_DI_VMONCAL0 (EFM32_V2_DI + 0x140)
#define EFM32_V2_DI_VMONCAL1 (EFM32_V2_DI + 0x144) /* VMON Calibration Register 1 */
#define EFM32_V2_DI_VMONCAL2 (EFM32_V2_DI + 0x148) /* VMON Calibration Register 2 */
#define EFM32_V2_DI_IDAC0CAL0 (EFM32_V2_DI + 0x158) /* IDAC0 Calibration Register 0 */
#define EFM32_V2_DI_IDAC0CAL1 (EFM32_V2_DI + 0x15C) /* IDAC0 Calibration Register 1 */
#define EFM32_V2_DI_DCDCLNVCTRL0 (EFM32_V2_DI + 0x168) /* DCDC Low-noise VREF Trim Register 0 */
#define EFM32_V2_DI_DCDCLPVCTRL0 (EFM32_V2_DI + 0x16C) /* DCDC Low-power VREF Trim Register 0 */
#define EFM32_V2_DI_DCDCLPVCTRL1 (EFM32_V2_DI + 0x170) /* DCDC Low-power VREF Trim Register 1 */
#define EFM32_V2_DI_DCDCLPVCTRL2 (EFM32_V2_DI + 0x174) /* DCDC Low-power VREF Trim Register 2 */
#define EFM32_V2_DI_DCDCLPVCTRL3 (EFM32_V2_DI + 0x178) /* DCDC Low-power VREF Trim Register 3 */
#define EFM32_V2_DI_DCDCLPCMPHYSSEL0 (EFM32_V2_DI + 0x17C) /* DCDC LPCMPHYSSEL Trim Register 0 */
#define EFM32_V2_DI_DCDCLPCMPHYSSEL1 (EFM32_V2_DI + 0x180) /* DCDC LPCMPHYSSEL Trim Register 1 */
#define EFM32_V2_DI_VDAC0MAINCAL (EFM32_V2_DI + 0x184) /* VDAC0 Cals for Main Path */
#define EFM32_V2_DI_VDAC0ALTCAL (EFM32_V2_DI + 0x188) /* VDAC0 Cals for Alternate Path */
#define EFM32_V2_DI_VDAC0CH1CAL (EFM32_V2_DI + 0x18C) /* VDAC0 CH1 Error Cal */
#define EFM32_V2_DI_OPA0CAL0 (EFM32_V2_DI + 0x190) /* OPA0 Calibration Register for DRIVESTRENGTH 0, INCBW=1 */
#define EFM32_V2_DI_OPA0CAL1 (EFM32_V2_DI + 0x194) /* OPA0 Calibration Register for DRIVESTRENGTH 1, INCBW=1 */
#define EFM32_V2_DI_OPA0CAL2 (EFM32_V2_DI + 0x198) /* OPA0 Calibration Register for DRIVESTRENGTH 2, INCBW=1 */
#define EFM32_V2_DI_OPA0CAL3 (EFM32_V2_DI + 0x19C) /* OPA0 Calibration Register for DRIVESTRENGTH 3, INCBW=1 */
#define EFM32_V2_DI_OPA1CAL0 (EFM32_V2_DI + 0x1A0) /* OPA1 Calibration Register for DRIVESTRENGTH 0, INCBW=1 */
#define EFM32_V2_DI_OPA1CAL1 (EFM32_V2_DI + 0x1A4) /* OPA1 Calibration Register for DRIVESTRENGTH 1, INCBW=1 */
#define EFM32_V2_DI_OPA1CAL2 (EFM32_V2_DI + 0x1A8)
#define EFM32_V2_DI_OPA1CAL3 (EFM32_V2_DI + 0x1AC)
#define EFM32_V2_DI_OPA2CAL0 (EFM32_V2_DI + 0x1B0)
#define EFM32_V2_DI_OPA2CAL1 (EFM32_V2_DI + 0x1B4)
#define EFM32_V2_DI_OPA2CAL2 (EFM32_V2_DI + 0x1B8)
#define EFM32_V2_DI_OPA2CAL3 (EFM32_V2_DI + 0x1BC)
#define EFM32_V2_DI_CSENGAINCAL (EFM32_V2_DI + 0x1C0)
#define EFM32_V2_DI_OPA0CAL4 (EFM32_V2_DI + 0x1D0)
#define EFM32_V2_DI_OPA0CAL5 (EFM32_V2_DI + 0x1D4)
#define EFM32_V2_DI_OPA0CAL6 (EFM32_V2_DI + 0x1D8)
#define EFM32_V2_DI_OPA0CAL7 (EFM32_V2_DI + 0x1DC)
#define EFM32_V2_DI_OPA1CAL4 (EFM32_V2_DI + 0x1E0)
#define EFM32_V2_DI_OPA1CAL5 (EFM32_V2_DI + 0x1E4)
#define EFM32_V2_DI_OPA1CAL6 (EFM32_V2_DI + 0x1E8)
#define EFM32_V2_DI_OPA1CAL7 (EFM32_V2_DI + 0x1EC)
#define EFM32_V2_DI_OPA2CAL4 (EFM32_V2_DI + 0x1F0)
#define EFM32_V2_DI_OPA2CAL5 (EFM32_V2_DI + 0x1F4)
#define EFM32_V2_DI_OPA2CAL6 (EFM32_V2_DI + 0x1F8) /* OPA2 Calibration Register for DRIVESTRENGTH 2, INCBW=0 */
#define EFM32_V2_DI_OPA2CAL7 (EFM32_V2_DI + 0x1FC) /* OPA2 Calibration Register for DRIVESTRENGTH 3, INCBW=0 */
/* top 24 bits of eui */
#define EFM32_V2_DI_EUI_ENERGYMICRO 0xd0cf5e
/* -------------------------------------------------------------------------- */
/* Constants */
/* -------------------------------------------------------------------------- */
typedef struct efm32_device_t {
uint8_t family_id; /* Family for device matching */
bool has_radio; /* Indicates a device has attached radio */
uint16_t flash_page_size; /* Flash page size */
char *name; /* Friendly device family name */
uint32_t msc_addr; /* MSC Address */
uint16_t user_data_size; /* User Data (UD) region size */
uint16_t bootloader_size; /* Bootloader (BL) region size (may be 0 for no BL region) */
char *description; /* Human-readable description */
} efm32_device_t;
efm32_device_t const efm32_devices[] = {
/* First gen micros */
{71, false, 512, "EFM32G", 0x400c0000, 512, 0, "Gecko"},
{72, false, 2048, "EFM32GG", 0x400c0000, 4096, 0, "Giant Gecko"},
{73, false, 512, "EFM32TG", 0x400c0000, 512, 0, "Tiny Gecko"},
{74, false, 2048, "EFM32LG", 0x400c0000, 2048, 0, "Leopard Gecko"},
{75, false, 2048, "EFM32WG", 0x400c0000, 2048, 0, "Wonder Gecko"},
{76, false, 1024, "EFM32ZG", 0x400c0000, 1024, 0, "Zero Gecko"},
{77, false, 1024, "EFM32HG", 0x400c0000, 1024, 0, "Happy Gecko"},
/* First (1.5) gen micro + radio */
{120, true, 2048, "EZR32WG", 0x400c0000, 2048, 0, "EZR Wonder Gecko"},
{121, true, 2048, "EZR32LG", 0x400c0000, 2048, 0, "EZR Leopard Gecko"},
{122, true, 1024, "EZR32HG", 0x400c0000, 1024, 0, "EZR Happy Gecko"},
/* Second gen micros */
{81, false, 2048, "EFM32PG1B", 0x400e0000, 2048, 10240, "Pearl Gecko"},
{83, false, 2048, "EFM32JG1B", 0x400e0000, 2048, 10240, "Jade Gecko"},
{85, false, 2048, "EFM32PG12B", 0x400e0000, 2048, 32768, "Pearl Gecko 12"},
{87, false, 2048, "EFM32JG12B", 0x400e0000, 2048, 32768, "Jade Gecko 12"},
/* Second (2.5) gen micros, with re-located MSC */
{100, false, 4096, "EFM32GG11B", 0x40000000, 4096, 32768, "Giant Gecko 11"},
{103, false, 2048, "EFM32TG11B", 0x40000000, 2048, 18432, "Tiny Gecko 11"},
{106, false, 2048, "EFM32GG12B", 0x40000000, 2048, 32768, "Giant Gecko 12"},
/* Second gen devices micro + radio */
{16, true, 2048, "EFR32MG1P", 0x400e0000, 2048, 10240, "Mighty Gecko"},
{17, true, 2048, "EFR32MG1B", 0x400e0000, 2048, 10240, "Mighty Gecko"},
{18, true, 2048, "EFR32MG1V", 0x400e0000, 2048, 10240, "Mighty Gecko"},
{19, true, 2048, "EFR32BG1P", 0x400e0000, 2048, 10240, "Blue Gecko"},
{20, true, 2048, "EFR32BG1B", 0x400e0000, 2048, 10240, "Blue Gecko"},
{21, true, 2048, "EFR32BG1V", 0x400e0000, 2048, 10240, "Blue Gecko"},
{25, true, 2048, "EFR32FG1P", 0x400e0000, 2048, 10240, "Flex Gecko"},
{26, true, 2048, "EFR32FG1B", 0x400e0000, 2048, 10240, "Flex Gecko"},
{27, true, 2048, "EFR32FG1V", 0x400e0000, 2048, 10240, "Flex Gecko"},
{28, true, 2048, "EFR32MG12P", 0x400e0000, 2048, 32768, "Mighty Gecko"},
{29, true, 2048, "EFR32MG12B", 0x400e0000, 2048, 32768, "Mighty Gecko"},
{30, true, 2048, "EFR32MG12V", 0x400e0000, 2048, 32768, "Mighty Gecko"},
{31, true, 2048, "EFR32BG12P", 0x400e0000, 2048, 32768, "Blue Gecko"},
{32, true, 2048, "EFR32BG12B", 0x400e0000, 2048, 32768, "Blue Gecko"},
{33, true, 2048, "EFR32BG12V", 0x400e0000, 2048, 32768, "Blue Gecko"},
{37, true, 2048, "EFR32FG12P", 0x400e0000, 2048, 32768, "Flex Gecko"},
{38, true, 2048, "EFR32FG12B", 0x400e0000, 2048, 32768, "Flex Gecko"},
{39, true, 2048, "EFR32FG12V", 0x400e0000, 2048, 32768, "Flex Gecko"},
{40, true, 2048, "EFR32MG13P", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{41, true, 2048, "EFR32MG13B", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{42, true, 2048, "EFR32MG13V", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{43, true, 2048, "EFR32BG13P", 0x400e0000, 2048, 16384, "Blue Gecko"},
{44, true, 2048, "EFR32BG13B", 0x400e0000, 2048, 16384, "Blue Gecko"},
{45, true, 2048, "EFR32BG13V", 0x400e0000, 2048, 16384, "Blue Gecko"},
{49, true, 2048, "EFR32FG13P", 0x400e0000, 2048, 16384, "Flex Gecko"},
{50, true, 2048, "EFR32FG13B", 0x400e0000, 2048, 16384, "Flex Gecko"},
{51, true, 2048, "EFR32FG13V", 0x400e0000, 2048, 16384, "Flex Gecko"},
{52, true, 2048, "EFR32MG14P", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{53, true, 2048, "EFR32MG14B", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{54, true, 2048, "EFR32MG14V", 0x400e0000, 2048, 16384, "Mighty Gecko"},
{55, true, 2048, "EFR32BG14P", 0x400e0000, 2048, 16384, "Blue Gecko"},
{56, true, 2048, "EFR32BG14B", 0x400e0000, 2048, 16384, "Blue Gecko"},
{57, true, 2048, "EFR32BG14V", 0x400e0000, 2048, 16384, "Blue Gecko"},
{61, true, 2048, "EFR32FG14P", 0x400e0000, 2048, 16384, "Flex Gecko"},
{62, true, 2048, "EFR32FG14B", 0x400e0000, 2048, 16384, "Flex Gecko"},
{63, true, 2048, "EFR32FG14V", 0x400e0000, 2048, 16384, "Flex Gecko"},
};
/* miscchip */
typedef struct efm32_v2_di_miscchip_t {
uint8_t pincount;
uint8_t pkgtype;
uint8_t tempgrade;
} efm32_v2_di_miscchip_t;
/* pkgtype */
typedef struct efm32_v2_di_pkgtype_t {
uint8_t pkgtype;
char *name;
} efm32_v2_di_pkgtype_t;
efm32_v2_di_pkgtype_t const efm32_v2_di_pkgtypes[] = {
{74, "WLCSP"}, /* WLCSP package */
{76, "BGA"}, /* BGA package */
{77, "QFN"}, /* QFN package */
{81, "QFxP"}, /* QFP package */
};
/* tempgrade */
typedef struct efm32_v2_di_tempgrade_t {
uint8_t tempgrade;
char *name;
} efm32_v2_di_tempgrade_t;
efm32_v2_di_tempgrade_t const efm32_v2_di_tempgrades[] = {
{0, "-40 to 85degC"},
{1, "-40 to 125degC"},
{2, "-40 to 105degC"},
{3, "0 to 70degC"},
};
/* -------------------------------------------------------------------------- */
/* Helper functions */
/* -------------------------------------------------------------------------- */
/* Reads the EFM32 Extended Unique Identifier EUI64 (V1) */
static uint64_t efm32_v1_read_eui64(target *t)
{
return ((uint64_t)target_mem_read32(t, EFM32_V1_DI_EUI64_1) << 32) | target_mem_read32(t, EFM32_V1_DI_EUI64_0);
}
/* Reads the Unique Number (DI V2 only) */
static uint64_t efm32_v2_read_unique(target *t, uint8_t di_version)
{
if (di_version != 2)
return 0;
return ((uint64_t)target_mem_read32(t, EFM32_V2_DI_UNIQUEH) << 32) | target_mem_read32(t, EFM32_V2_DI_UNIQUEL);
}
/* Reads the EFM32 flash size in kiB */
static uint16_t efm32_read_flash_size(target *t, uint8_t di_version)
{
switch (di_version) {
case 1:
return target_mem_read16(t, EFM32_V1_DI_MEM_INFO_FLASH);
case 2:
return (target_mem_read32(t, EFM32_V2_DI_MSIZE) >> 0) & 0xFFFF;
default:
return 0;
}
}
/* Reads the EFM32 RAM size in kiB */
static uint16_t efm32_read_ram_size(target *t, uint8_t di_version)
{
switch (di_version) {
case 1:
return target_mem_read16(t, EFM32_V1_DI_MEM_INFO_RAM);
case 2:
return (target_mem_read32(t, EFM32_V2_DI_MSIZE) >> 16) & 0xFFFF;
default:
return 0;
}
}
/**
* Reads the EFM32 reported flash page size in bytes. Note: This
* driver ignores this value and uses a conservative hard-coded
* value. There are errata on the value reported by the EFM32
* eg. DI_101
*/
static uint32_t efm32_flash_page_size(target *t, uint8_t di_version)
{
uint8_t mem_info_page_size;
switch (di_version) {
case 1:
mem_info_page_size = target_mem_read8(t, EFM32_V1_DI_MEM_INFO_PAGE_SIZE);
break;
case 2:
mem_info_page_size = (target_mem_read32(t, EFM32_V2_DI_MEMINFO) >> 24) & 0xFF;
break;
default:
return 0;
}
return 1 << (mem_info_page_size + 10); /* uint8_t ovf here */
}
/* Reads the EFM32 Part Number */
static uint16_t efm32_read_part_number(target *t, uint8_t di_version)
{
switch (di_version) {
case 1:
return target_mem_read8(t, EFM32_V1_DI_PART_NUMBER);
case 2:
return target_mem_read32(t, EFM32_V2_DI_PART) & 0xFFFF;
default:
return 0;
}
}
/* Reads the EFM32 Part Family */
static uint8_t efm32_read_part_family(target *t, uint8_t di_version)
{
switch (di_version) {
case 1:
return target_mem_read8(t, EFM32_V1_DI_PART_FAMILY);
case 2:
return (target_mem_read32(t, EFM32_V2_DI_PART) >> 16) & 0xFF;
default:
return 0;
}
}
/* Reads the EFM32 Radio part number (EZR parts with V1 DI only) */
static uint16_t efm32_read_radio_part_number(target *t, uint8_t di_version)
{
switch (di_version) {
case 1:
return target_mem_read16(t, EFM32_V1_DI_RADIO_OPN);
default:
return 0;
}
}
/* Reads the EFM32 Misc. Chip definitions */
static efm32_v2_di_miscchip_t efm32_v2_read_miscchip(target *t, uint8_t di_version)
{
uint32_t meminfo;
efm32_v2_di_miscchip_t miscchip;
memset(&miscchip, 0, sizeof(efm32_v2_di_miscchip_t) / sizeof(char));
switch (di_version) {
case 2:
meminfo = target_mem_read32(t, EFM32_V2_DI_MEMINFO);
miscchip.pincount = (meminfo >> 16) & 0xFF;
miscchip.pkgtype = (meminfo >> 8) & 0xFF;
miscchip.tempgrade = (meminfo >> 0) & 0xFF;
}
return miscchip;
}
/* -------------------------------------------------------------------------- */
/* Shared Functions */
/* -------------------------------------------------------------------------- */
static void efm32_add_flash(target *t, target_addr addr, size_t length, size_t page_size)
{
target_flash_s *f = calloc(1, sizeof(*f));
if (!f) { /* calloc failed: heap exhaustion */
DEBUG_WARN("calloc: failed in %s\n", __func__);
return;
}
f->start = addr;
f->length = length;
f->blocksize = page_size;
f->erase = efm32_flash_erase;
f->write = efm32_flash_write;
f->writesize = page_size;
target_add_flash(t, f);
}
/* Lookup device */
static efm32_device_t const *efm32_get_device(target *t, uint8_t di_version)
{
uint8_t part_family = efm32_read_part_family(t, di_version);
/* Search for family */
for (size_t i = 0; i < (sizeof(efm32_devices) / sizeof(efm32_device_t)); i++) {
if (efm32_devices[i].family_id == part_family) {
return &efm32_devices[i];
}
}
/* Unknown family */
return NULL;
}
/* Probe */
struct efm32_priv_s {
char efm32_variant_string[60];
uint8_t di_version;
efm32_device_t const *device;
};
bool efm32_probe(target *t)
{
/* Check if the OUI in the EUI is silabs or energymicro.
* Use this to identify the Device Identification (DI) version */
uint8_t di_version = 1;
uint64_t oui24 = ((efm32_v1_read_eui64(t) >> 40) & 0xFFFFFF);
if (oui24 == EFM32_V1_DI_EUI_SILABS) {
/* Device Identification (DI) version 1 */
di_version = 1;
} else if (oui24 == EFM32_V2_DI_EUI_ENERGYMICRO) {
/* Device Identification (DI) version 2 */
di_version = 2;
} else {
/* Unknown OUI - assume version 1 */
di_version = 1;
}
/* Read the part family, and reject if unknown */
efm32_device_t const *device = efm32_get_device(t, di_version);
if (!device)
return false;
t->mass_erase = efm32_mass_erase;
uint16_t part_number = efm32_read_part_number(t, di_version);
/* Read memory sizes, convert to bytes */
uint16_t flash_kib = efm32_read_flash_size(t, di_version);
uint32_t flash_size = flash_kib * 0x400U;
uint16_t ram_kib = efm32_read_ram_size(t, di_version);
uint32_t ram_size = ram_kib * 0x400U;
uint32_t flash_page_size = device->flash_page_size;
struct efm32_priv_s *priv_storage = calloc(1, sizeof(*priv_storage));
t->target_storage = (void *)priv_storage;
priv_storage->di_version = di_version;
priv_storage->device = device;
snprintf(priv_storage->efm32_variant_string, sizeof(priv_storage->efm32_variant_string), "%s%huF%hu %s",
device->name, part_number, flash_kib, device->description);
/* Setup Target */
t->target_options |= CORTEXM_TOPT_INHIBIT_NRST;
t->driver = priv_storage->efm32_variant_string;
tc_printf(t, "flash size %u page size %u\n", flash_size, flash_page_size);
target_add_ram(t, SRAM_BASE, ram_size);
efm32_add_flash(t, 0x00000000, flash_size, flash_page_size);
if (device->user_data_size) { /* optional User Data (UD) section */
efm32_add_flash(t, 0x0fe00000, device->user_data_size, flash_page_size);
}
if (device->bootloader_size) { /* optional Bootloader (BL) section */
efm32_add_flash(t, 0x0fe10000, device->bootloader_size, flash_page_size);
}
target_add_commands(t, efm32_cmd_list, "EFM32");
return true;
}
/* Erase flash row by row */
static int efm32_flash_erase(target_flash_s *f, target_addr addr, size_t len)
{
target *t = f->t;
struct efm32_priv_s *priv_storage = (struct efm32_priv_s *)t->target_storage;
if (!priv_storage || !priv_storage->device)
return false;
uint32_t msc = priv_storage->device->msc_addr;
/* Unlock */
target_mem_write32(t, EFM32_MSC_LOCK(msc), EFM32_MSC_LOCK_LOCKKEY);
/* Set WREN bit to enable MSC write and erase functionality */
target_mem_write32(t, EFM32_MSC_WRITECTRL(msc), 1);
while (len) {
/* Write address of first word in row to erase it */
target_mem_write32(t, EFM32_MSC_ADDRB(msc), addr);
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_LADDRIM);
/* Issue the erase command */
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_ERASEPAGE);
/* Poll MSC Busy */
while ((target_mem_read32(t, EFM32_MSC_STATUS(msc)) & EFM32_MSC_STATUS_BUSY)) {
if (target_check_error(t))
return -1;
}
addr += f->blocksize;
if (len > f->blocksize)
len -= f->blocksize;
else
len = 0;
}
return 0;
}
/* Write flash page by page */
static int efm32_flash_write(target_flash_s *f, target_addr dest, const void *src, size_t len)
{
(void)len;
target *t = f->t;
struct efm32_priv_s *priv_storage = (struct efm32_priv_s *)t->target_storage;
if (!priv_storage || !priv_storage->device)
return false;
/* Write flashloader */
target_mem_write(t, SRAM_BASE, efm32_flash_write_stub, sizeof(efm32_flash_write_stub));
/* Write Buffer */
target_mem_write(t, STUB_BUFFER_BASE, src, len);
/* Run flashloader */
int ret = cortexm_run_stub(t, SRAM_BASE, dest, STUB_BUFFER_BASE, len, priv_storage->device->msc_addr);
#ifdef ENABLE_DEBUG
/* Check the MSC_IF */
uint32_t msc = priv_storage->device->msc_addr;
uint32_t msc_if = target_mem_read32(t, EFM32_MSC_IF(msc));
DEBUG_INFO("EFM32: Flash write done MSC_IF=%08" PRIx32 "\n", msc_if);
#endif
return ret;
}
/* Uses the MSC ERASEMAIN0/1 command to erase the entire flash */
static bool efm32_mass_erase(target *t)
{
struct efm32_priv_s *priv_storage = (struct efm32_priv_s *)t->target_storage;
if (!priv_storage || !priv_storage->device)
return false;
if (priv_storage->device->family_id == 71 || priv_storage->device->family_id == 73) {
/* original Gecko and Tiny Gecko families don't support mass erase */
tc_printf(t, "This device does not support mass erase through MSC.\n");
return false;
}
uint32_t msc = priv_storage->device->msc_addr;
uint16_t flash_kib = efm32_read_flash_size(t, priv_storage->di_version);
/* Set WREN bit to enable MSC write and erase functionality */
target_mem_write32(t, EFM32_MSC_WRITECTRL(msc), 1);
/* Unlock mass erase */
target_mem_write32(t, EFM32_MSC_MASSLOCK(msc), EFM32_MSC_MASSLOCK_LOCKKEY);
/* Erase operation */
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_ERASEMAIN0);
platform_timeout timeout;
platform_timeout_set(&timeout, 500);
/* Poll MSC Busy */
while ((target_mem_read32(t, EFM32_MSC_STATUS(msc)) & EFM32_MSC_STATUS_BUSY)) {
if (target_check_error(t))
return false;
target_print_progress(&timeout);
}
/* Parts with >= 512 kiB flash have 2 mass erase regions */
if (flash_kib >= 512) {
/* Erase operation */
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_ERASEMAIN1);
/* Poll MSC Busy */
while ((target_mem_read32(t, EFM32_MSC_STATUS(msc)) & EFM32_MSC_STATUS_BUSY)) {
if (target_check_error(t))
return false;
target_print_progress(&timeout);
}
}
/* Relock mass erase */
target_mem_write32(t, EFM32_MSC_MASSLOCK(msc), 0);
return true;
}
/* Reads the 40-bit unique number */
static bool efm32_cmd_serial(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
struct efm32_priv_s *priv_storage = (struct efm32_priv_s *)t->target_storage;
if (!priv_storage)
return false;
uint64_t unique = 0;
uint8_t di_version = priv_storage->di_version;
switch (di_version) {
case 1:
/* Read the eui */
unique = efm32_v1_read_eui64(t);
break;
case 2:
/* Read unique number */
unique = efm32_v2_read_unique(t, di_version);
break;
default:
tc_printf(t, "Bad DI version %hhu! This driver doesn't know about this DI version\n", di_version);
return false;
}
tc_printf(t, "Unique Number: 0x%016llx\n", unique);
return true;
}
/* Prints various information we know about the device */
static bool efm32_cmd_efm_info(target *t, int argc, const char **argv)
{
(void)argc;
(void)argv;
struct efm32_priv_s *priv_storage = (struct efm32_priv_s *)t->target_storage;
if (!priv_storage || !priv_storage->device)
return false;
efm32_device_t const *device = priv_storage->device;
uint8_t di_version = priv_storage->di_version; /* hidden in driver str */
switch (di_version) {
case 1:
tc_printf(t, "DI version 1 (silabs remix?) base 0x%08" PRIx32 "\n\n", EFM32_V1_DI);
break;
case 2:
tc_printf(t, "DI version 2 (energy micro remix?) base 0x%08" PRIx32 "\n\n", EFM32_V2_DI);
break;
default:
tc_printf(t, "Bad DI version %hhu! This driver doesn't know about this DI version\n", di_version);
return false;
}
/* lookup device and part number */
uint16_t part_number = efm32_read_part_number(t, di_version);
/* Read memory sizes, convert to bytes */
uint16_t flash_kib = efm32_read_flash_size(t, di_version);
uint16_t ram_kib = efm32_read_ram_size(t, di_version);
uint32_t flash_page_size_reported = efm32_flash_page_size(t, di_version);
uint32_t flash_page_size = device->flash_page_size;
tc_printf(t, "%s %hu F%hu = %s %hukiB flash, %hukiB ram\n", device->name, part_number, flash_kib,
device->description, flash_kib, ram_kib);
tc_printf(t, "Device says flash page size is %u bytes, we're using %u bytes\n", flash_page_size_reported,
flash_page_size);
if (flash_page_size_reported < flash_page_size) {
tc_printf(t, "This is bad, flash writes may be corrupted\n");
}
tc_printf(t, "\n");
if (di_version == 2) {
efm32_v2_di_miscchip_t miscchip = efm32_v2_read_miscchip(t, di_version);
efm32_v2_di_pkgtype_t const *pkgtype = NULL;
efm32_v2_di_tempgrade_t const *tempgrade;
for (size_t i = 0; i < (sizeof(efm32_v2_di_pkgtypes) / sizeof(efm32_v2_di_pkgtype_t)); i++) {
if (efm32_v2_di_pkgtypes[i].pkgtype == miscchip.pkgtype) {
pkgtype = &efm32_v2_di_pkgtypes[i];
}
}
for (size_t i = 0; i < (sizeof(efm32_v2_di_tempgrades) / sizeof(efm32_v2_di_tempgrade_t)); i++) {
if (efm32_v2_di_tempgrades[i].tempgrade == miscchip.tempgrade) {
tempgrade = &efm32_v2_di_tempgrades[i];
}
}
tc_printf(t, "Package %s %hhu pins\n", pkgtype->name, miscchip.pincount);
tc_printf(t, "Temperature grade %s\n", tempgrade->name);
tc_printf(t, "\n");
}
if (di_version == 1 && device->has_radio) {
uint16_t radio_number = efm32_read_radio_part_number(t, di_version); /* on-chip radio */
tc_printf(t, "Radio si%hu\n", radio_number);
tc_printf(t, "\n");
}
return true;
}
/**
* Bootloader status in CLW0, if applicable.
*
* This is a bit in flash, so it is possible to clear it only once.
*/
static bool efm32_cmd_bootloader(target *t, int argc, const char **argv)
{
/* lookup device and part number */
struct efm32_priv_s *priv_storage = (struct efm32_priv_s *)t->target_storage;
if (!priv_storage || !priv_storage->device)
return false;
uint32_t msc = priv_storage->device->msc_addr;
if (priv_storage->device->bootloader_size == 0) {
tc_printf(t, "This device has no bootloader.\n");
return false;
}
uint32_t clw0 = target_mem_read32(t, EFM32_LOCK_BITS_CLW0);
if (argc == 1) {
const bool bootloader_status = clw0 & EFM32_CLW0_BOOTLOADER_ENABLE;
tc_printf(t, "Bootloader %s\n", bootloader_status ? "enabled" : "disabled");
return true;
}
/* Modify bootloader enable bit */
if (argv[1][0] == 'e')
clw0 |= EFM32_CLW0_BOOTLOADER_ENABLE;
else
clw0 &= ~EFM32_CLW0_BOOTLOADER_ENABLE;
/* Unlock */
target_mem_write32(t, EFM32_MSC_LOCK(msc), EFM32_MSC_LOCK_LOCKKEY);
/* Set WREN bit to enabel MSC write and erase functionality */
target_mem_write32(t, EFM32_MSC_WRITECTRL(msc), 1);
/* Write address of CLW0 */
target_mem_write32(t, EFM32_MSC_ADDRB(msc), EFM32_LOCK_BITS_CLW0);
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_LADDRIM);
/* Issue the write */
target_mem_write32(t, EFM32_MSC_WDATA(msc), clw0);
target_mem_write32(t, EFM32_MSC_WRITECMD(msc), EFM32_MSC_WRITECMD_WRITEONCE);
/* Poll MSC Busy */
while ((target_mem_read32(t, EFM32_MSC_STATUS(msc)) & EFM32_MSC_STATUS_BUSY)) {
if (target_check_error(t))
return false;
}
return true;
}
/* -------------------------------------------------------------------------- */
/* Authentication Access Port (AAP) */
/* -------------------------------------------------------------------------- */
/* There's an additional AP on the SW-DP that is accessible when the part
* is almost entirely locked.
*
* The AAP can be used to issue a DEVICEERASE command, which erases:
* * Flash
* * SRAM
* * Lock Bit (LB) page
*
* It does _not_ erase:
* * User Data (UD) page
* * Bootloader (BL) if present
*
* Once the DEVICEERASE command has completed, the main AP will be
* accessible again. If the device has a bootloader, it will attempt
* to boot from this. If you have just unlocked the device the
* bootloader could be anything (even garbage, if the bootloader
* wasn't used before the DEVICEERASE). Therefore you may want to
* connect under nrst and use the bootloader command to disable it.
*
* It is possible to lock the AAP itself by clearing the AAP Lock Word
* (ALW). In this case the part is unrecoverable (unless you glitch
* it, please try glitching it).
*/
/* IDR revision [31:28] jes106 [27:17] class [16:13] res [12:8]
* variant [7:4] type [3:0] */
#define EFM32_AAP_IDR 0x06E60001
#define EFM32_APP_IDR_MASK 0x0FFFFF0F
#define AAP_CMD ADIV5_AP_REG(0x00)
#define AAP_CMDKEY ADIV5_AP_REG(0x04)
#define AAP_STATUS ADIV5_AP_REG(0x08)
#define AAP_STATUS_LOCKED (1 << 1)
#define AAP_STATUS_ERASEBUSY (1 << 0)
#define CMDKEY 0xCFACC118
static bool efm32_aap_mass_erase(target *t);
/* AAP Probe */
struct efm32_aap_priv_s {
char aap_driver_string[42];
};
bool efm32_aap_probe(ADIv5_AP_t *ap)
{
if ((ap->idr & EFM32_APP_IDR_MASK) == EFM32_AAP_IDR) {
/* It's an EFM32 AAP! */
DEBUG_INFO("EFM32: Found EFM32 AAP\n");
} else
return false;
/* Both revsion 1 and revision 2 devices seen in the wild */
uint16_t aap_revision = (uint16_t)((ap->idr & 0xF0000000) >> 28);
/* New target */
target *t = target_new();
if (!t) {
return false;
}
t->mass_erase = efm32_aap_mass_erase;
adiv5_ap_ref(ap);
t->priv = ap;
t->priv_free = (void *)adiv5_ap_unref;
/* Read status */
DEBUG_INFO("EFM32: AAP STATUS=%08" PRIx32 "\n", adiv5_ap_read(ap, AAP_STATUS));
struct efm32_aap_priv_s *priv_storage = calloc(1, sizeof(*priv_storage));
sprintf(priv_storage->aap_driver_string, "EFM32 Authentication Access Port rev.%hu", aap_revision);
t->driver = priv_storage->aap_driver_string;
t->regs_size = 4;
return true;
}
static bool efm32_aap_mass_erase(target *t)
{
ADIv5_AP_t *ap = t->priv;
uint32_t status;
/* Read status */
status = adiv5_ap_read(ap, AAP_STATUS);
DEBUG_INFO("EFM32: AAP STATUS=%08" PRIx32 "\n", status);
if (status & AAP_STATUS_ERASEBUSY) {
DEBUG_WARN("EFM32: AAP Erase in progress\n");
DEBUG_WARN("EFM32: -> ABORT\n");
return false;
}
DEBUG_INFO("EFM32: Issuing DEVICEERASE...\n");
adiv5_ap_write(ap, AAP_CMDKEY, CMDKEY);
adiv5_ap_write(ap, AAP_CMD, 1);
platform_timeout timeout;
platform_timeout_set(&timeout, 500);
/* Read until 0, probably should have a timeout here... */
do {
status = adiv5_ap_read(ap, AAP_STATUS);
target_print_progress(&timeout);
} while (status & AAP_STATUS_ERASEBUSY);
/* Read status */
status = adiv5_ap_read(ap, AAP_STATUS);
DEBUG_INFO("EFM32: AAP STATUS=%08" PRIx32 "\n", status);
return true;
}