blackmagic/src/stm32f1.c

453 lines
13 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2011 Black Sphere Technologies Ltd.
* Written by Gareth McMullin <gareth@blacksphere.co.nz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements STM32 target specific functions for detecting
* the device, providing the XML memory map and Flash memory programming.
*
* Refereces:
* ST doc - RM0008
* Reference manual - STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx
* and STM32F107xx advanced ARM-based 32-bit MCUs
* ST doc - PM0075
* Programming manual - STM32F10xxx Flash memory microcontrollers
*/
#include <stdlib.h>
#include <string.h>
#include "general.h"
#include "adiv5.h"
#include "target.h"
#include "command.h"
#include "gdb_packet.h"
static bool stm32f1_cmd_erase_mass(target *t);
static bool stm32f1_cmd_option(target *t, int argc, char *argv[]);
const struct command_s stm32f1_cmd_list[] = {
{"erase_mass", (cmd_handler)stm32f1_cmd_erase_mass, "Erase entire flash memory"},
{"option", (cmd_handler)stm32f1_cmd_option, "Manipulate option bytes"},
{NULL, NULL, NULL}
};
static int stm32md_flash_erase(struct target_s *target, uint32_t addr, int len);
static int stm32hd_flash_erase(struct target_s *target, uint32_t addr, int len);
static int stm32f1_flash_erase(struct target_s *target, uint32_t addr, int len,
uint32_t pagesize);
static int stm32f1_flash_write(struct target_s *target, uint32_t dest,
const uint8_t *src, int len);
static const char stm32f1_driver_str[] = "STM32, Medium density.";
static const char stm32hd_driver_str[] = "STM32, High density.";
static const char stm32f3_driver_str[] = "STM32F3xx";
static const char stm32f03_driver_str[] = "STM32F03x";
static const char stm32f04_driver_str[] = "STM32F04x";
static const char stm32f05_driver_str[] = "STM32F05x";
static const char stm32f07_driver_str[] = "STM32F07x";
static const char stm32f09_driver_str[] = "STM32F09x";
static const char stm32f1_xml_memory_map[] = "<?xml version=\"1.0\"?>"
/* "<!DOCTYPE memory-map "
" PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"*/
"<memory-map>"
" <memory type=\"flash\" start=\"0x8000000\" length=\"0x20000\">"
" <property name=\"blocksize\">0x400</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x5000\"/>"
"</memory-map>";
static const char stm32hd_xml_memory_map[] = "<?xml version=\"1.0\"?>"
/* "<!DOCTYPE memory-map "
" PUBLIC \"+//IDN gnu.org//DTD GDB Memory Map V1.0//EN\""
" \"http://sourceware.org/gdb/gdb-memory-map.dtd\">"*/
"<memory-map>"
" <memory type=\"flash\" start=\"0x8000000\" length=\"0x80000\">"
" <property name=\"blocksize\">0x800</property>"
" </memory>"
" <memory type=\"ram\" start=\"0x20000000\" length=\"0x10000\"/>"
"</memory-map>";
/* Flash Program ad Erase Controller Register Map */
#define FPEC_BASE 0x40022000
#define FLASH_ACR (FPEC_BASE+0x00)
#define FLASH_KEYR (FPEC_BASE+0x04)
#define FLASH_OPTKEYR (FPEC_BASE+0x08)
#define FLASH_SR (FPEC_BASE+0x0C)
#define FLASH_CR (FPEC_BASE+0x10)
#define FLASH_AR (FPEC_BASE+0x14)
#define FLASH_OBR (FPEC_BASE+0x1C)
#define FLASH_WRPR (FPEC_BASE+0x20)
#define FLASH_CR_OBL_LAUNCH (1<<13)
#define FLASH_CR_OPTWRE (1 << 9)
#define FLASH_CR_STRT (1 << 6)
#define FLASH_CR_OPTER (1 << 5)
#define FLASH_CR_OPTPG (1 << 4)
#define FLASH_CR_MER (1 << 2)
#define FLASH_CR_PER (1 << 1)
#define FLASH_OBR_RDPRT (1 << 1)
#define FLASH_SR_BSY (1 << 0)
#define FLASH_OBP_RDP 0x1FFFF800
#define FLASH_OBP_RDP_KEY 0x5aa5
#define FLASH_OBP_RDP_KEY_F3 0x55AA
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
#define SR_ERROR_MASK 0x14
#define SR_EOP 0x20
#define DBGMCU_IDCODE 0xE0042000
#define DBGMCU_IDCODE_F0 0x40015800
uint16_t stm32f1_flash_write_stub[] = {
// _start:
0x4809, // ldr r0, [pc, #36] // _flashbase
0x490a, // ldr r1, [pc, #40] // _addr
0x467a, // mov r2, pc
0x322c, // adds r2, #44
0x4b09, // ldr r3, [pc, #36] // _size
0x2501, // movs r5, #1
// _next:
0x2b00, // cmp r3, #0
0xd00a, // beq _done
0x6105, // str r5, [r0, #16]
0x8814, // ldrh r4, [r2]
0x800c, // strh r4, [r1]
// _wait:
0x68c4, // ldr r4, [r0, #12]
0x2601, // movs r6, #1
0x4234, // tst r4, r6
0xd1fb, // bne _wait
0x3b02, // subs r3, #2
0x3102, // adds r1, #2
0x3202, // adds r2, #2
0xe7f2, // b _next
// _done:
0xbe00, // bkpt
// .org 0x28
// _flashbase:
0x2000, 0x4002, // .word 0x40022000 (FPEC_BASE)
// _addr:
// 0x0000, 0x0000,
// _size:
// 0x0000, 0x0000,
// _data:
// ...
};
bool stm32f1_probe(struct target_s *target)
{
target->idcode = adiv5_ap_mem_read(adiv5_target_ap(target), DBGMCU_IDCODE) & 0xfff;
switch(target->idcode) {
case 0x410: /* Medium density */
case 0x412: /* Low denisty */
case 0x420: /* Value Line, Low-/Medium density */
target->driver = stm32f1_driver_str;
target->xml_mem_map = stm32f1_xml_memory_map;
target->flash_erase = stm32md_flash_erase;
target->flash_write = stm32f1_flash_write;
target_add_commands(target, stm32f1_cmd_list, "STM32 LD/MD");
return true;
case 0x414: /* High density */
case 0x418: /* Connectivity Line */
case 0x428: /* Value Line, High Density */
target->driver = stm32hd_driver_str;
target->xml_mem_map = stm32hd_xml_memory_map;
target->flash_erase = stm32hd_flash_erase;
target->flash_write = stm32f1_flash_write;
target_add_commands(target, stm32f1_cmd_list, "STM32 HD/CL");
return true;
case 0x422: /* STM32F30x */
case 0x432: /* STM32F37x */
target->driver = stm32f3_driver_str;
target->xml_mem_map = stm32hd_xml_memory_map;
target->flash_erase = stm32hd_flash_erase;
target->flash_write = stm32f1_flash_write;
target_add_commands(target, stm32f1_cmd_list, "STM32F3");
return true;
}
target->idcode = adiv5_ap_mem_read(adiv5_target_ap(target), DBGMCU_IDCODE_F0) & 0xfff;
switch(target->idcode) {
case 0x444: /* STM32F03 RM0091 Rev.7 */
case 0x445: /* STM32F04 RM0091 Rev.7 */
case 0x440: /* STM32F05 RM0091 Rev.7 */
case 0x448: /* STM32F07 RM0091 Rev.7 */
case 0x442: /* STM32F09 RM0091 Rev.7 */
switch(target->idcode) {
case 0x444: /* STM32F03 */
target->driver = stm32f03_driver_str;
break;
case 0x445: /* STM32F04 */
target->driver = stm32f04_driver_str;
break;
case 0x440: /* STM32F05 */
target->driver = stm32f05_driver_str;
break;
case 0x448: /* STM32F07 */
target->driver = stm32f07_driver_str;
break;
case 0x442: /* STM32F09 */
target->driver = stm32f09_driver_str;
break;
}
target->xml_mem_map = stm32f1_xml_memory_map;
target->flash_erase = stm32md_flash_erase;
target->flash_write = stm32f1_flash_write;
target_add_commands(target, stm32f1_cmd_list, "STM32F0");
return true;
}
return false;
}
static void stm32f1_flash_unlock(ADIv5_AP_t *ap)
{
adiv5_ap_mem_write(ap, FLASH_KEYR, KEY1);
adiv5_ap_mem_write(ap, FLASH_KEYR, KEY2);
}
static int stm32f1_flash_erase(struct target_s *target, uint32_t addr, int len, uint32_t pagesize)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
uint16_t sr;
addr &= ~(pagesize - 1);
len = (len + pagesize - 1) & ~(pagesize - 1);
stm32f1_flash_unlock(ap);
while(len) {
/* Flash page erase instruction */
adiv5_ap_mem_write(ap, FLASH_CR, FLASH_CR_PER);
/* write address to FMA */
adiv5_ap_mem_write(ap, FLASH_AR, addr);
/* Flash page erase start instruction */
adiv5_ap_mem_write(ap, FLASH_CR, FLASH_CR_STRT | FLASH_CR_PER);
/* Read FLASH_SR to poll for BSY bit */
while(adiv5_ap_mem_read(ap, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(target))
return -1;
len -= pagesize;
addr += pagesize;
}
/* Check for error */
sr = adiv5_ap_mem_read(ap, FLASH_SR);
if ((sr & SR_ERROR_MASK) || !(sr & SR_EOP))
return -1;
return 0;
}
static int stm32hd_flash_erase(struct target_s *target, uint32_t addr, int len)
{
return stm32f1_flash_erase(target, addr, len, 0x800);
}
static int stm32md_flash_erase(struct target_s *target, uint32_t addr, int len)
{
return stm32f1_flash_erase(target, addr, len, 0x400);
}
static int stm32f1_flash_write(struct target_s *target, uint32_t dest,
const uint8_t *src, int len)
{
ADIv5_AP_t *ap = adiv5_target_ap(target);
uint32_t offset = dest % 4;
uint32_t words = (offset + len + 3) / 4;
if (words > 256)
return -1;
uint32_t data[2 + words];
/* Construct data buffer used by stub */
data[0] = dest - offset;
data[1] = words * 4; /* length must always be a multiple of 4 */
data[2] = 0xFFFFFFFF; /* pad partial words with all 1s to avoid */
data[words + 1] = 0xFFFFFFFF; /* damaging overlapping areas */
memcpy((uint8_t *)&data[2] + offset, src, len);
/* Write stub and data to target ram and set PC */
target_mem_write_words(target, 0x20000000, (void*)stm32f1_flash_write_stub, 0x2C);
target_mem_write_words(target, 0x2000002C, data, sizeof(data));
target_pc_write(target, 0x20000000);
if(target_check_error(target))
return -1;
/* Execute the stub */
target_halt_resume(target, 0);
while(!target_halt_wait(target));
/* Check for error */
if (adiv5_ap_mem_read(ap, FLASH_SR) & SR_ERROR_MASK)
return -1;
return 0;
}
static bool stm32f1_cmd_erase_mass(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
stm32f1_flash_unlock(ap);
/* Flash mass erase start instruction */
adiv5_ap_mem_write(ap, FLASH_CR, FLASH_CR_MER);
adiv5_ap_mem_write(ap, FLASH_CR, FLASH_CR_STRT | FLASH_CR_MER);
/* Read FLASH_SR to poll for BSY bit */
while(adiv5_ap_mem_read(ap, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return false;
/* Check for error */
uint16_t sr = adiv5_ap_mem_read(ap, FLASH_SR);
if ((sr & SR_ERROR_MASK) || !(sr & SR_EOP))
return false;
return true;
}
static bool stm32f1_option_erase(target *t)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
/* Erase option bytes instruction */
adiv5_ap_mem_write(ap, FLASH_CR, FLASH_CR_OPTER | FLASH_CR_OPTWRE);
adiv5_ap_mem_write(ap, FLASH_CR,
FLASH_CR_STRT | FLASH_CR_OPTER | FLASH_CR_OPTWRE);
/* Read FLASH_SR to poll for BSY bit */
while(adiv5_ap_mem_read(ap, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return false;
return true;
}
static bool stm32f1_option_write_erased(target *t, uint32_t addr, uint16_t value)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
if (value == 0xffff)
return true;
/* Erase option bytes instruction */
adiv5_ap_mem_write(ap, FLASH_CR, FLASH_CR_OPTPG | FLASH_CR_OPTWRE);
adiv5_ap_mem_write_halfword(ap, addr, value);
/* Read FLASH_SR to poll for BSY bit */
while(adiv5_ap_mem_read(ap, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return false;
return true;
}
static bool stm32f1_option_write(target *t, uint32_t addr, uint16_t value)
{
ADIv5_AP_t *ap = adiv5_target_ap(t);
uint16_t opt_val[8];
int i, index;
index = (addr - FLASH_OBP_RDP) / 2;
if ((index < 0) || (index > 7))
return false;
/* Retrieve old values */
for (i = 0; i < 16; i = i +4) {
uint32_t val = adiv5_ap_mem_read(ap, FLASH_OBP_RDP + i);
opt_val[i/2] = val & 0xffff;
opt_val[i/2 +1] = val >> 16;
}
if (opt_val[index] == value)
return true;
/* Check for erased value */
if (opt_val[index] != 0xffff)
if (!(stm32f1_option_erase(t)))
return false;
opt_val[index] = value;
/* Write changed values*/
for (i = 0; i < 8; i++)
if (!(stm32f1_option_write_erased
(t, FLASH_OBP_RDP + i*2,opt_val[i])))
return false;
return true;
}
static bool stm32f1_cmd_option(target *t, int argc, char *argv[])
{
uint32_t addr, val;
uint32_t flash_obp_rdp_key;
ADIv5_AP_t *ap = adiv5_target_ap(t);
uint32_t rdprt;
switch(t->idcode) {
case 0x422: /* STM32F30x */
case 0x432: /* STM32F37x */
case 0x440: /* STM32F0 */
flash_obp_rdp_key = FLASH_OBP_RDP_KEY_F3;
break;
default: flash_obp_rdp_key = FLASH_OBP_RDP_KEY;
}
rdprt = (adiv5_ap_mem_read(ap, FLASH_OBR) & FLASH_OBR_RDPRT);
stm32f1_flash_unlock(ap);
adiv5_ap_mem_write(ap, FLASH_OPTKEYR, KEY1);
adiv5_ap_mem_write(ap, FLASH_OPTKEYR, KEY2);
if ((argc == 2) && !strcmp(argv[1], "erase")) {
stm32f1_option_erase(t);
stm32f1_option_write_erased(t, FLASH_OBP_RDP, flash_obp_rdp_key);
} else if (rdprt) {
gdb_out("Device is Read Protected\n");
gdb_out("Use \"monitor option erase\" to unprotect, erasing device\n");
return true;
} else if (argc == 3) {
addr = strtol(argv[1], NULL, 0);
val = strtol(argv[2], NULL, 0);
stm32f1_option_write(t, addr, val);
} else {
gdb_out("usage: monitor option erase\n");
gdb_out("usage: monitor option <addr> <value>\n");
}
if (0 && flash_obp_rdp_key == FLASH_OBP_RDP_KEY_F3) {
/* Reload option bytes on F0 and F3*/
val = adiv5_ap_mem_read(ap, FLASH_CR);
val |= FLASH_CR_OBL_LAUNCH;
stm32f1_option_write(t, FLASH_CR, val);
val &= ~FLASH_CR_OBL_LAUNCH;
stm32f1_option_write(t, FLASH_CR, val);
}
for (int i = 0; i < 0xf; i += 4) {
addr = 0x1ffff800 + i;
val = adiv5_ap_mem_read(ap, addr);
gdb_outf("0x%08X: 0x%04X\n", addr, val & 0xFFFF);
gdb_outf("0x%08X: 0x%04X\n", addr + 2, val >> 16);
}
return true;
}