blackmagic/src/target/adiv5.c

1021 lines
39 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2015 Black Sphere Technologies Ltd.
* Written by Gareth McMullin <gareth@blacksphere.co.nz>
* Copyright (C) 2018 - 2021 Uwe Bonnes
* (bon@elektron.ikp.physik.tu-darmstadt.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements the transport generic functions.
* See the following ARM Reference Documents:
*
* ARM Debug Interface v5 Architecure Specification, ARM IHI 0031E
*/
#include "general.h"
#include "target.h"
#include "target_internal.h"
#include "target_probe.h"
#include "adiv5.h"
#include "cortexm.h"
#include "exception.h"
/* All this should probably be defined in a dedicated ADIV5 header, so that they
* are consistently named and accessible when needed in the codebase.
*/
/* Values from ST RM0436 (STM32MP157), 66.9 APx_IDR
* and ST RM0438 (STM32L5) 52.3.1, AP_IDR */
#define ARM_AP_TYPE_AHB 1
#define ARM_AP_TYPE_APB 3
#define ARM_AP_TYPE_AXI 4
#define ARM_AP_TYPE_AHB5 5
/* ROM table CIDR values */
#define CIDR0_OFFSET 0xFF0 /* DBGCID0 */
#define CIDR1_OFFSET 0xFF4 /* DBGCID1 */
#define CIDR2_OFFSET 0xFF8 /* DBGCID2 */
#define CIDR3_OFFSET 0xFFC /* DBGCID3 */
/* Component class ID register can be broken down into the following logical
* interpretation of the 32bit value consisting of the least significant bytes
* of the 4 CID registers:
* |7 ID3 reg 0|7 ID2 reg 0|7 ID1 reg 0|7 ID0 reg 0|
* |1|0|1|1|0|0|0|1|0|0|0|0|0|1|0|1| | | | |0|0|0|0|0|0|0|0|1|1|0|1|
* |31 24|23 16|15 12|11 | 0|
* \_______________ ______________/\___ __/\___________ ___________/
* V V V
* Preamble Component Preamble
* Class
* \_______________________________ _______________________________/
* V
* Component ID
*/
#define CID_PREAMBLE UINT32_C(0xB105000D)
#define CID_CLASS_MASK UINT32_C(0x0000F000)
#define CID_CLASS_SHIFT 12U
/* The following enum is based on the Component Class value table 13-3 of the
* ADIv5 standard.
*/
enum cid_class {
cidc_gvc = 0x0, /* Generic verification component*/
cidc_romtab = 0x1, /* ROM Table, std. layout (ADIv5 Chapter 14) */
/* 0x2 - 0x8 */ /* Reserved */
cidc_dc = 0x9, /* Debug component, std. layout (CoreSight Arch. Spec.) */
/* 0xA */ /* Reserved */
cidc_ptb = 0xB, /* Peripheral Test Block (PTB) */
/* 0xC */ /* Reserved */
cidc_dess = 0xD, /* OptimoDE Data Engine SubSystem (DESS) component */
cidc_gipc = 0xE, /* Generic IP Component */
cidc_sys = 0xF, /* CoreLink, PrimeCell, or other system component with no standard register layout */
cidc_unknown = 0x10
};
#ifdef ENABLE_DEBUG
/* The reserved ones only have an R in them, to save a bit of space. */
static const char *const cidc_debug_strings[] = {
[cidc_gvc] = "Generic verification component", /* 0x0 */
[cidc_romtab] = "ROM Table", /* 0x1 */
[0x2 ... 0x8] = "R", /* 0x2 - 0x8 */
[cidc_dc] = "Debug component", /* 0x9 */
[0xA] = "R", /* 0xA */
[cidc_ptb] = "Peripheral Test Block", /* 0xB */
[0xC] = "R", /* 0xC */
[cidc_dess] = "OptimoDE Data Engine SubSystem component", /* 0xD */
[cidc_gipc] = "Generic IP component", /* 0xE */
[cidc_sys] = "Non STD System component", /* 0xF */
[cidc_unknown] = "Unknown component class" /* 0x10 */
};
#endif
#define PIDR0_OFFSET 0xFE0 /* DBGPID0 */
#define PIDR1_OFFSET 0xFE4 /* DBGPID1 */
#define PIDR2_OFFSET 0xFE8 /* DBGPID2 */
#define PIDR3_OFFSET 0xFEC /* DBGPID3 */
#define PIDR4_OFFSET 0xFD0 /* DBGPID4 */
#define PIDR5_OFFSET 0xFD4 /* DBGPID5 (Reserved) */
#define PIDR6_OFFSET 0xFD8 /* DBGPID6 (Reserved) */
#define PIDR7_OFFSET 0xFDC /* DBGPID7 (Reserved) */
#define PIDR_JEP106_CONT_OFFSET 32ULL /*JEP-106 Continuation Code offset */
#define PIDR_JEP106_CONT_MASK (0xFULL << PIDR_JEP106_CONT_OFFSET) /*JEP-106 Continuation Code mask */
#define PIDR_REV_OFFSET 20ULL /* Revision bits offset */
#define PIDR_REV_MASK (0xFFFULL << PIDR_REV_OFFSET) /* Revision bits mask */
#define PIDR_JEP106_USED_OFFSET 19ULL /* JEP-106 code used flag offset */
#define PIDR_JEP106_USED (1ULL << PIDR_JEP106_USED_OFFSET) /* JEP-106 code used flag */
#define PIDR_JEP106_CODE_OFFSET 12ULL /* JEP-106 code offset */
#define PIDR_JEP106_CODE_MASK (0x7FULL << PIDR_JEP106_CODE_OFFSET) /* JEP-106 code mask */
#define PIDR_PN_MASK (0xFFFULL) /* Part number */
#define DEVTYPE_OFFSET 0xFCCU /* CoreSight Device Type Register */
#define DEVARCH_OFFSET 0xFBCU /* CoreSight Device Architecture Register */
#define DEVTYPE_MASK 0x000000FFU
#define DEVARCH_PRESENT (1U << 20)
#define DEVARCH_ARCHID_MASK 0x0000FFFFU
enum arm_arch {
aa_nosupport,
aa_cortexm,
aa_cortexa,
aa_end
};
#ifdef ENABLE_DEBUG
#define ARM_COMPONENT_STR(...) __VA_ARGS__
#else
#define ARM_COMPONENT_STR(...)
#endif
/* The part number list was adopted from OpenOCD:
* https://sourceforge.net/p/openocd/code/ci/406f4/tree/src/target/arm_adi_v5.c#l932
*
* The product ID register consists of several parts. For a full description
* refer to ARM Debug Interface v5 Architecture Specification. Based on the
* document the pidr is 64 bit long and has the following interpratiation:
* |7 ID7 reg 0|7 ID6 reg 0|7 ID5 reg 0|7 ID4 reg 0|
* |0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0| | | | | | | | |
* |63 56|55 48|47 40|39 36|35 32|
* \_______________________ ______________________/\___ __/\___ ___/
* V V V
* Reserved, RAZ 4KB |
* count |
* JEP-106
* Continuation Code (only valid for JEP-106 codes)
*
* |7 ID3 reg 0|7 ID2 reg 0|7 ID1 reg 0|7 ID0 reg 0|
* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
* |31 28|27 24|23 20|||18 | 12|11 | 0|
* \___ __/\__ ___/\___ __/ |\______ _____/\___________ ___________/
* V V V | V V
* RevAnd | Revision | JEP-106 ID Part number
* | | (no parity)
* Customer 19
* modified `- JEP-106 code is used
*
* only a subset of Part numbers are listed,
* the ones that have ARM as the designer code.
*
* To properly identify ADIv6 CoreSight components, two additional fields,
* DEVTYPE and ARCHID are read.
* The dev_type and arch_id values in the table below were found in the
* corresponding logic in pyOCD:
* https://github.com/mbedmicro/pyOCD/blob/master/pyocd/coresight/component_ids.py
*
* Additional reference on the DEVTYPE and DEVARCH registers can be found in the
* ARM CoreSight Architecture Specification v3.0, sections B2.3.4 and B2.3.8.
*/
static const struct {
uint16_t part_number;
uint8_t dev_type;
uint16_t arch_id;
enum arm_arch arch;
enum cid_class cidc;
#ifdef ENABLE_DEBUG
const char *type;
const char *full;
#endif
} arm_component_lut[] = {
{0x000, 0x00, 0, aa_cortexm, cidc_gipc, ARM_COMPONENT_STR("Cortex-M3 SCS", "(System Control Space)")},
{0x001, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M3 ITM", "(Instrumentation Trace Module)")},
{0x002, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M3 DWT", "(Data Watchpoint and Trace)")},
{0x003, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M3 FBP", "(Flash Patch and Breakpoint)")},
{0x008, 0x00, 0, aa_cortexm, cidc_gipc, ARM_COMPONENT_STR("Cortex-M0 SCS", "(System Control Space)")},
{0x00a, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M0 DWT", "(Data Watchpoint and Trace)")},
{0x00b, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M0 BPU", "(Breakpoint Unit)")},
{0x00c, 0x00, 0, aa_cortexm, cidc_gipc, ARM_COMPONENT_STR("Cortex-M4 SCS", "(System Control Space)")},
{0x00d, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight ETM11", "(Embedded Trace)")},
{0x00e, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M7 FBP", "(Flash Patch and Breakpoint)")},
{0x101, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("System TSGEN", "(Time Stamp Generator)")},
{0x471, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M0 ROM", "(Cortex-M0 ROM)")},
{0x490, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-A15 GIC", "(Generic Interrupt Controller)")},
{0x4c0, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M0+ ROM", "(Cortex-M0+ ROM)")},
{0x4c3, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M3 ROM", "(Cortex-M3 ROM)")},
{0x4c4, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M4 ROM", "(Cortex-M4 ROM)")},
{0x4c7, 0x00, 0, aa_nosupport, cidc_unknown,
ARM_COMPONENT_STR("Cortex-M7 PPB", "(Cortex-M7 Private Peripheral Bus ROM Table)")},
{0x4c8, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M7 ROM", "(Cortex-M7 ROM)")},
{0x906, 0x14, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight CTI", "(Cross Trigger)")},
{0x907, 0x21, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight ETB", "(Trace Buffer)")},
{0x908, 0x12, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight CSTF", "(Trace Funnel)")},
{0x910, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight ETM9", "(Embedded Trace)")},
{0x912, 0x11, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight TPIU", "(Trace Port Interface Unit)")},
{0x913, 0x00, 0, aa_nosupport, cidc_unknown,
ARM_COMPONENT_STR("CoreSight ITM", "(Instrumentation Trace Macrocell)")},
{0x914, 0x11, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight SWO", "(Single Wire Output)")},
{0x917, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight HTM", "(AHB Trace Macrocell)")},
{0x920, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight ETM11", "(Embedded Trace)")},
{0x921, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-A8 ETM", "(Embedded Trace)")},
{0x922, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-A8 CTI", "(Cross Trigger)")},
{0x923, 0x11, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M3 TPIU", "(Trace Port Interface Unit)")},
{0x924, 0x13, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M3 ETM", "(Embedded Trace)")},
{0x925, 0x13, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M4 ETM", "(Embedded Trace)")},
{0x930, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-R4 ETM", "(Embedded Trace)")},
{0x932, 0x31, 0x0a31, aa_nosupport, cidc_unknown,
ARM_COMPONENT_STR("CoreSight MTB-M0+", "(Simple Execution Trace)")},
{0x941, 0x00, 0, aa_nosupport, cidc_unknown,
ARM_COMPONENT_STR("CoreSight TPIU-Lite", "(Trace Port Interface Unit)")},
{0x950, 0x00, 0, aa_nosupport, cidc_unknown,
ARM_COMPONENT_STR("CoreSight Component", "(unidentified Cortex-A9 component)")},
{0x955, 0x00, 0, aa_nosupport, cidc_unknown,
ARM_COMPONENT_STR("CoreSight Component", "(unidentified Cortex-A5 component)")},
{0x956, 0x13, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-A7 ETM", "(Embedded Trace)")},
{0x95f, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-A15 PTM", "(Program Trace Macrocell)")},
{0x961, 0x32, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight TMC", "(Trace Memory Controller)")},
{0x961, 0x21, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight TMC", "(Trace Buffer)")},
{0x962, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight STM", "(System Trace Macrocell)")},
{0x963, 0x63, 0x0a63, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight STM", "(System Trace Macrocell)")},
{0x975, 0x13, 0x4a13, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M7 ETM", "(Embedded Trace)")},
{0x9a0, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("CoreSight PMU", "(Performance Monitoring Unit)")},
{0x9a1, 0x11, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M4 TPIU", "(Trace Port Interface Unit)")},
{0x9a6, 0x14, 0x1a14, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M0+ CTI", "(Cross Trigger Interface)")},
{0x9a9, 0x11, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-M7 TPIU", "(Trace Port Interface Unit)")},
{0x9a5, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-A5 ETM", "(Embedded Trace)")},
{0x9a7, 0x16, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-A7 PMU", "(Performance Monitor Unit)")},
{0x9af, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-A15 PMU", "(Performance Monitor Unit)")},
{0xc05, 0x00, 0, aa_cortexa, cidc_dc, ARM_COMPONENT_STR("Cortex-A5 Debug", "(Debug Unit)")},
{0xc07, 0x15, 0, aa_cortexa, cidc_dc, ARM_COMPONENT_STR("Cortex-A7 Debug", "(Debug Unit)")},
{0xc08, 0x00, 0, aa_cortexa, cidc_dc, ARM_COMPONENT_STR("Cortex-A8 Debug", "(Debug Unit)")},
{0xc09, 0x00, 0, aa_cortexa, cidc_dc, ARM_COMPONENT_STR("Cortex-A9 Debug", "(Debug Unit)")},
{0xc0f, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-A15 Debug", "(Debug Unit)")}, /* support? */
{0xc14, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Cortex-R4 Debug", "(Debug Unit)")}, /* support? */
{0xcd0, 0x00, 0, aa_nosupport, cidc_unknown, ARM_COMPONENT_STR("Atmel DSU", "(Device Service Unit)")},
{0xd20, 0x00, 0x2a04, aa_cortexm, cidc_dc, ARM_COMPONENT_STR("Cortex-M23", "(System Control Space)")},
{0xd20, 0x11, 0, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M23", "(Trace Port Interface Unit)")},
{0xd20, 0x13, 0, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M23", "(Embedded Trace)")},
{0xd20, 0x31, 0x0a31, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M23", "(Micro Trace Buffer)")},
{0xd20, 0x00, 0x1a02, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M23", "(Data Watchpoint and Trace)")},
{0xd20, 0x00, 0x1a03, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M23", "(Breakpoint Unit)")},
{0xd20, 0x14, 0x1a14, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M23", "(Cross Trigger)")},
{0xd21, 0x00, 0x2a04, aa_cortexm, cidc_dc, ARM_COMPONENT_STR("Cortex-M33", "(System Control Space)")},
{0xd21, 0x31, 0x0a31, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M33", "(Micro Trace Buffer)")},
{0xd21, 0x43, 0x1a01, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M33", "(Instrumentation Trace Macrocell)")},
{0xd21, 0x00, 0x1a02, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M33", "(Data Watchpoint and Trace)")},
{0xd21, 0x00, 0x1a03, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M33", "(Breakpoint Unit)")},
{0xd21, 0x14, 0x1a14, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M33", "(Cross Trigger)")},
{0xd21, 0x13, 0x4a13, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M33", "(Embedded Trace)")},
{0xd21, 0x11, 0, aa_nosupport, cidc_dc, ARM_COMPONENT_STR("Cortex-M33", "(Trace Port Interface Unit)")},
{0xfff, 0x00, 0, aa_end, cidc_unknown, ARM_COMPONENT_STR("end", "end")},
};
/* Used to probe for a protected SAMX5X device */
#define SAMX5X_DSU_CTRLSTAT 0x41002100U
#define SAMX5X_STATUSB_PROT (1U << 16U)
void adiv5_ap_ref(ADIv5_AP_t *ap)
{
if (ap->refcnt == 0)
ap->dp->refcnt++;
ap->refcnt++;
}
static void adiv5_dp_unref(ADIv5_DP_t *dp)
{
if (--(dp->refcnt) == 0)
free(dp);
}
void adiv5_ap_unref(ADIv5_AP_t *ap)
{
if (--(ap->refcnt) == 0) {
adiv5_dp_unref(ap->dp);
free(ap);
}
}
static uint32_t adiv5_mem_read32(ADIv5_AP_t *ap, uint32_t addr)
{
uint32_t ret;
adiv5_mem_read(ap, &ret, addr, sizeof(ret));
return ret;
}
static uint32_t adiv5_ap_read_id(ADIv5_AP_t *ap, uint32_t addr)
{
uint32_t res = 0;
uint8_t data[16];
adiv5_mem_read(ap, data, addr, sizeof(data));
for (size_t i = 0; i < 4; ++i)
res |= (data[4U * i] << (i * 8U));
return res;
}
uint64_t adiv5_ap_read_pidr(ADIv5_AP_t *ap, uint32_t addr)
{
uint64_t pidr = adiv5_ap_read_id(ap, addr + PIDR4_OFFSET);
pidr = pidr << 32 | adiv5_ap_read_id(ap, addr + PIDR0_OFFSET);
return pidr;
}
/* Halt CortexM
*
* Run in tight loop to catch small windows of awakeness.
* Repeat the write command with the highest possible value
* of the trannsaction counter, if not on MINDP
*/
static uint32_t cortexm_initial_halt(ADIv5_AP_t *ap)
{
const uint32_t ctrlstat = adiv5_dp_read(ap->dp, ADIV5_DP_CTRLSTAT);
const uint32_t dhcsr_ctl = CORTEXM_DHCSR_DBGKEY | CORTEXM_DHCSR_C_DEBUGEN | CORTEXM_DHCSR_C_HALT;
const uint32_t dhcsr_valid = CORTEXM_DHCSR_S_HALT | CORTEXM_DHCSR_C_DEBUGEN;
const bool use_low_access = !ap->dp->mindp;
platform_timeout halt_timeout;
platform_timeout_set(&halt_timeout, cortexm_wait_timeout);
if (use_low_access) {
/* ap_mem_access_setup() sets ADIV5_AP_CSW_ADDRINC_SINGLE -> unusable!*/
adiv5_ap_write(ap, ADIV5_AP_CSW, ap->csw | ADIV5_AP_CSW_SIZE_WORD);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_TAR, CORTEXM_DHCSR);
}
/* Workaround for CMSIS-DAP Bulk orbtrace
* High values of TRNCNT lead to NO_ACK answer from debugger.
*
* However CMSIS/HID even with highest value has few chances to catch
* a STM32F767 mostly sleeping in WFI!
*/
uint32_t start_time = platform_time_ms();
uint32_t trncnt = 0x80U;
bool reset_seen = false;
while (!platform_timeout_is_expired(&halt_timeout)) {
uint32_t dhcsr;
if (use_low_access) {
adiv5_dp_low_access(
ap->dp, ADIV5_LOW_WRITE, ADIV5_DP_CTRLSTAT, ctrlstat | (trncnt * ADIV5_DP_CTRLSTAT_TRNCNT));
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DRW, dhcsr_ctl);
if (trncnt < 0xfffU) {
trncnt += (platform_time_ms() - start_time) * 8U;
} else {
trncnt = 0xfffU;
}
dhcsr = adiv5_dp_low_access(ap->dp, ADIV5_LOW_READ, ADIV5_AP_DRW, 0);
} else {
adiv5_mem_write(ap, CORTEXM_DHCSR, &dhcsr_ctl, sizeof(dhcsr_ctl));
dhcsr = adiv5_mem_read32(ap, CORTEXM_DHCSR);
}
/* ADIV5_DP_CTRLSTAT_READOK is always set e.g. on STM32F7 even so
CORTEXM_DHCS reads nonsense*/
/* On a sleeping STM32F7, invalid DHCSR reads with e.g. 0xffffffff and
* 0x0xA05F0000 may happen.
* M23/33 will have S_SDE set when debug is allowed
*/
if ((dhcsr != 0xffffffffU) && /* Invalid read */
((dhcsr & 0xf000fff0U) == 0)) { /* Check RAZ bits */
if ((dhcsr & CORTEXM_DHCSR_S_RESET_ST) && !reset_seen) {
if (connect_assert_nrst)
return dhcsr;
reset_seen = true;
continue;
}
if ((dhcsr & dhcsr_valid) == dhcsr_valid) /* Halted */
return dhcsr;
}
}
return 0;
}
/* Prepare to read SYSROM and SYSROM PIDR
*
* Try hard to halt, if not connecting under reset
* Request TRCENA and default vector catch
* release from reset when connecting under reset.
*
* E.g. Stm32F7
* - fails reading romtable in WFI
* - fails with some AP accesses when romtable is read under reset.
* - fails reading some ROMTABLE entries w/o TRCENA
* - fails reading outside SYSROM when halted from WFI and
* DBGMCU_CR not set.
*
* E.g. Stm32F0
* - fails reading DBGMCU when under reset
*
* Keep a copy of DEMCR at startup to restore with exit, to
* not interrupt tracing initiated by the CPU.
*/
static bool cortexm_prepare(ADIv5_AP_t *ap)
{
#if ((PC_HOSTED == 1) || (ENABLE_DEBUG == 1))
uint32_t start_time = platform_time_ms();
#endif
uint32_t dhcsr = cortexm_initial_halt(ap);
if (!dhcsr) {
DEBUG_WARN("Halt via DHCSR: Failure DHCSR %08" PRIx32 " after % " PRId32 "ms\nTry again, evt. with longer "
"timeout or connect under reset\n",
adiv5_mem_read32(ap, CORTEXM_DHCSR), platform_time_ms() - start_time);
return false;
}
DEBUG_INFO("Halt via DHCSR: success %08" PRIx32 " after %" PRId32 "ms\n", dhcsr, platform_time_ms() - start_time);
ap->ap_cortexm_demcr = adiv5_mem_read32(ap, CORTEXM_DEMCR);
const uint32_t demcr = CORTEXM_DEMCR_TRCENA | CORTEXM_DEMCR_VC_HARDERR | CORTEXM_DEMCR_VC_CORERESET;
adiv5_mem_write(ap, CORTEXM_DEMCR, &demcr, sizeof(demcr));
platform_timeout reset_timeout;
platform_timeout_set(&reset_timeout, cortexm_wait_timeout);
platform_nrst_set_val(false);
while (1) {
dhcsr = adiv5_mem_read32(ap, CORTEXM_DHCSR);
if (!(dhcsr & CORTEXM_DHCSR_S_RESET_ST))
break;
if (platform_timeout_is_expired(&reset_timeout)) {
DEBUG_WARN("Error releasing from reset\n");
return false;
}
}
return true;
}
/* Return true if we find a debuggable device.*/
static void adiv5_component_probe(ADIv5_AP_t *ap, uint32_t addr, const size_t recursion, const uint32_t num_entry)
{
(void)num_entry;
addr &= 0xfffff000U; /* Mask out base address */
if (addr == 0) /* No rom table on this AP */
return;
const volatile uint32_t cidr = adiv5_ap_read_id(ap, addr + CIDR0_OFFSET);
if (ap->dp->fault) {
DEBUG_WARN("CIDR read timeout on AP%d, aborting.\n", ap->apsel);
return;
}
if ((cidr & ~CID_CLASS_MASK) != CID_PREAMBLE)
return;
#if defined(ENABLE_DEBUG)
char indent[recursion + 1];
for (size_t i = 0; i < recursion; i++)
indent[i] = ' ';
indent[recursion] = 0;
#endif
if (adiv5_dp_error(ap->dp)) {
DEBUG_WARN("%sFault reading ID registers\n", indent);
return;
}
/* CIDR preamble sanity check */
if ((cidr & ~CID_CLASS_MASK) != CID_PREAMBLE) {
DEBUG_WARN("%s%" PRIu32 " 0x%08" PRIx32 ": 0x%08" PRIx32 " <- does not match preamble (0x%08" PRIx32 ")\n",
indent + 1, num_entry, addr, cidr, CID_PREAMBLE);
return;
}
/* Extract Component ID class nibble */
const uint32_t cid_class = (cidr & CID_CLASS_MASK) >> CID_CLASS_SHIFT;
const uint64_t pidr = adiv5_ap_read_pidr(ap, addr);
uint16_t designer_code;
if (pidr & PIDR_JEP106_USED) {
/* (OFFSET - 8) because we want it on bits 11:8 of new code, see "JEP-106 code list" */
designer_code = (pidr & PIDR_JEP106_CONT_MASK) >> (PIDR_JEP106_CONT_OFFSET - 8) |
(pidr & PIDR_JEP106_CODE_MASK) >> PIDR_JEP106_CODE_OFFSET;
if (designer_code == JEP106_MANUFACTURER_ERRATA_STM32WX || designer_code == JEP106_MANUFACTURER_ERRATA_CS) {
/**
* see 'JEP-106 code list' for context, here we are aliasing codes that are non compliant with the
* JEP-106 standard to their expected codes, this is later used to determine the correct probe function.
*/
DEBUG_WARN(
"Patching Designer code 0x%03" PRIx16 " -> 0x%03" PRIx16 "\n", designer_code, JEP106_MANUFACTURER_STM);
designer_code = JEP106_MANUFACTURER_STM;
}
} else {
/* legacy ascii code */
designer_code = (pidr & PIDR_JEP106_CODE_MASK) >> PIDR_JEP106_CODE_OFFSET | ASCII_CODE_FLAG;
}
/* Extract part number from the part id register. */
const uint16_t part_number = pidr & PIDR_PN_MASK;
/* ROM table */
if (cid_class == cidc_romtab) {
if (recursion == 0) {
ap->designer_code = designer_code;
ap->partno = part_number;
if (ap->designer_code == JEP106_MANUFACTURER_ATMEL && ap->partno == 0xcd0) {
uint32_t ctrlstat = adiv5_mem_read32(ap, SAMX5X_DSU_CTRLSTAT);
if (ctrlstat & SAMX5X_STATUSB_PROT) {
/* A protected SAMx5x device is found.
* Handle it here, as access only to limited memory region
* is allowed
*/
cortexm_probe(ap);
return;
}
}
}
#if defined(ENABLE_DEBUG) && defined(PLATFORM_HAS_DEBUG)
/* Check SYSMEM bit */
const uint32_t memtype = adiv5_mem_read32(ap, addr | ADIV5_ROM_MEMTYPE) & ADIV5_ROM_MEMTYPE_SYSMEM;
if (adiv5_dp_error(ap->dp)) {
DEBUG_WARN("Fault reading ROM table entry\n");
}
DEBUG_INFO("ROM: Table BASE=0x%" PRIx32 " SYSMEM=0x%08" PRIx32 ", Manufacturer %3x Partno %3x\n", addr, memtype,
designer_code, part_number);
#endif
for (size_t i = 0; i < 960; i++) {
adiv5_dp_error(ap->dp);
uint32_t entry = adiv5_mem_read32(ap, addr + i * 4);
if (adiv5_dp_error(ap->dp)) {
DEBUG_WARN("%sFault reading ROM table entry %d\n", indent, i);
break;
}
if (entry == 0)
break;
if (!(entry & ADIV5_ROM_ROMENTRY_PRESENT)) {
DEBUG_INFO("%s%d Entry 0x%" PRIx32 " -> Not present\n", indent, i, entry);
continue;
}
/* Probe recursively */
adiv5_component_probe(ap, addr + (entry & ADIV5_ROM_ROMENTRY_OFFSET), recursion + 1, i);
}
DEBUG_INFO("%sROM: Table END\n", indent);
} else {
if (designer_code != JEP106_MANUFACTURER_ARM) {
/* non arm components not supported currently */
DEBUG_WARN("%s0x%" PRIx32 ": 0x%08" PRIx32 "%08" PRIx32 " Non ARM component ignored\n", indent, addr,
(uint32_t)(pidr >> 32U), (uint32_t)pidr);
return;
}
/* ADIv6: For CoreSight components, read DEVTYPE and ARCHID */
uint16_t arch_id = 0;
uint8_t dev_type = 0;
if (cid_class == cidc_dc) {
dev_type = adiv5_mem_read32(ap, addr + DEVTYPE_OFFSET) & DEVTYPE_MASK;
uint32_t devarch = adiv5_mem_read32(ap, addr + DEVARCH_OFFSET);
if (devarch & DEVARCH_PRESENT) {
arch_id = devarch & DEVARCH_ARCHID_MASK;
}
}
/* Find the part number in our part list and run the appropriate probe routine if applicable. */
size_t i;
for (i = 0; arm_component_lut[i].arch != aa_end; i++) {
if (arm_component_lut[i].part_number != part_number || arm_component_lut[i].dev_type != dev_type ||
arm_component_lut[i].arch_id != arch_id)
continue;
DEBUG_INFO("%s%" PRIu32 " 0x%" PRIx32 ": %s - %s %s (PIDR = 0x%08" PRIx32 "%08" PRIx32 " DEVTYPE = 0x%02x "
"ARCHID = 0x%04x)\n",
indent + 1, num_entry, addr, cidc_debug_strings[cid_class], arm_component_lut[i].type,
arm_component_lut[i].full, (uint32_t)(pidr >> 32U), (uint32_t)pidr, dev_type, arch_id);
/* Perform sanity check, if we know what to expect as * component ID class. */
if (arm_component_lut[i].cidc != cidc_unknown && cid_class != arm_component_lut[i].cidc) {
DEBUG_WARN("%sWARNING: \"%s\" !match expected \"%s\"\n", indent + 1, cidc_debug_strings[cid_class],
cidc_debug_strings[arm_component_lut[i].cidc]);
}
switch (arm_component_lut[i].arch) {
case aa_cortexm:
DEBUG_INFO("%s-> cortexm_probe\n", indent + 1);
cortexm_probe(ap);
break;
case aa_cortexa:
DEBUG_INFO("%s-> cortexa_probe\n", indent + 1);
cortexa_probe(ap, addr);
break;
default:
break;
}
break;
}
if (arm_component_lut[i].arch == aa_end) {
DEBUG_WARN("%s%" PRIu32 " 0x%" PRIx32 ": %s - Unknown (PIDR = 0x%08" PRIx32 "%08" PRIx32 " DEVTYPE = "
"0x%02x ARCHID = "
"0x%04x)\n",
indent, num_entry, addr, cidc_debug_strings[cid_class], (uint32_t)(pidr >> 32U), (uint32_t)pidr,
dev_type, arch_id);
}
}
}
ADIv5_AP_t *adiv5_new_ap(ADIv5_DP_t *dp, uint8_t apsel)
{
ADIv5_AP_t *ap, tmpap;
/* Assume valid and try to read IDR */
memset(&tmpap, 0, sizeof(tmpap));
tmpap.dp = dp;
tmpap.apsel = apsel;
tmpap.idr = adiv5_ap_read(&tmpap, ADIV5_AP_IDR);
tmpap.base = adiv5_ap_read(&tmpap, ADIV5_AP_BASE);
/* Check the Debug Base Address register. See ADIv5
* Specification C2.6.1 */
if (tmpap.base == 0xffffffff) {
/* Debug Base Address not present in this MEM-AP */
/* No debug entries... useless AP */
/* AP0 on STM32MP157C reads 0x00000002 */
return NULL;
}
if (!tmpap.idr) /* IDR Invalid */
return NULL;
tmpap.csw = adiv5_ap_read(&tmpap, ADIV5_AP_CSW) & ~(ADIV5_AP_CSW_SIZE_MASK | ADIV5_AP_CSW_ADDRINC_MASK);
if (tmpap.csw & ADIV5_AP_CSW_TRINPROG) {
DEBUG_WARN("AP %d: Transaction in progress. AP is not usable!\n", apsel);
return NULL;
}
/* It's valid to so create a heap copy */
ap = malloc(sizeof(*ap));
if (!ap) { /* malloc failed: heap exhaustion */
DEBUG_WARN("malloc: failed in %s\n", __func__);
return NULL;
}
memcpy(ap, &tmpap, sizeof(*ap));
#if defined(ENABLE_DEBUG)
uint32_t cfg = adiv5_ap_read(ap, ADIV5_AP_CFG);
DEBUG_INFO("AP %3d: IDR=%08" PRIx32 " CFG=%08" PRIx32 " BASE=%08" PRIx32 " CSW=%08" PRIx32, apsel, ap->idr, cfg,
ap->base, ap->csw);
DEBUG_INFO(" (AHB-AP var%" PRIx32 " rev%" PRIx32 ")\n", (ap->idr >> 4) & 0xf, ap->idr >> 28);
#endif
adiv5_ap_ref(ap);
return ap;
}
/* No real AP on RP2040. Special setup.*/
static void rp_rescue_setup(ADIv5_DP_t *dp)
{
ADIv5_AP_t *ap = calloc(1, sizeof(*ap));
if (!ap) { /* calloc failed: heap exhaustion */
DEBUG_WARN("calloc: failed in %s\n", __func__);
return;
}
ap->dp = dp;
rp_rescue_probe(ap);
return;
}
void adiv5_dp_init(ADIv5_DP_t *dp, const uint32_t idcode)
{
/*
* Assume DP v1 or later.
* this may not be true for JTAG-DP
* in such cases (DPv0) DPIDR is not implemented
* and reads are UNPREDICTABLE.
*
* for SWD-DP, we are guaranteed to be DP v1 or later.
*/
volatile uint32_t dpidr = 0;
volatile struct exception e;
TRY_CATCH (e, EXCEPTION_ALL) {
if (idcode != JTAG_IDCODE_ARM_DPv0)
dpidr = adiv5_dp_read(dp, ADIV5_DP_DPIDR);
}
if (e.type) {
DEBUG_WARN("DP not responding!...\n");
free(dp);
return;
}
dp->version = (dpidr & ADIV5_DP_DPIDR_VERSION_MASK) >> ADIV5_DP_DPIDR_VERSION_OFFSET;
if (dp->version > 0 && (dpidr & 1U)) {
/*
* the code in the DPIDR is in the form
* Bits 10:7 - JEP-106 Continuation code
* Bits 6:0 - JEP-106 Identity code
* here we convert it to our internal representation, See JEP-106 code list
*
* note: this is the code of the designer not the implementer, we expect it to be ARM
*/
const uint16_t designer = (dpidr & ADIV5_DP_DPIDR_DESIGNER_MASK) >> ADIV5_DP_DPIDR_DESIGNER_OFFSET;
dp->designer_code =
(designer & ADIV5_DP_DESIGNER_JEP106_CONT_MASK) << 1U | (designer & ADIV5_DP_DESIGNER_JEP106_CODE_MASK);
dp->partno = (dpidr & ADIV5_DP_DPIDR_PARTNO_MASK) >> ADIV5_DP_DPIDR_PARTNO_OFFSET;
dp->mindp = !!(dpidr & ADIV5_DP_DPIDR_MINDP);
/* Check for a valid DPIDR / designer */
if (dp->designer_code != 0) {
DEBUG_INFO("DP DPIDR 0x%08" PRIx32 " (v%x %srev%"PRId32") designer 0x%x partno 0x%x\n", dpidr,
dp->version, dp->mindp ? "MINDP " : "",
(dpidr & ADIV5_DP_DPIDR_REVISION_MASK) >> ADIV5_DP_DPIDR_REVISION_OFFSET, dp->designer_code,
dp->partno);
} else {
DEBUG_WARN("Invalid DPIDR %08" PRIx32 " assuming DP version 0\n", dpidr);
dp->version = 0;
dp->designer_code = 0;
dp->partno = 0;
dp->mindp = false;
}
} else if (dp->version == 0)
/* DP v0 */
DEBUG_WARN("DPv0 detected based on JTAG IDCode\n");
if (dp->version >= 2) {
adiv5_dp_write(dp, ADIV5_DP_SELECT, 2); /* TARGETID is on bank 2 */
const uint32_t targetid = adiv5_dp_read(dp, ADIV5_DP_TARGETID);
adiv5_dp_write(dp, ADIV5_DP_SELECT, 0);
/* Use TARGETID register to identify target */
const uint16_t tdesigner = (targetid & ADIV5_DP_TARGETID_TDESIGNER_MASK) >> ADIV5_DP_TARGETID_TDESIGNER_OFFSET;
/* convert it to our internal representation, See JEP-106 code list */
dp->target_designer_code =
(tdesigner & ADIV5_DP_DESIGNER_JEP106_CONT_MASK) << 1U | (tdesigner & ADIV5_DP_DESIGNER_JEP106_CODE_MASK);
dp->target_partno = (targetid & ADIV5_DP_TARGETID_TPARTNO_MASK) >> ADIV5_DP_TARGETID_TPARTNO_OFFSET;
DEBUG_INFO("TARGETID 0x%08" PRIx32 " designer 0x%x partno 0x%x\n", targetid,
dp->target_designer_code, dp->target_partno);
dp->targetsel = dp->instance << ADIV5_DP_TARGETSEL_TINSTANCE_OFFSET |
(targetid & (ADIV5_DP_TARGETID_TDESIGNER_MASK | ADIV5_DP_TARGETID_TPARTNO_MASK)) | 1U;
}
if (dp->designer_code == JEP106_MANUFACTURER_RASPBERRY && dp->partno == 0x2) {
rp_rescue_setup(dp);
return;
}
#if PC_HOSTED == 1
platform_adiv5_dp_defaults(dp);
if (!dp->ap_write)
dp->ap_write = firmware_ap_write;
if (!dp->ap_read)
dp->ap_read = firmware_ap_read;
if (!dp->mem_read)
dp->mem_read = firmware_mem_read;
if (!dp->mem_write_sized)
dp->mem_write_sized = firmware_mem_write_sized;
#else
dp->ap_write = firmware_ap_write;
dp->ap_read = firmware_ap_read;
dp->mem_read = firmware_mem_read;
dp->mem_write_sized = firmware_mem_write_sized;
#endif
volatile uint32_t ctrlstat = 0;
TRY_CATCH (e, EXCEPTION_TIMEOUT) {
ctrlstat = adiv5_dp_read(dp, ADIV5_DP_CTRLSTAT);
}
if (e.type) {
DEBUG_WARN("DP not responding! Trying abort sequence...\n");
adiv5_dp_abort(dp, ADIV5_DP_ABORT_DAPABORT);
ctrlstat = adiv5_dp_read(dp, ADIV5_DP_CTRLSTAT);
}
platform_timeout timeout;
platform_timeout_set(&timeout, 201);
/* Write request for system and debug power up */
adiv5_dp_write(dp, ADIV5_DP_CTRLSTAT, ctrlstat |= ADIV5_DP_CTRLSTAT_CSYSPWRUPREQ | ADIV5_DP_CTRLSTAT_CDBGPWRUPREQ);
/* Wait for acknowledge */
while (1) {
ctrlstat = adiv5_dp_read(dp, ADIV5_DP_CTRLSTAT);
uint32_t check = ctrlstat & (ADIV5_DP_CTRLSTAT_CSYSPWRUPACK | ADIV5_DP_CTRLSTAT_CDBGPWRUPACK);
if (check == (ADIV5_DP_CTRLSTAT_CSYSPWRUPACK | ADIV5_DP_CTRLSTAT_CDBGPWRUPACK))
break;
if (platform_timeout_is_expired(&timeout)) {
DEBUG_INFO("DEBUG Power-Up failed\n");
free(dp); /* No AP that referenced this DP so long*/
return;
}
}
/* This AP reset logic is described in ADIv5, but fails to work
* correctly on STM32. CDBGRSTACK is never asserted, and we
* just wait forever. This scenario is described in B2.4.1
* so we have a timeout mechanism in addition to the sensing one.
*
* Write request for debug reset */
adiv5_dp_write(dp, ADIV5_DP_CTRLSTAT, ctrlstat |= ADIV5_DP_CTRLSTAT_CDBGRSTREQ);
/* Write request for debug reset release */
adiv5_dp_write(dp, ADIV5_DP_CTRLSTAT, ctrlstat &= ~ADIV5_DP_CTRLSTAT_CDBGRSTREQ);
/* Wait for acknowledge */
while (1) {
platform_delay(20);
ctrlstat = adiv5_dp_read(dp, ADIV5_DP_CTRLSTAT);
if (ctrlstat & ADIV5_DP_CTRLSTAT_CDBGRSTACK) {
DEBUG_INFO("RESET_SEQ succeeded.\n");
break;
}
if (platform_timeout_is_expired(&timeout)) {
DEBUG_INFO("RESET_SEQ failed\n");
break;
}
}
/* Probe for APs on this DP */
uint32_t last_base = 0;
size_t invalid_aps = 0;
dp->refcnt++;
for (size_t i = 0; i < 256 && invalid_aps < 8; ++i) {
ADIv5_AP_t *ap = NULL;
#if PC_HOSTED == 1
if ((!dp->ap_setup) || dp->ap_setup(i))
ap = adiv5_new_ap(dp, i);
#else
ap = adiv5_new_ap(dp, i);
#endif
if (ap == NULL) {
#if PC_HOSTED == 1
if (dp->ap_cleanup)
dp->ap_cleanup(i);
#endif
if (++invalid_aps == 8) {
adiv5_dp_unref(dp);
return;
}
continue;
}
if (ap->base == last_base) {
DEBUG_WARN("AP %d: Duplicate base\n", i);
#if PC_HOSTED == 1
if (dp->ap_cleanup)
dp->ap_cleanup(i);
#endif
adiv5_ap_unref(ap);
adiv5_dp_unref(dp);
/* FIXME: Should we expect valid APs behind duplicate ones? */
return;
}
last_base = ap->base;
kinetis_mdm_probe(ap);
nrf51_mdm_probe(ap);
efm32_aap_probe(ap);
/* Halt the device and release from reset if reset is active!*/
if (!ap->apsel && ((ap->idr & 0xf) == ARM_AP_TYPE_AHB))
cortexm_prepare(ap);
/* Should probe further here to make sure it's a valid target.
* AP should be unref'd if not valid.
*/
/* The rest should only be added after checking ROM table */
adiv5_component_probe(ap, ap->base, 0, 0);
adiv5_ap_unref(ap);
}
/* We halted at least CortexM for Romtable scan.
* With connect under reset, keep the devices halted.
* Otherwise, release the devices now.
* Attach() will halt them again.
*/
for (target *t = target_list; t; t = t->next) {
if (!connect_assert_nrst) {
target_halt_resume(t, false);
}
}
adiv5_dp_unref(dp);
}
#define ALIGNOF(x) (((x)&3) == 0 ? ALIGN_WORD : (((x)&1) == 0 ? ALIGN_HALFWORD : ALIGN_BYTE))
/* Program the CSW and TAR for sequencial access at a given width */
static void ap_mem_access_setup(ADIv5_AP_t *ap, uint32_t addr, enum align align)
{
uint32_t csw = ap->csw | ADIV5_AP_CSW_ADDRINC_SINGLE;
switch (align) {
case ALIGN_BYTE:
csw |= ADIV5_AP_CSW_SIZE_BYTE;
break;
case ALIGN_HALFWORD:
csw |= ADIV5_AP_CSW_SIZE_HALFWORD;
break;
case ALIGN_DWORD:
case ALIGN_WORD:
csw |= ADIV5_AP_CSW_SIZE_WORD;
break;
}
adiv5_ap_write(ap, ADIV5_AP_CSW, csw);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_TAR, addr);
}
/* Extract read data from data lane based on align and src address */
void *extract(void *dest, uint32_t src, uint32_t val, enum align align)
{
switch (align) {
case ALIGN_BYTE:
*(uint8_t *)dest = (val >> ((src & 0x3) << 3) & 0xFF);
break;
case ALIGN_HALFWORD:
*(uint16_t *)dest = (val >> ((src & 0x2) << 3) & 0xFFFF);
break;
case ALIGN_DWORD:
case ALIGN_WORD:
*(uint32_t *)dest = val;
break;
}
return (uint8_t *)dest + (1 << align);
}
void firmware_mem_read(ADIv5_AP_t *ap, void *dest, uint32_t src, size_t len)
{
uint32_t tmp;
uint32_t osrc = src;
const enum align align = MIN(ALIGNOF(src), ALIGNOF(len));
if (len == 0)
return;
len >>= align;
ap_mem_access_setup(ap, src, align);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_READ, ADIV5_AP_DRW, 0);
while (--len) {
tmp = adiv5_dp_low_access(ap->dp, ADIV5_LOW_READ, ADIV5_AP_DRW, 0);
dest = extract(dest, src, tmp, align);
src += (1U << align);
/* Check for 10 bit address overflow */
if ((src ^ osrc) & 0xfffffc00U) {
osrc = src;
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_TAR, src);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_READ, ADIV5_AP_DRW, 0);
}
}
tmp = adiv5_dp_low_access(ap->dp, ADIV5_LOW_READ, ADIV5_DP_RDBUFF, 0);
extract(dest, src, tmp, align);
}
void firmware_mem_write_sized(ADIv5_AP_t *ap, uint32_t dest, const void *src, size_t len, enum align align)
{
uint32_t odest = dest;
len >>= align;
ap_mem_access_setup(ap, dest, align);
while (len--) {
uint32_t tmp = 0;
/* Pack data into correct data lane */
switch (align) {
case ALIGN_BYTE:
tmp = ((uint32_t) * (uint8_t *)src) << ((dest & 3) << 3);
break;
case ALIGN_HALFWORD:
tmp = ((uint32_t) * (uint16_t *)src) << ((dest & 2) << 3);
break;
case ALIGN_DWORD:
case ALIGN_WORD:
tmp = *(uint32_t *)src;
break;
}
src = (uint8_t *)src + (1 << align);
dest += (1 << align);
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_DRW, tmp);
/* Check for 10 bit address overflow */
if ((dest ^ odest) & 0xfffffc00U) {
odest = dest;
adiv5_dp_low_access(ap->dp, ADIV5_LOW_WRITE, ADIV5_AP_TAR, dest);
}
}
/* Make sure this write is complete by doing a dummy read */
adiv5_dp_read(ap->dp, ADIV5_DP_RDBUFF);
}
void firmware_ap_write(ADIv5_AP_t *ap, uint16_t addr, uint32_t value)
{
adiv5_dp_write(ap->dp, ADIV5_DP_SELECT, ((uint32_t)ap->apsel << 24) | (addr & 0xF0));
adiv5_dp_write(ap->dp, addr, value);
}
uint32_t firmware_ap_read(ADIv5_AP_t *ap, uint16_t addr)
{
uint32_t ret;
adiv5_dp_write(ap->dp, ADIV5_DP_SELECT, ((uint32_t)ap->apsel << 24) | (addr & 0xF0));
ret = adiv5_dp_read(ap->dp, addr);
return ret;
}
void adiv5_mem_write(ADIv5_AP_t *ap, uint32_t dest, const void *src, size_t len)
{
enum align align = MIN(ALIGNOF(dest), ALIGNOF(len));
adiv5_mem_write_sized(ap, dest, src, len, align);
}