blackmagic/src/target/stm32f1.c

354 lines
10 KiB
C

/*
* This file is part of the Black Magic Debug project.
*
* Copyright (C) 2011 Black Sphere Technologies Ltd.
* Written by Gareth McMullin <gareth@blacksphere.co.nz>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file implements STM32 target specific functions for detecting
* the device, providing the XML memory map and Flash memory programming.
*
* Refereces:
* ST doc - RM0008
* Reference manual - STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx
* and STM32F107xx advanced ARM-based 32-bit MCUs
* ST doc - PM0075
* Programming manual - STM32F10xxx Flash memory microcontrollers
*/
#include "general.h"
#include "target.h"
#include "target_internal.h"
#include "cortexm.h"
static bool stm32f1_cmd_erase_mass(target *t);
static bool stm32f1_cmd_option(target *t, int argc, char *argv[]);
const struct command_s stm32f1_cmd_list[] = {
{"erase_mass", (cmd_handler)stm32f1_cmd_erase_mass, "Erase entire flash memory"},
{"option", (cmd_handler)stm32f1_cmd_option, "Manipulate option bytes"},
{NULL, NULL, NULL}
};
static int stm32f1_flash_erase(struct target_flash *f,
target_addr addr, size_t len);
static int stm32f1_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len);
/* Flash Program ad Erase Controller Register Map */
#define FPEC_BASE 0x40022000
#define FLASH_ACR (FPEC_BASE+0x00)
#define FLASH_KEYR (FPEC_BASE+0x04)
#define FLASH_OPTKEYR (FPEC_BASE+0x08)
#define FLASH_SR (FPEC_BASE+0x0C)
#define FLASH_CR (FPEC_BASE+0x10)
#define FLASH_AR (FPEC_BASE+0x14)
#define FLASH_OBR (FPEC_BASE+0x1C)
#define FLASH_WRPR (FPEC_BASE+0x20)
#define FLASH_CR_OBL_LAUNCH (1<<13)
#define FLASH_CR_OPTWRE (1 << 9)
#define FLASH_CR_STRT (1 << 6)
#define FLASH_CR_OPTER (1 << 5)
#define FLASH_CR_OPTPG (1 << 4)
#define FLASH_CR_MER (1 << 2)
#define FLASH_CR_PER (1 << 1)
#define FLASH_OBR_RDPRT (1 << 1)
#define FLASH_SR_BSY (1 << 0)
#define FLASH_OBP_RDP 0x1FFFF800
#define FLASH_OBP_RDP_KEY 0x5aa5
#define FLASH_OBP_RDP_KEY_F3 0x55AA
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
#define SR_ERROR_MASK 0x14
#define SR_EOP 0x20
#define DBGMCU_IDCODE 0xE0042000
#define DBGMCU_IDCODE_F0 0x40015800
#define FLASHSIZE 0x1FFFF7E0
#define FLASHSIZE_F0 0x1FFFF7CC
static const uint16_t stm32f1_flash_write_stub[] = {
#include "flashstub/stm32f1.stub"
};
#define SRAM_BASE 0x20000000
#define STUB_BUFFER_BASE ALIGN(SRAM_BASE + sizeof(stm32f1_flash_write_stub), 4)
static void stm32f1_add_flash(target *t,
uint32_t addr, size_t length, size_t erasesize)
{
struct target_flash *f = calloc(1, sizeof(*f));
f->start = addr;
f->length = length;
f->blocksize = erasesize;
f->erase = stm32f1_flash_erase;
f->write = stm32f1_flash_write;
f->align = 2;
f->erased = 0xff;
target_add_flash(t, f);
}
bool stm32f1_probe(target *t)
{
size_t flash_size;
size_t block_size = 0x400;
t->idcode = target_mem_read32(t, DBGMCU_IDCODE) & 0xfff;
switch(t->idcode) {
case 0x410: /* Medium density */
case 0x412: /* Low denisty */
case 0x420: /* Value Line, Low-/Medium density */
t->driver = "STM32F1 medium density";
target_add_ram(t, 0x20000000, 0x5000);
stm32f1_add_flash(t, 0x8000000, 0x20000, 0x400);
target_add_commands(t, stm32f1_cmd_list, "STM32 LD/MD");
return true;
case 0x414: /* High density */
case 0x418: /* Connectivity Line */
case 0x428: /* Value Line, High Density */
t->driver = "STM32F1 high density";
target_add_ram(t, 0x20000000, 0x10000);
stm32f1_add_flash(t, 0x8000000, 0x80000, 0x800);
target_add_commands(t, stm32f1_cmd_list, "STM32 HD/CL");
return true;
case 0x422: /* STM32F30x */
case 0x432: /* STM32F37x */
case 0x439: /* STM32F302C8 */
t->driver = "STM32F3";
target_add_ram(t, 0x20000000, 0x10000);
stm32f1_add_flash(t, 0x8000000, 0x80000, 0x800);
target_add_commands(t, stm32f1_cmd_list, "STM32F3");
return true;
}
t->idcode = target_mem_read32(t, DBGMCU_IDCODE_F0) & 0xfff;
switch(t->idcode) {
case 0x444: /* STM32F03 RM0091 Rev.7 */
t->driver = "STM32F03";
break;
case 0x445: /* STM32F04 RM0091 Rev.7 */
t->driver = "STM32F04";
break;
case 0x440: /* STM32F05 RM0091 Rev.7 */
t->driver = "STM32F05";
break;
case 0x448: /* STM32F07 RM0091 Rev.7 */
t->driver = "STM32F07";
block_size = 0x800;
break;
case 0x442: /* STM32F09 RM0091 Rev.7 */
t->driver = "STM32F09";
block_size = 0x800;
break;
default: /* NONE */
return false;
}
flash_size = (target_mem_read32(t, FLASHSIZE_F0) & 0xffff) *0x400;
tc_printf(t, "flash size %d block_size %d\n", flash_size, block_size);
target_add_ram(t, 0x20000000, 0x5000);
stm32f1_add_flash(t, 0x8000000, flash_size, block_size);
target_add_commands(t, stm32f1_cmd_list, "STM32F0");
return true;
}
static void stm32f1_flash_unlock(target *t)
{
target_mem_write32(t, FLASH_KEYR, KEY1);
target_mem_write32(t, FLASH_KEYR, KEY2);
}
static int stm32f1_flash_erase(struct target_flash *f,
target_addr addr, size_t len)
{
target *t = f->t;
uint16_t sr;
stm32f1_flash_unlock(t);
while(len) {
/* Flash page erase instruction */
target_mem_write32(t, FLASH_CR, FLASH_CR_PER);
/* write address to FMA */
target_mem_write32(t, FLASH_AR, addr);
/* Flash page erase start instruction */
target_mem_write32(t, FLASH_CR, FLASH_CR_STRT | FLASH_CR_PER);
/* Read FLASH_SR to poll for BSY bit */
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return -1;
len -= f->blocksize;
addr += f->blocksize;
}
/* Check for error */
sr = target_mem_read32(t, FLASH_SR);
if ((sr & SR_ERROR_MASK) || !(sr & SR_EOP))
return -1;
return 0;
}
static int stm32f1_flash_write(struct target_flash *f,
target_addr dest, const void *src, size_t len)
{
target *t = f->t;
/* Write stub and data to target ram and set PC */
target_mem_write(t, SRAM_BASE, stm32f1_flash_write_stub,
sizeof(stm32f1_flash_write_stub));
target_mem_write(t, STUB_BUFFER_BASE, src, len);
return cortexm_run_stub(t, SRAM_BASE, dest, STUB_BUFFER_BASE, len, 0);
}
static bool stm32f1_cmd_erase_mass(target *t)
{
stm32f1_flash_unlock(t);
/* Flash mass erase start instruction */
target_mem_write32(t, FLASH_CR, FLASH_CR_MER);
target_mem_write32(t, FLASH_CR, FLASH_CR_STRT | FLASH_CR_MER);
/* Read FLASH_SR to poll for BSY bit */
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return false;
/* Check for error */
uint16_t sr = target_mem_read32(t, FLASH_SR);
if ((sr & SR_ERROR_MASK) || !(sr & SR_EOP))
return false;
return true;
}
static bool stm32f1_option_erase(target *t)
{
/* Erase option bytes instruction */
target_mem_write32(t, FLASH_CR, FLASH_CR_OPTER | FLASH_CR_OPTWRE);
target_mem_write32(t, FLASH_CR,
FLASH_CR_STRT | FLASH_CR_OPTER | FLASH_CR_OPTWRE);
/* Read FLASH_SR to poll for BSY bit */
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return false;
return true;
}
static bool stm32f1_option_write_erased(target *t, uint32_t addr, uint16_t value)
{
if (value == 0xffff)
return true;
/* Erase option bytes instruction */
target_mem_write32(t, FLASH_CR, FLASH_CR_OPTPG | FLASH_CR_OPTWRE);
target_mem_write16(t, addr, value);
/* Read FLASH_SR to poll for BSY bit */
while (target_mem_read32(t, FLASH_SR) & FLASH_SR_BSY)
if(target_check_error(t))
return false;
return true;
}
static bool stm32f1_option_write(target *t, uint32_t addr, uint16_t value)
{
uint16_t opt_val[8];
int i, index;
index = (addr - FLASH_OBP_RDP) / 2;
if ((index < 0) || (index > 7))
return false;
/* Retrieve old values */
for (i = 0; i < 16; i = i +4) {
uint32_t val = target_mem_read32(t, FLASH_OBP_RDP + i);
opt_val[i/2] = val & 0xffff;
opt_val[i/2 +1] = val >> 16;
}
if (opt_val[index] == value)
return true;
/* Check for erased value */
if (opt_val[index] != 0xffff)
if (!(stm32f1_option_erase(t)))
return false;
opt_val[index] = value;
/* Write changed values*/
for (i = 0; i < 8; i++)
if (!(stm32f1_option_write_erased
(t, FLASH_OBP_RDP + i*2,opt_val[i])))
return false;
return true;
}
static bool stm32f1_cmd_option(target *t, int argc, char *argv[])
{
uint32_t addr, val;
uint32_t flash_obp_rdp_key;
uint32_t rdprt;
switch(t->idcode) {
case 0x422: /* STM32F30x */
case 0x432: /* STM32F37x */
case 0x440: /* STM32F0 */
flash_obp_rdp_key = FLASH_OBP_RDP_KEY_F3;
break;
default: flash_obp_rdp_key = FLASH_OBP_RDP_KEY;
}
rdprt = target_mem_read32(t, FLASH_OBR) & FLASH_OBR_RDPRT;
stm32f1_flash_unlock(t);
target_mem_write32(t, FLASH_OPTKEYR, KEY1);
target_mem_write32(t, FLASH_OPTKEYR, KEY2);
if ((argc == 2) && !strcmp(argv[1], "erase")) {
stm32f1_option_erase(t);
stm32f1_option_write_erased(t, FLASH_OBP_RDP, flash_obp_rdp_key);
} else if (rdprt) {
tc_printf(t, "Device is Read Protected\n");
tc_printf(t, "Use \"monitor option erase\" to unprotect, erasing device\n");
return true;
} else if (argc == 3) {
addr = strtol(argv[1], NULL, 0);
val = strtol(argv[2], NULL, 0);
stm32f1_option_write(t, addr, val);
} else {
tc_printf(t, "usage: monitor option erase\n");
tc_printf(t, "usage: monitor option <addr> <value>\n");
}
if (0 && flash_obp_rdp_key == FLASH_OBP_RDP_KEY_F3) {
/* Reload option bytes on F0 and F3*/
val = target_mem_read32(t, FLASH_CR);
val |= FLASH_CR_OBL_LAUNCH;
stm32f1_option_write(t, FLASH_CR, val);
val &= ~FLASH_CR_OBL_LAUNCH;
stm32f1_option_write(t, FLASH_CR, val);
}
for (int i = 0; i < 0xf; i += 4) {
addr = 0x1ffff800 + i;
val = target_mem_read32(t, addr);
tc_printf(t, "0x%08X: 0x%04X\n", addr, val & 0xFFFF);
tc_printf(t, "0x%08X: 0x%04X\n", addr + 2, val >> 16);
}
return true;
}