libsigrok/hardware/sysclk-lwla/protocol.c

986 lines
26 KiB
C
Raw Normal View History

2014-01-13 21:49:55 +00:00
/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
#include <string.h>
2014-01-13 21:49:55 +00:00
/* Bit mask for the RLE repeat-count-follows flag. */
#define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
/* Start address of capture status memory area to read. */
#define CAP_STAT_ADDR 5
/* Number of 64-bit words read from the capture status memory. */
#define CAP_STAT_LEN 5
/* The bitstream filenames are indexed by the clock_config enumeration.
*/
static const char bitstream_map[][32] = {
"sysclk-lwla1034-off.rbf",
"sysclk-lwla1034-int.rbf",
"sysclk-lwla1034-extpos.rbf",
"sysclk-lwla1034-extneg.rbf",
};
/* Submit an already filled-in USB transfer.
*/
static int submit_transfer(struct dev_context *devc,
struct libusb_transfer *xfer)
{
int ret;
ret = libusb_submit_transfer(xfer);
if (ret != 0) {
sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
devc->transfer_error = TRUE;
return SR_ERR;
}
return SR_OK;
}
/* Set up the LWLA in preparation for an acquisition session.
*/
static int capture_setup(const struct sr_dev_inst *sdi)
2014-01-13 21:49:55 +00:00
{
struct dev_context *devc;
struct acquisition_state *acq;
uint64_t divider_count;
uint64_t trigger_mask;
uint64_t memory_limit;
uint16_t command[3 + 10*4];
2014-01-13 21:49:55 +00:00
devc = sdi->priv;
acq = devc->acquisition;
2014-01-13 21:49:55 +00:00
command[0] = LWLA_WORD(CMD_CAP_SETUP);
command[1] = LWLA_WORD(0); /* address */
command[2] = LWLA_WORD(10); /* length */
command[3] = LWLA_WORD_0(devc->channel_mask);
command[4] = LWLA_WORD_1(devc->channel_mask);
command[5] = LWLA_WORD_2(devc->channel_mask);
command[6] = LWLA_WORD_3(devc->channel_mask);
/* Set the clock divide counter maximum for samplerates of up to
* 100 MHz. At the highest samplerate of 125 MHz the clock divider
* is bypassed.
*/
if (!acq->bypass_clockdiv && devc->samplerate > 0)
divider_count = SR_MHZ(100) / devc->samplerate - 1;
else
divider_count = 0;
command[7] = LWLA_WORD_0(divider_count);
command[8] = LWLA_WORD_1(divider_count);
command[9] = LWLA_WORD_2(divider_count);
command[10] = LWLA_WORD_3(divider_count);
command[11] = LWLA_WORD_0(devc->trigger_values);
command[12] = LWLA_WORD_1(devc->trigger_values);
command[13] = LWLA_WORD_2(devc->trigger_values);
command[14] = LWLA_WORD_3(devc->trigger_values);
command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
trigger_mask = devc->trigger_mask;
/* Set bits to select external TRG input edge. */
if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
switch (devc->cfg_trigger_slope) {
case EDGE_POSITIVE: trigger_mask |= (uint64_t)1 << 35; break;
case EDGE_NEGATIVE: trigger_mask |= (uint64_t)1 << 34; break;
}
command[19] = LWLA_WORD_0(trigger_mask);
command[20] = LWLA_WORD_1(trigger_mask);
command[21] = LWLA_WORD_2(trigger_mask);
command[22] = LWLA_WORD_3(trigger_mask);
/* Set the capture memory full threshold. This is slightly less
* than the actual maximum, most likely in order to compensate for
* pipeline latency.
*/
memory_limit = MEMORY_DEPTH - 16;
command[23] = LWLA_WORD_0(memory_limit);
command[24] = LWLA_WORD_1(memory_limit);
command[25] = LWLA_WORD_2(memory_limit);
command[26] = LWLA_WORD_3(memory_limit);
/* Fill remaining 64-bit words with zeroes. */
memset(&command[27], 0, 16 * sizeof(uint16_t));
return lwla_send_command(sdi->conn, command, G_N_ELEMENTS(command));
}
/* Issue a register write command as an asynchronous USB transfer.
*/
static int issue_write_reg(const struct sr_dev_inst *sdi,
unsigned int reg, unsigned int value)
{
struct dev_context *devc;
struct acquisition_state *acq;
devc = sdi->priv;
acq = devc->acquisition;
acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
acq->xfer_buf_out[1] = LWLA_WORD(reg);
acq->xfer_buf_out[2] = LWLA_WORD_0(value);
acq->xfer_buf_out[3] = LWLA_WORD_1(value);
acq->xfer_out->length = 4 * sizeof(uint16_t);
return submit_transfer(devc, acq->xfer_out);
}
/* Issue a register write command as an asynchronous USB transfer for the
* next register/value pair of the currently active register write sequence.
*/
static int issue_next_write_reg(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct regval_pair *regval;
int ret;
devc = sdi->priv;
if (devc->reg_write_pos >= devc->reg_write_len) {
sr_err("Already written all registers in sequence.");
return SR_ERR_BUG;
}
regval = &devc->reg_write_seq[devc->reg_write_pos];
ret = issue_write_reg(sdi, regval->reg, regval->val);
if (ret != SR_OK)
return ret;
++devc->reg_write_pos;
return SR_OK;
}
/* Issue a capture status request as an asynchronous USB transfer.
*/
static void request_capture_status(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
devc = sdi->priv;
acq = devc->acquisition;
acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
acq->xfer_out->length = 3 * sizeof(uint16_t);
if (submit_transfer(devc, acq->xfer_out) == SR_OK)
devc->state = STATE_STATUS_REQUEST;
}
/* Issue a request for the capture buffer fill level as
* an asynchronous USB transfer.
*/
static void request_capture_length(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
devc = sdi->priv;
acq = devc->acquisition;
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
acq->xfer_out->length = 2 * sizeof(uint16_t);
if (submit_transfer(devc, acq->xfer_out) == SR_OK)
devc->state = STATE_LENGTH_REQUEST;
}
/* Initiate the capture memory read operation: Reset the acquisition state
* and start a sequence of register writes in order to set up the device for
* reading from the capture buffer.
*/
static void issue_read_start(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
struct regval_pair *regvals;
devc = sdi->priv;
acq = devc->acquisition;
/* Reset RLE state. */
acq->rle = RLE_STATE_DATA;
acq->sample = 0;
acq->run_len = 0;
acq->samples_done = 0;
/* For some reason, the start address is 4 rather than 0. */
acq->mem_addr_done = 4;
acq->mem_addr_next = 4;
acq->mem_addr_stop = acq->mem_addr_fill;
/* Sample position in the packet output buffer. */
acq->out_index = 0;
regvals = devc->reg_write_seq;
regvals[0].reg = REG_DIV_BYPASS;
regvals[0].val = 1;
regvals[1].reg = REG_MEM_CTRL2;
regvals[1].val = 2;
regvals[2].reg = REG_MEM_CTRL4;
regvals[2].val = 4;
devc->reg_write_pos = 0;
devc->reg_write_len = 3;
if (issue_next_write_reg(sdi) == SR_OK)
devc->state = STATE_READ_PREPARE;
}
/* Issue a command as an asynchronous USB transfer which returns the device
* to normal state after a read operation. Sets a new device context state
* on success.
*/
static void issue_read_end(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
devc->state = STATE_READ_END;
}
/* Decode an incoming reponse to a buffer fill level request and act on it
* as appropriate. Note that this function changes the device context state.
*/
static void process_capture_length(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
devc = sdi->priv;
acq = devc->acquisition;
if (acq->xfer_in->actual_length != 4) {
sr_err("Received size %d doesn't match expected size 4.",
acq->xfer_in->actual_length);
devc->transfer_error = TRUE;
return;
}
acq->mem_addr_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
sr_dbg("%zu words in capture buffer.", acq->mem_addr_fill);
if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE)
issue_read_start(sdi);
else
issue_read_end(sdi);
}
/* Initiate a sequence of register write commands with the effect of
* cancelling a running capture operation. This sets a new device state
* if issuing the first command succeeds.
*/
static void issue_stop_capture(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct regval_pair *regvals;
devc = sdi->priv;
if (devc->stopping_in_progress)
return;
regvals = devc->reg_write_seq;
regvals[0].reg = REG_CMD_CTRL2;
regvals[0].val = 10;
regvals[1].reg = REG_CMD_CTRL3;
regvals[1].val = 0;
regvals[2].reg = REG_CMD_CTRL4;
regvals[2].val = 0;
regvals[3].reg = REG_CMD_CTRL1;
regvals[3].val = 0;
regvals[4].reg = REG_DIV_BYPASS;
regvals[4].val = 0;
devc->reg_write_pos = 0;
devc->reg_write_len = 5;
if (issue_next_write_reg(sdi) == SR_OK) {
devc->stopping_in_progress = TRUE;
devc->state = STATE_STOP_CAPTURE;
}
}
/* Decode an incoming capture status reponse and act on it as appropriate.
* Note that this function changes the device state.
*/
static void process_capture_status(const struct sr_dev_inst *sdi)
{
uint64_t duration;
struct dev_context *devc;
struct acquisition_state *acq;
unsigned int mem_fill;
unsigned int flags;
devc = sdi->priv;
acq = devc->acquisition;
if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
sr_err("Received size %d doesn't match expected size %d.",
acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
devc->transfer_error = TRUE;
return;
}
/* TODO: Find out the actual bit width of these fields as stored
* in the FPGA. These fields are definitely less than 64 bit wide
* internally, and the unused bits occasionally even contain garbage.
*/
mem_fill = LWLA_TO_UINT32(acq->xfer_buf_in[0]);
duration = LWLA_TO_UINT32(acq->xfer_buf_in[4]);
flags = LWLA_TO_UINT32(acq->xfer_buf_in[8]) & STATUS_FLAG_MASK;
/* The LWLA1034 runs at 125 MHz if the clock divider is bypassed.
* However, the time base used for the duration is apparently not
* adjusted for this "boost" mode. Whereas normally the duration
* unit is 1 ms, it is 0.8 ms when the clock divider is bypassed.
* As 0.8 = 100 MHz / 125 MHz, it seems that the internal cycle
* counter period is the same as at the 100 MHz setting.
*/
if (acq->bypass_clockdiv)
acq->duration_now = duration * 4 / 5;
else
acq->duration_now = duration;
sr_spew("Captured %u words, %" PRIu64 " ms, flags 0x%02X.",
mem_fill, acq->duration_now, flags);
if ((flags & STATUS_TRIGGERED) > (acq->capture_flags & STATUS_TRIGGERED))
sr_info("Capture triggered.");
acq->capture_flags = flags;
if (acq->duration_now >= acq->duration_max) {
sr_dbg("Time limit reached, stopping capture.");
issue_stop_capture(sdi);
return;
}
devc->state = STATE_STATUS_WAIT;
if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
sr_spew("Waiting for trigger.");
} else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
sr_dbg("Capture memory filled.");
request_capture_length(sdi);
} else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
sr_spew("Sampling in progress.");
}
}
/* Issue a capture buffer read request as an asynchronous USB transfer.
* The address and size of the memory area to read are derived from the
* current acquisition state.
*/
static void request_read_mem(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
size_t count;
devc = sdi->priv;
acq = devc->acquisition;
if (acq->mem_addr_next >= acq->mem_addr_stop)
return;
/* Always read a multiple of 8 device words. */
count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
count = MIN(count, READ_CHUNK_LEN);
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
acq->xfer_buf_out[3] = LWLA_WORD_0(count);
acq->xfer_buf_out[4] = LWLA_WORD_1(count);
acq->xfer_out->length = 5 * sizeof(uint16_t);
if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
acq->mem_addr_next += count;
devc->state = STATE_READ_REQUEST;
}
}
/* Demangle and decompress incoming sample data from the capture buffer.
* The data chunk is taken from the acquisition state, and is expected to
* contain a multiple of 8 device words.
* All data currently in the acquisition buffer will be processed. Packets
* of decoded samples are sent off to the session bus whenever the output
* buffer becomes full while decoding.
*/
static int process_sample_data(const struct sr_dev_inst *sdi)
{
uint64_t sample;
uint64_t high_nibbles;
uint64_t word;
struct dev_context *devc;
struct acquisition_state *acq;
uint8_t *out_p;
uint32_t *slice;
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
size_t expect_len;
size_t actual_len;
size_t out_max_samples;
size_t out_run_samples;
size_t ri;
size_t in_words_left;
size_t si;
devc = sdi->priv;
acq = devc->acquisition;
if (acq->mem_addr_done >= acq->mem_addr_stop
|| acq->samples_done >= acq->samples_max)
return SR_OK;
in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
READ_CHUNK_LEN);
expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint32_t);
actual_len = acq->xfer_in->actual_length;
if (actual_len != expect_len) {
sr_err("Received size %zu does not match expected size %zu.",
actual_len, expect_len);
devc->transfer_error = TRUE;
return SR_ERR;
}
acq->mem_addr_done += in_words_left;
/* Prepare session packet. */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.unitsize = UNIT_SIZE;
logic.data = acq->out_packet;
slice = acq->xfer_buf_in;
si = 0; /* word index within slice */
for (;;) {
/* Calculate number of samples to write into packet. */
out_max_samples = MIN(acq->samples_max - acq->samples_done,
PACKET_LENGTH - acq->out_index);
out_run_samples = MIN(acq->run_len, out_max_samples);
/* Expand run-length samples into session packet. */
sample = acq->sample;
out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
for (ri = 0; ri < out_run_samples; ++ri) {
out_p[0] = sample & 0xFF;
out_p[1] = (sample >> 8) & 0xFF;
out_p[2] = (sample >> 16) & 0xFF;
out_p[3] = (sample >> 24) & 0xFF;
out_p[4] = (sample >> 32) & 0xFF;
out_p += UNIT_SIZE;
}
acq->run_len -= out_run_samples;
acq->out_index += out_run_samples;
acq->samples_done += out_run_samples;
/* Packet full or sample count limit reached? */
if (out_run_samples == out_max_samples) {
logic.length = acq->out_index * UNIT_SIZE;
sr_session_send(sdi, &packet);
acq->out_index = 0;
if (acq->samples_done >= acq->samples_max)
return SR_OK; /* sample limit reached */
if (acq->run_len > 0)
continue; /* need another packet */
}
if (in_words_left == 0)
break; /* done with current chunk */
/* Now work on the current slice. */
high_nibbles = LWLA_TO_UINT32(slice[8]);
word = LWLA_TO_UINT32(slice[si]);
word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
if (acq->rle == RLE_STATE_DATA) {
acq->sample = word & ALL_CHANNELS_MASK;
acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
if (word & RLE_FLAG_LEN_FOLLOWS)
acq->rle = RLE_STATE_LEN;
} else {
acq->run_len += word << 1;
acq->rle = RLE_STATE_DATA;
}
/* Move to next word. */
si = (si + 1) % 8;
if (si == 0)
slice += 9;
--in_words_left;
}
/* Send out partially filled packet if this was the last chunk. */
if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_index > 0) {
logic.length = acq->out_index * UNIT_SIZE;
sr_session_send(sdi, &packet);
acq->out_index = 0;
}
return SR_OK;
}
/* Finish an acquisition session. This sends the end packet to the session
* bus and removes the listener for asynchronous USB transfers.
*/
static void end_acquisition(struct sr_dev_inst *sdi)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_datafeed_packet packet;
drvc = sdi->driver->priv;
devc = sdi->priv;
if (devc->state == STATE_IDLE)
return;
devc->state = STATE_IDLE;
/* Remove USB file descriptors from polling. */
usb_source_remove(drvc->sr_ctx);
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
lwla_free_acquisition_state(devc->acquisition);
devc->acquisition = NULL;
sdi->status = SR_ST_ACTIVE;
}
/* USB output transfer completion callback.
*/
static void receive_transfer_out(struct libusb_transfer *transfer)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
sdi = transfer->user_data;
devc = sdi->priv;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
sr_err("Transfer to device failed: %d.", transfer->status);
devc->transfer_error = TRUE;
return;
}
if (devc->reg_write_pos < devc->reg_write_len) {
issue_next_write_reg(sdi);
} else {
switch (devc->state) {
case STATE_START_CAPTURE:
devc->state = STATE_STATUS_WAIT;
break;
case STATE_STATUS_REQUEST:
devc->state = STATE_STATUS_RESPONSE;
submit_transfer(devc, devc->acquisition->xfer_in);
break;
case STATE_STOP_CAPTURE:
if (sdi->status == SR_ST_ACTIVE)
request_capture_length(sdi);
else
end_acquisition(sdi);
break;
case STATE_LENGTH_REQUEST:
devc->state = STATE_LENGTH_RESPONSE;
submit_transfer(devc, devc->acquisition->xfer_in);
break;
case STATE_READ_PREPARE:
request_read_mem(sdi);
break;
case STATE_READ_REQUEST:
devc->state = STATE_READ_RESPONSE;
submit_transfer(devc, devc->acquisition->xfer_in);
break;
case STATE_READ_END:
end_acquisition(sdi);
break;
default:
sr_err("Unexpected device state %d.", devc->state);
break;
}
}
}
/* USB input transfer completion callback.
*/
static void receive_transfer_in(struct libusb_transfer *transfer)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct acquisition_state *acq;
sdi = transfer->user_data;
devc = sdi->priv;
acq = devc->acquisition;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
sr_err("Transfer from device failed: %d.", transfer->status);
devc->transfer_error = TRUE;
return;
}
switch (devc->state) {
case STATE_STATUS_RESPONSE:
process_capture_status(sdi);
break;
case STATE_LENGTH_RESPONSE:
process_capture_length(sdi);
break;
case STATE_READ_RESPONSE:
if (process_sample_data(sdi) == SR_OK
&& acq->mem_addr_next < acq->mem_addr_stop
&& acq->samples_done < acq->samples_max)
request_read_mem(sdi);
else
issue_read_end(sdi);
break;
default:
sr_err("Unexpected device state %d.", devc->state);
break;
}
}
/* Initialize the LWLA. This downloads a bitstream into the FPGA
* and executes a simple device test sequence.
*/
SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
uint32_t value;
devc = sdi->priv;
/* Force reload of bitstream */
devc->cur_clock_config = CONF_CLOCK_NONE;
ret = lwla_set_clock_config(sdi);
if (ret != SR_OK)
return ret;
ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100);
if (ret != SR_OK)
return ret;
ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value);
if (ret != SR_OK)
return ret;
sr_dbg("Received test word 0x%08X back.", value);
if (value != 0x12345678)
return SR_ERR;
ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value);
if (ret != SR_OK)
return ret;
sr_dbg("Received test word 0x%08X back.", value);
if (value != 0x12345678)
return SR_ERR;
ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value);
if (ret != SR_OK)
return ret;
sr_dbg("Received test word 0x%08X back.", value);
if (value != 0x87654321)
return SR_ERR;
return ret;
}
/* Select the LWLA clock configuration. If the clock source changed from
* the previous setting, this will download a new bitstream to the FPGA.
*/
SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
enum clock_config choice;
devc = sdi->priv;
if (sdi->status == SR_ST_INACTIVE)
choice = CONF_CLOCK_NONE;
else if (devc->cfg_clock_source == CLOCK_INTERNAL)
choice = CONF_CLOCK_INT;
else if (devc->cfg_clock_edge == EDGE_POSITIVE)
choice = CONF_CLOCK_EXT_RISE;
else
choice = CONF_CLOCK_EXT_FALL;
if (choice != devc->cur_clock_config) {
devc->cur_clock_config = CONF_CLOCK_NONE;
ret = lwla_send_bitstream(sdi->conn, bitstream_map[choice]);
if (ret == SR_OK)
devc->cur_clock_config = choice;
return ret;
2014-01-13 21:49:55 +00:00
}
return SR_OK;
}
/* Configure the LWLA in preparation for an acquisition session.
*/
SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct acquisition_state *acq;
struct regval_pair regvals[7];
int ret;
devc = sdi->priv;
usb = sdi->conn;
acq = devc->acquisition;
if (devc->limit_msec > 0) {
acq->duration_max = devc->limit_msec;
sr_info("Acquisition time limit %" PRIu64 " ms.",
devc->limit_msec);
} else
acq->duration_max = MAX_LIMIT_MSEC;
if (devc->limit_samples > 0) {
acq->samples_max = devc->limit_samples;
sr_info("Acquisition sample count limit %" PRIu64 ".",
devc->limit_samples);
} else
acq->samples_max = MAX_LIMIT_SAMPLES;
if (devc->cfg_clock_source == CLOCK_INTERNAL) {
sr_info("Internal clock, samplerate %" PRIu64 ".",
devc->samplerate);
if (devc->samplerate == 0)
return SR_ERR_BUG;
/* At 125 MHz, the clock divider is bypassed. */
acq->bypass_clockdiv = (devc->samplerate > SR_MHZ(100));
/* If only one of the limits is set, derive the other one. */
if (devc->limit_msec == 0 && devc->limit_samples > 0)
acq->duration_max = devc->limit_samples
* 1000 / devc->samplerate + 1;
else if (devc->limit_samples == 0 && devc->limit_msec > 0)
acq->samples_max = devc->limit_msec
* devc->samplerate / 1000;
} else {
acq->bypass_clockdiv = TRUE;
if (devc->cfg_clock_edge == EDGE_NEGATIVE)
sr_info("External clock, falling edge.");
else
sr_info("External clock, rising edge.");
}
regvals[0].reg = REG_MEM_CTRL2;
regvals[0].val = 2;
regvals[1].reg = REG_MEM_CTRL2;
regvals[1].val = 1;
regvals[2].reg = REG_CMD_CTRL2;
regvals[2].val = 10;
regvals[3].reg = REG_CMD_CTRL3;
regvals[3].val = 0x74;
regvals[4].reg = REG_CMD_CTRL4;
regvals[4].val = 0;
regvals[5].reg = REG_CMD_CTRL1;
regvals[5].val = 0;
regvals[6].reg = REG_DIV_BYPASS;
regvals[6].val = acq->bypass_clockdiv;
ret = lwla_write_regs(usb, regvals, G_N_ELEMENTS(regvals));
if (ret != SR_OK)
return ret;
return capture_setup(sdi);
}
/* Start the capture operation on the LWLA device. Beginning with this
* function, all USB transfers will be asynchronous until the end of the
* acquisition session.
*/
SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct acquisition_state *acq;
struct regval_pair *regvals;
devc = sdi->priv;
usb = sdi->conn;
acq = devc->acquisition;
acq->duration_now = 0;
acq->mem_addr_fill = 0;
acq->capture_flags = 0;
libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
(unsigned char *)acq->xfer_buf_out, 0,
&receive_transfer_out,
(struct sr_dev_inst *)sdi, USB_TIMEOUT);
libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
(unsigned char *)acq->xfer_buf_in,
sizeof acq->xfer_buf_in,
&receive_transfer_in,
(struct sr_dev_inst *)sdi, USB_TIMEOUT);
regvals = devc->reg_write_seq;
regvals[0].reg = REG_CMD_CTRL2;
regvals[0].val = 10;
regvals[1].reg = REG_CMD_CTRL3;
regvals[1].val = 1;
regvals[2].reg = REG_CMD_CTRL4;
regvals[2].val = 0;
regvals[3].reg = REG_CMD_CTRL1;
regvals[3].val = 0;
devc->reg_write_pos = 0;
devc->reg_write_len = 4;
devc->state = STATE_START_CAPTURE;
return issue_next_write_reg(sdi);
}
/* Allocate an acquisition state object.
*/
SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
{
struct acquisition_state *acq;
acq = g_try_new0(struct acquisition_state, 1);
if (!acq) {
sr_err("Acquisition state malloc failed.");
return NULL;
}
acq->xfer_in = libusb_alloc_transfer(0);
if (!acq->xfer_in) {
sr_err("Transfer malloc failed.");
g_free(acq);
return NULL;
}
acq->xfer_out = libusb_alloc_transfer(0);
if (!acq->xfer_out) {
sr_err("Transfer malloc failed.");
libusb_free_transfer(acq->xfer_in);
g_free(acq);
return NULL;
}
return acq;
}
/* Deallocate an acquisition state object.
*/
SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
{
if (acq) {
libusb_free_transfer(acq->xfer_out);
libusb_free_transfer(acq->xfer_in);
g_free(acq);
}
}
/* USB I/O source callback.
*/
SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct drv_context *drvc;
struct timeval tv;
int ret;
(void)fd;
sdi = cb_data;
devc = sdi->priv;
drvc = sdi->driver->priv;
if (!devc || !drvc)
return FALSE;
/* No timeout: return immediately. */
tv.tv_sec = 0;
tv.tv_usec = 0;
ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
&tv, NULL);
if (ret != 0)
sr_err("Event handling failed: %s.", libusb_error_name(ret));
/* If no event flags are set the timeout must have expired. */
if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
if (sdi->status == SR_ST_STOPPING)
issue_stop_capture(sdi);
else
request_capture_status(sdi);
}
/* Check if an error occurred on a transfer. */
if (devc->transfer_error)
end_acquisition(sdi);
2014-01-13 21:49:55 +00:00
return TRUE;
}