libsigrok/hardware/chronovu-la/api.c

550 lines
14 KiB
C
Raw Normal View History

/*
2013-04-23 20:24:30 +00:00
* This file is part of the libsigrok project.
*
* Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "protocol.h"
SR_PRIV struct sr_dev_driver chronovu_la_driver_info;
static struct sr_dev_driver *di = &chronovu_la_driver_info;
static const int32_t hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_SAMPLERATE,
SR_CONF_TRIGGER_TYPE,
SR_CONF_LIMIT_MSEC, /* TODO: Not yet implemented. */
SR_CONF_LIMIT_SAMPLES, /* TODO: Not yet implemented. */
};
/* The ChronoVu LA8/LA16 can have multiple VID/PID pairs. */
static struct {
uint16_t vid;
uint16_t pid;
int model;
const char *iproduct;
} vid_pid[] = {
{ 0x0403, 0x6001, CHRONOVU_LA8, "ChronoVu LA8" },
{ 0x0403, 0x8867, CHRONOVU_LA8, "ChronoVu LA8" },
{ 0x0403, 0x6001, CHRONOVU_LA16, "ChronoVu LA16" },
{ 0x0403, 0x8867, CHRONOVU_LA16, "ChronoVu LA16" },
};
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
2013-05-10 16:40:13 +00:00
static void clear_helper(void *priv)
{
struct dev_context *devc;
2013-05-10 16:40:13 +00:00
devc = priv;
2013-05-10 16:40:13 +00:00
ftdi_free(devc->ftdic);
g_free(devc->final_buf);
}
static int dev_clear(void)
2013-05-10 16:40:13 +00:00
{
return std_dev_clear(di, clear_helper);
}
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static int add_device(int idx, int model, GSList **devices)
{
int ret;
unsigned int i;
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
struct sr_channel *ch;
ret = SR_OK;
2012-10-27 19:27:15 +00:00
drvc = di->priv;
/* Allocate memory for our private device context. */
devc = g_try_malloc(sizeof(struct dev_context));
/* Set some sane defaults. */
devc->prof = &cv_profiles[model];
devc->ftdic = NULL; /* Will be set in the open() API call. */
devc->cur_samplerate = 0; /* Set later (different for LA8/LA16). */
devc->limit_msec = 0;
devc->limit_samples = 0;
devc->cb_data = NULL;
memset(devc->mangled_buf, 0, BS);
devc->final_buf = NULL;
devc->trigger_pattern = 0x0000; /* Irrelevant, see trigger_mask. */
devc->trigger_mask = 0x0000; /* All channels: "don't care". */
devc->trigger_edgemask = 0x0000; /* All channels: "state triggered". */
devc->trigger_found = 0;
devc->done = 0;
devc->block_counter = 0;
devc->divcount = 0;
devc->usb_vid = vid_pid[idx].vid;
devc->usb_pid = vid_pid[idx].pid;
memset(devc->samplerates, 0, sizeof(uint64_t) * 255);
/* Allocate memory where we'll store the de-mangled data. */
if (!(devc->final_buf = g_try_malloc(SDRAM_SIZE))) {
sr_err("Failed to allocate memory for sample buffer.");
ret = SR_ERR_MALLOC;
goto err_free_devc;
}
/* We now know the device, set its max. samplerate as default. */
devc->cur_samplerate = devc->prof->max_samplerate;
/* Register the device with libsigrok. */
sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING,
"ChronoVu", devc->prof->modelname, NULL);
if (!sdi) {
sr_err("Failed to create device instance.");
ret = SR_ERR;
goto err_free_final_buf;
}
2012-10-27 19:27:15 +00:00
sdi->driver = di;
sdi->priv = devc;
for (i = 0; i < devc->prof->num_channels; i++) {
if (!(ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
cv_channel_names[i]))) {
ret = SR_ERR;
goto err_free_dev_inst;
}
sdi->channels = g_slist_append(sdi->channels, ch);
}
*devices = g_slist_append(*devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
return SR_OK;
err_free_dev_inst:
sr_dev_inst_free(sdi);
err_free_final_buf:
g_free(devc->final_buf);
err_free_devc:
g_free(devc);
return ret;
}
static GSList *scan(GSList *options)
{
int ret;
unsigned int i;
GSList *devices;
struct ftdi_context *ftdic;
(void)options;
devices = NULL;
/* Allocate memory for the FTDI context and initialize it. */
if (!(ftdic = ftdi_new())) {
sr_err("Failed to initialize libftdi.");
return NULL;
}
/* Check for LA8 and/or LA16 devices with various VID/PIDs. */
for (i = 0; i < ARRAY_SIZE(vid_pid); i++) {
ret = ftdi_usb_open_desc(ftdic, vid_pid[i].vid,
vid_pid[i].pid, vid_pid[i].iproduct, NULL);
/* Show errors other than "device not found". */
if (ret < 0 && ret != -3)
sr_dbg("Error finding/opening device (%d): %s.",
ret, ftdi_get_error_string(ftdic));
if (ret < 0)
continue; /* No device found, or not usable. */
sr_dbg("Found %s device (%04x:%04x).",
vid_pid[i].iproduct, vid_pid[i].vid, vid_pid[i].pid);
if ((ret = add_device(i, vid_pid[i].model, &devices)) < 0)
sr_dbg("Failed to add device: %d.", ret);
if ((ret = ftdi_usb_close(ftdic)) < 0)
sr_dbg("Failed to close FTDI device (%d): %s.",
ret, ftdi_get_error_string(ftdic));
}
/* Close USB device, deinitialize and free the FTDI context. */
ftdi_free(ftdic);
ftdic = NULL;
return devices;
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int ret;
ret = SR_ERR;
if (!(devc = sdi->priv))
return SR_ERR_BUG;
/* Allocate memory for the FTDI context and initialize it. */
if (!(devc->ftdic = ftdi_new())) {
sr_err("Failed to initialize libftdi.");
return SR_ERR;
}
sr_dbg("Opening %s device (%04x:%04x).", devc->prof->modelname,
devc->usb_vid, devc->usb_pid);
/* Open the device. */
if ((ret = ftdi_usb_open_desc(devc->ftdic, devc->usb_vid,
devc->usb_pid, devc->prof->iproduct, NULL)) < 0) {
sr_err("Failed to open FTDI device (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_ftdi_free;
}
2012-10-27 19:27:15 +00:00
sr_dbg("Device opened successfully.");
/* Purge RX/TX buffers in the FTDI chip. */
if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0) {
sr_err("Failed to purge FTDI buffers (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_ftdi_free;
}
2012-10-27 19:27:15 +00:00
sr_dbg("FTDI buffers purged successfully.");
/* Enable flow control in the FTDI chip. */
if ((ret = ftdi_setflowctrl(devc->ftdic, SIO_RTS_CTS_HS)) < 0) {
sr_err("Failed to enable FTDI flow control (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_ftdi_free;
}
2012-10-27 19:27:15 +00:00
sr_dbg("FTDI flow control enabled successfully.");
/* Wait 100ms. */
g_usleep(100 * 1000);
sdi->status = SR_ST_ACTIVE;
return SR_OK;
err_ftdi_free:
ftdi_free(devc->ftdic); /* Close device (if open), free FTDI context. */
devc->ftdic = NULL;
return ret;
}
static int dev_close(struct sr_dev_inst *sdi)
{
int ret;
struct dev_context *devc;
if (sdi->status != SR_ST_ACTIVE)
return SR_OK;
devc = sdi->priv;
if (devc->ftdic && (ret = ftdi_usb_close(devc->ftdic)) < 0)
sr_err("Failed to close FTDI device (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(void)
{
return dev_clear();
}
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
(void)cg;
switch (id) {
case SR_CONF_SAMPLERATE:
if (!sdi || !(devc = sdi->priv))
return SR_ERR_BUG;
*data = g_variant_new_uint64(devc->cur_samplerate);
break;
2012-07-15 02:07:34 +00:00
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
(void)cg;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv))
return SR_ERR_BUG;
switch (id) {
case SR_CONF_SAMPLERATE:
if (cv_set_samplerate(sdi, g_variant_get_uint64(data)) < 0)
return SR_ERR;
break;
case SR_CONF_LIMIT_MSEC:
if (g_variant_get_uint64(data) == 0)
return SR_ERR_ARG;
devc->limit_msec = g_variant_get_uint64(data);
break;
case SR_CONF_LIMIT_SAMPLES:
if (g_variant_get_uint64(data) == 0)
return SR_ERR_ARG;
devc->limit_samples = g_variant_get_uint64(data);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
2013-01-25 01:32:05 +00:00
{
GVariant *gvar, *grange[2];
GVariantBuilder gvb;
struct dev_context *devc;
2013-01-25 01:32:05 +00:00
(void)cg;
2013-01-25 01:32:05 +00:00
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
break;
2013-01-25 01:32:05 +00:00
case SR_CONF_SAMPLERATE:
if (!sdi || !sdi->priv || !(devc = sdi->priv))
return SR_ERR_BUG;
cv_fill_samplerates_if_needed(sdi);
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
devc->samplerates,
ARRAY_SIZE(devc->samplerates),
sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
2013-01-25 01:32:05 +00:00
break;
case SR_CONF_LIMIT_SAMPLES:
if (!sdi || !sdi->priv || !(devc = sdi->priv) || !devc->prof)
return SR_ERR_BUG;
grange[0] = g_variant_new_uint64(0);
if (devc->prof->model == CHRONOVU_LA8)
grange[1] = g_variant_new_uint64(MAX_NUM_SAMPLES);
else
grange[1] = g_variant_new_uint64(MAX_NUM_SAMPLES / 2);
*data = g_variant_new_tuple(grange, 2);
break;
case SR_CONF_TRIGGER_TYPE:
if (!sdi || !sdi->priv || !(devc = sdi->priv) || !devc->prof)
return SR_ERR_BUG;
*data = g_variant_new_string(devc->prof->trigger_type);
break;
2013-01-25 01:32:05 +00:00
default:
return SR_ERR_NA;
2013-01-25 01:32:05 +00:00
}
return SR_OK;
}
static int receive_data(int fd, int revents, void *cb_data)
{
int i, ret;
struct sr_dev_inst *sdi;
struct dev_context *devc;
(void)fd;
(void)revents;
if (!(sdi = cb_data)) {
sr_err("cb_data was NULL.");
return FALSE;
}
if (!(devc = sdi->priv)) {
sr_err("sdi->priv was NULL.");
return FALSE;
}
if (!devc->ftdic) {
sr_err("devc->ftdic was NULL.");
return FALSE;
}
/* Get one block of data. */
if ((ret = cv_read_block(devc)) < 0) {
sr_err("Failed to read data block: %d.", ret);
dev_acquisition_stop(sdi, sdi);
return FALSE;
}
/* We need to get exactly NUM_BLOCKS blocks (i.e. 8MB) of data. */
if (devc->block_counter != (NUM_BLOCKS - 1)) {
devc->block_counter++;
return TRUE;
}
2012-10-27 19:27:15 +00:00
sr_dbg("Sampling finished, sending data to session bus now.");
/*
* All data was received and demangled, send it to the session bus.
*
* Note: Due to the method how data is spread across the 8MByte of
* SDRAM, we can _not_ send it to the session bus in a streaming
* manner while we receive it. We have to receive and de-mangle the
* full 8MByte first, only then the whole buffer contains valid data.
*/
for (i = 0; i < NUM_BLOCKS; i++)
cv_send_block_to_session_bus(devc, i);
dev_acquisition_stop(sdi, sdi);
return TRUE;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
uint8_t buf[8];
int bytes_to_write, bytes_written;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv)) {
sr_err("sdi->priv was NULL.");
return SR_ERR_BUG;
}
if (!devc->ftdic) {
sr_err("devc->ftdic was NULL.");
return SR_ERR_BUG;
}
devc->divcount = cv_samplerate_to_divcount(sdi, devc->cur_samplerate);
if (devc->divcount == 0xff) {
sr_err("Invalid divcount/samplerate.");
return SR_ERR;
}
if (cv_configure_channels(sdi) != SR_OK) {
sr_err("Failed to configure channels.");
return SR_ERR;
}
/* Fill acquisition parameters into buf[]. */
if (devc->prof->model == CHRONOVU_LA8) {
buf[0] = devc->divcount;
buf[1] = 0xff; /* This byte must always be 0xff. */
buf[2] = devc->trigger_pattern & 0xff;
buf[3] = devc->trigger_mask & 0xff;
bytes_to_write = 4;
} else {
buf[0] = devc->divcount;
buf[1] = 0xff; /* This byte must always be 0xff. */
buf[2] = (devc->trigger_pattern & 0xff00) >> 8; /* LSB */
buf[3] = (devc->trigger_pattern & 0x00ff) >> 0; /* MSB */
buf[4] = (devc->trigger_mask & 0xff00) >> 8; /* LSB */
buf[5] = (devc->trigger_mask & 0x00ff) >> 0; /* MSB */
buf[6] = (devc->trigger_edgemask & 0xff00) >> 8; /* LSB */
buf[7] = (devc->trigger_edgemask & 0x00ff) >> 0; /* MSB */
bytes_to_write = 8;
}
/* Start acquisition. */
bytes_written = cv_write(devc, buf, bytes_to_write);
if (bytes_written < 0 || bytes_written != bytes_to_write) {
sr_err("Acquisition failed to start.");
2012-08-03 11:50:31 +00:00
return SR_ERR;
}
sr_dbg("Hardware acquisition started successfully.");
devc->cb_data = cb_data;
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
/* Time when we should be done (for detecting trigger timeouts). */
devc->done = (devc->divcount + 1) * devc->prof->trigger_constant +
g_get_monotonic_time() + (10 * G_TIME_SPAN_SECOND);
devc->block_counter = 0;
devc->trigger_found = 0;
/* Hook up a dummy handler to receive data from the device. */
sr_source_add(-1, G_IO_IN, 0, receive_data, (void *)sdi);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct sr_datafeed_packet packet;
2012-08-03 11:50:31 +00:00
(void)sdi;
2012-10-27 19:27:15 +00:00
sr_dbg("Stopping acquisition.");
sr_source_remove(-1);
/* Send end packet to the session bus. */
2012-10-27 19:27:15 +00:00
sr_dbg("Sending SR_DF_END.");
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
return SR_OK;
}
SR_PRIV struct sr_dev_driver chronovu_la_driver_info = {
.name = "chronovu-la",
.longname = "ChronoVu LA8/LA16",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
2013-01-25 01:32:05 +00:00
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};