libsigrok/hardware/uni-t-dmm/protocol.c

311 lines
9.3 KiB
C
Raw Normal View History

/*
2013-04-23 20:24:30 +00:00
* This file is part of the libsigrok project.
*
* Copyright (C) 2012-2013 Uwe Hermann <uwe@hermann-uwe.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include <glib.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "protocol.h"
/*
* Driver for various UNI-T multimeters (and rebranded ones).
*
* Most UNI-T DMMs can be used with two (three) different PC interface cables:
* - The UT-D04 USB/HID cable, old version with Hoitek HE2325U chip.
* - The UT-D04 USB/HID cable, new version with WCH CH9325 chip.
* - The UT-D02 RS232 cable.
*
* This driver is meant to support all USB/HID cables, and various DMMs that
* can be attached to a PC via these cables. Currently only the UT-D04 cable
* (new version) is supported/tested.
* The UT-D02 RS232 cable is handled by the 'serial-dmm' driver.
*
* The data for one DMM packet (e.g. 14 bytes if the respective DMM uses a
* Fortune Semiconductor FS9922-DMM4 chip) is spread across multiple
* 8-byte chunks.
*
* An 8-byte chunk looks like this:
* - Byte 0: 0xfz, where z is the number of actual data bytes in this chunk.
* - Bytes 1-7: z data bytes, the rest of the bytes should be ignored.
*
* Example:
* f0 00 00 00 00 00 00 00 (no data bytes)
* f2 55 77 00 00 00 00 00 (2 data bytes, 0x55 and 0x77)
* f1 d1 00 00 00 00 00 00 (1 data byte, 0xd1)
*
* Chips and serial settings used in UNI-T DMMs (and rebranded ones):
* - Tecpel DMM-8060: ? (very likely Fortune Semiconductor FS9721_LP3)
* - Tecpel DMM-8061: ? (very likely Fortune Semiconductor FS9721_LP3)
* - UNI-T UT108: ?
* - UNI-T UT109: ?
* - UNI-T UT30A: ?
* - UNI-T UT30E: ?
* - UNI-T UT60E: Fortune Semiconductor FS9721_LP3
* - UNI-T UT60G: ?
* - UNI-T UT61B: ?
* - UNI-T UT61C: ?
* - UNI-T UT61D: Fortune Semiconductor FS9922-DMM4
* - UNI-T UT61E: Cyrustek ES51922
* - UNI-T UT70B: ?
* - Voltcraft VC-820: Fortune Semiconductor FS9721_LP3
* - Voltcraft VC-840: Fortune Semiconductor FS9721_LP3
* - ...
*/
static void decode_packet(struct sr_dev_inst *sdi, int dmm, const uint8_t *buf,
void *info)
{
struct dev_context *devc;
struct sr_datafeed_packet packet;
struct sr_datafeed_analog analog;
float floatval;
int ret;
devc = sdi->priv;
memset(&analog, 0, sizeof(struct sr_datafeed_analog));
/* Parse the protocol packet. */
ret = udmms[dmm].packet_parse(buf, &floatval, &analog, info);
if (ret != SR_OK) {
sr_dbg("Invalid DMM packet, ignoring.");
return;
}
/* If this DMM needs additional handling, call the resp. function. */
if (udmms[dmm].dmm_details)
udmms[dmm].dmm_details(&analog, info);
/* Send a sample packet with one analog value. */
analog.probes = sdi->probes;
analog.num_samples = 1;
analog.data = &floatval;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
sr_session_send(devc->cb_data, &packet);
/* Increase sample count. */
devc->num_samples++;
}
static int hid_chip_init(struct sr_dev_inst *sdi, uint16_t baudrate)
{
int ret;
uint8_t buf[5];
struct sr_usb_dev_inst *usb;
usb = sdi->conn;
/* Detach kernel drivers which grabbed this device (if any). */
if (libusb_kernel_driver_active(usb->devhdl, 0) == 1) {
ret = libusb_detach_kernel_driver(usb->devhdl, 0);
if (ret < 0) {
sr_err("Failed to detach kernel driver: %s.",
libusb_error_name(ret));
return SR_ERR;
}
sr_dbg("Successfully detached kernel driver.");
} else {
sr_dbg("No need to detach a kernel driver.");
}
/* Claim interface 0. */
if ((ret = libusb_claim_interface(usb->devhdl, 0)) < 0) {
sr_err("Failed to claim interface 0: %s.",
libusb_error_name(ret));
return SR_ERR;
}
sr_dbg("Successfully claimed interface 0.");
/* Set data for the HID feature report (e.g. baudrate). */
buf[0] = baudrate & 0xff; /* Baudrate, LSB */
buf[1] = (baudrate >> 8) & 0xff; /* Baudrate, MSB */
buf[2] = 0x00; /* Unknown/unused (?) */
buf[3] = 0x00; /* Unknown/unused (?) */
buf[4] = 0x03; /* Unknown, always 0x03. */
/* Send HID feature report to setup the baudrate/chip. */
sr_dbg("Sending initial HID feature report.");
sr_spew("HID init = 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x (%d baud)",
buf[0], buf[1], buf[2], buf[3], buf[4], baudrate);
ret = libusb_control_transfer(
usb->devhdl, /* libusb device handle */
LIBUSB_REQUEST_TYPE_CLASS |
LIBUSB_RECIPIENT_INTERFACE |
LIBUSB_ENDPOINT_OUT,
9, /* bRequest: HID set_report */
0x300, /* wValue: HID feature, report number 0 */
0, /* wIndex: interface 0 */
(unsigned char *)&buf, /* payload buffer */
5, /* wLength: 5 bytes payload */
1000 /* timeout (ms) */);
if (ret < 0) {
sr_err("HID feature report error: %s.", libusb_error_name(ret));
return SR_ERR;
}
if (ret != 5) {
/* TODO: Handle better by also sending the remaining bytes. */
sr_err("Short packet: sent %d/5 bytes.", ret);
return SR_ERR;
}
sr_dbg("Successfully sent initial HID feature report.");
return SR_OK;
}
static void log_8byte_chunk(const uint8_t *buf)
{
sr_spew("8-byte chunk: %02x %02x %02x %02x %02x %02x %02x %02x "
"(%d data bytes)", buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7], (buf[0] & 0x0f));
}
static void log_dmm_packet(const uint8_t *buf)
{
sr_dbg("DMM packet: %02x %02x %02x %02x %02x %02x %02x"
" %02x %02x %02x %02x %02x %02x %02x",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13]);
}
static int get_and_handle_data(struct sr_dev_inst *sdi, int dmm, void *info)
{
struct dev_context *devc;
uint8_t buf[CHUNK_SIZE], *pbuf;
int i, ret, len, num_databytes_in_chunk;
struct sr_usb_dev_inst *usb;
devc = sdi->priv;
usb = sdi->conn;
pbuf = devc->protocol_buf;
/* On the first run, we need to init the HID chip. */
if (devc->first_run) {
if ((ret = hid_chip_init(sdi, udmms[dmm].baudrate)) != SR_OK) {
sr_err("HID chip init failed: %d.", ret);
return SR_ERR;
}
memset(pbuf, 0x00, DMM_BUFSIZE);
devc->first_run = FALSE;
}
memset(&buf, 0x00, CHUNK_SIZE);
/* Get data from EP2 using an interrupt transfer. */
ret = libusb_interrupt_transfer(
usb->devhdl, /* libusb device handle */
LIBUSB_ENDPOINT_IN | 2, /* EP2, IN */
(unsigned char *)&buf, /* receive buffer */
CHUNK_SIZE, /* wLength */
&len, /* actually received byte count */
1000 /* timeout (ms) */);
if (ret < 0) {
sr_err("USB receive error: %s.", libusb_error_name(ret));
return SR_ERR;
}
if (len != CHUNK_SIZE) {
sr_err("Short packet: received %d/%d bytes.", len, CHUNK_SIZE);
/* TODO: Print the bytes? */
return SR_ERR;
}
log_8byte_chunk((const uint8_t *)&buf);
/* If there are no data bytes just return (without error). */
if (buf[0] == 0xf0)
return SR_OK;
devc->bufoffset = 0;
/* Append the 1-7 data bytes of this chunk to pbuf. */
num_databytes_in_chunk = buf[0] & 0x0f;
for (i = 0; i < num_databytes_in_chunk; i++)
pbuf[devc->buflen++] = buf[1 + i];
/* Now look for packets in that data. */
while ((devc->buflen - devc->bufoffset) >= udmms[dmm].packet_size) {
if (udmms[dmm].packet_valid(pbuf + devc->bufoffset)) {
log_dmm_packet(pbuf + devc->bufoffset);
decode_packet(sdi, dmm, pbuf + devc->bufoffset, info);
devc->bufoffset += udmms[dmm].packet_size;
} else {
devc->bufoffset++;
}
}
/* Move remaining bytes to beginning of buffer. */
for (i = 0; i < devc->buflen - devc->bufoffset; i++)
pbuf[i] = pbuf[devc->bufoffset + i];
devc->buflen -= devc->bufoffset;
return SR_OK;
}
static int receive_data(int fd, int revents, int dmm, void *info, void *cb_data)
{
int ret;
struct sr_dev_inst *sdi;
struct dev_context *devc;
int64_t time_ms;
(void)fd;
(void)revents;
sdi = cb_data;
devc = sdi->priv;
if ((ret = get_and_handle_data(sdi, dmm, info)) != SR_OK)
return FALSE;
/* Abort acquisition if we acquired enough samples. */
if (devc->limit_samples && devc->num_samples >= devc->limit_samples) {
sr_info("Requested number of samples reached.");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
}
if (devc->limit_msec) {
time_ms = (g_get_monotonic_time() - devc->starttime) / 1000;
if (time_ms > (int64_t)devc->limit_msec) {
sr_info("Requested time limit reached.");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
return TRUE;
}
}
return TRUE;
}
#define RECEIVE_DATA(ID_UPPER, DMM_DRIVER) \
SR_PRIV int receive_data_##ID_UPPER(int fd, int revents, void *cb_data) { \
struct DMM_DRIVER##_info info; \
return receive_data(fd, revents, ID_UPPER, &info, cb_data); }
/* Driver-specific receive_data() wrappers */
RECEIVE_DATA(TECPEL_DMM_8060, fs9721)
RECEIVE_DATA(TECPEL_DMM_8061, fs9721)
RECEIVE_DATA(UNI_T_UT61D, fs9922)
RECEIVE_DATA(UNI_T_UT61E, es51922)
RECEIVE_DATA(VOLTCRAFT_VC820, fs9721)
RECEIVE_DATA(VOLTCRAFT_VC840, fs9721)