libsigrok/hardware/sysclk-lwla/api.c

507 lines
11 KiB
C
Raw Normal View History

2014-01-13 21:49:55 +00:00
/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include <glib.h>
#include <libusb.h>
#include <stdlib.h>
#include <string.h>
static const int32_t hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_SAMPLERATE,
SR_CONF_EXTERNAL_CLOCK,
SR_CONF_TRIGGER_TYPE,
SR_CONF_LIMIT_MSEC,
SR_CONF_LIMIT_SAMPLES,
};
/* The hardware supports more samplerates than these, but these are the
* options hardcoded into the vendor's Windows GUI.
*/
static const uint64_t samplerates[] = {
SR_MHZ(125), SR_MHZ(100),
SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
SR_HZ(500), SR_HZ(200), SR_HZ(100),
};
2014-01-13 21:49:55 +00:00
SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info;
static struct sr_dev_driver *const di = &sysclk_lwla_driver_info;
2014-01-13 21:49:55 +00:00
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *gen_probe_list(int num_probes)
{
GSList *list;
struct sr_probe *probe;
int i;
char name[8];
list = NULL;
for (i = num_probes; i > 0; --i) {
/* The LWLA series simply number probes from CH1 to CHxx. */
g_snprintf(name, sizeof(name), "CH%d", i);
probe = sr_probe_new(i - 1, SR_PROBE_LOGIC, TRUE, name);
list = g_slist_prepend(list, probe);
}
return list;
}
2014-01-13 21:49:55 +00:00
static GSList *scan(GSList *options)
{
GSList *usb_devices, *devices, *node;
2014-01-13 21:49:55 +00:00
struct drv_context *drvc;
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct sr_config *src;
const char *conn;
int device_index;
2014-01-13 21:49:55 +00:00
drvc = di->priv;
drvc->instances = NULL;
conn = USB_VID_PID;
for (node = options; node != NULL; node = node->next) {
src = node->data;
if (src->key == SR_CONF_CONN) {
conn = g_variant_get_string(src->data, NULL);
break;
}
}
usb_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
devices = NULL;
device_index = 0;
for (node = usb_devices; node != NULL; node = node->next) {
usb = node->data;
/* Allocate memory for our private driver context. */
devc = g_try_new0(struct dev_context, 1);
if (!devc) {
sr_err("Device context malloc failed.");
sr_usb_dev_inst_free(usb);
continue;
}
/* Register the device with libsigrok. */
sdi = sr_dev_inst_new(device_index, SR_ST_INACTIVE,
VENDOR_NAME, MODEL_NAME, NULL);
if (!sdi) {
sr_err("Failed to instantiate device.");
g_free(devc);
sr_usb_dev_inst_free(usb);
continue;
}
sdi->driver = di;
sdi->priv = devc;
sdi->inst_type = SR_INST_USB;
sdi->conn = usb;
sdi->probes = gen_probe_list(NUM_PROBES);
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
}
2014-01-13 21:49:55 +00:00
g_slist_free(usb_devices);
2014-01-13 21:49:55 +00:00
return devices;
}
static GSList *dev_list(void)
{
struct drv_context *drvc;
drvc = di->priv;
return drvc->instances;
}
static void clear_dev_context(void *priv)
{
struct dev_context *devc;
devc = priv;
sr_dbg("Device context cleared.");
lwla_free_acquisition_state(devc->acquisition);
g_free(devc);
2014-01-13 21:49:55 +00:00
}
static int dev_clear(void)
{
return std_dev_clear(di, &clear_dev_context);
2014-01-13 21:49:55 +00:00
}
static int dev_open(struct sr_dev_inst *sdi)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
int ret;
2014-01-13 21:49:55 +00:00
drvc = di->priv;
2014-01-13 21:49:55 +00:00
if (!drvc) {
sr_err("Driver was not initialized.");
return SR_ERR;
}
2014-01-13 21:49:55 +00:00
usb = sdi->conn;
devc = sdi->priv;
ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
if (ret != SR_OK)
return ret;
ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
if (ret < 0) {
sr_err("Failed to claim interface: %s.",
libusb_error_name(ret));
return SR_ERR;
}
sdi->status = SR_ST_INITIALIZING;
if (devc->samplerate == 0)
/* Apply default if the samplerate hasn't been set yet. */
devc->samplerate = DEFAULT_SAMPLERATE;
ret = lwla_init_device(sdi);
if (ret == SR_OK)
sdi->status = SR_ST_ACTIVE;
return ret;
2014-01-13 21:49:55 +00:00
}
static int dev_close(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
struct dev_context *devc;
if (!di->priv) {
sr_err("Driver was not initialized.");
return SR_ERR;
}
usb = sdi->conn;
devc = sdi->priv;
2014-01-13 21:49:55 +00:00
if (!usb->devhdl)
return SR_OK;
2014-01-13 21:49:55 +00:00
/* Trigger download of the shutdown bitstream. */
devc->selected_clock_source = CLOCK_SOURCE_NONE;
if (lwla_set_clock_source(sdi) != SR_OK)
sr_err("Unable to shut down device.");
libusb_release_interface(usb->devhdl, USB_INTERFACE);
libusb_close(usb->devhdl);
usb->devhdl = NULL;
2014-01-13 21:49:55 +00:00
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(void)
{
return dev_clear();
2014-01-13 21:49:55 +00:00
}
static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
2014-01-13 21:49:55 +00:00
{
struct dev_context *devc;
2014-01-13 21:49:55 +00:00
(void)probe_group;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
2014-01-13 21:49:55 +00:00
switch (key) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->samplerate);
break;
case SR_CONF_LIMIT_MSEC:
*data = g_variant_new_uint64(devc->limit_msec);
break;
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_EXTERNAL_CLOCK:
*data = g_variant_new_boolean(devc->selected_clock_source
>= CLOCK_SOURCE_EXT_RISE);
break;
2014-01-13 21:49:55 +00:00
default:
return SR_ERR_NA;
}
return SR_OK;
2014-01-13 21:49:55 +00:00
}
static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
2014-01-13 21:49:55 +00:00
{
uint64_t value;
struct dev_context *devc;
2014-01-13 21:49:55 +00:00
(void)probe_group;
devc = sdi->priv;
if (!devc)
2014-01-13 21:49:55 +00:00
return SR_ERR_DEV_CLOSED;
switch (key) {
case SR_CONF_SAMPLERATE:
value = g_variant_get_uint64(data);
if (value < samplerates[G_N_ELEMENTS(samplerates) - 1]
|| value > samplerates[0])
return SR_ERR_SAMPLERATE;
devc->samplerate = value;
break;
case SR_CONF_LIMIT_MSEC:
value = g_variant_get_uint64(data);
if (value > MAX_LIMIT_MSEC)
return SR_ERR_ARG;
devc->limit_msec = value;
break;
case SR_CONF_LIMIT_SAMPLES:
value = g_variant_get_uint64(data);
if (value > MAX_LIMIT_SAMPLES)
return SR_ERR_ARG;
devc->limit_samples = value;
break;
case SR_CONF_EXTERNAL_CLOCK:
if (g_variant_get_boolean(data)) {
sr_info("Enabling external clock.");
/* TODO: Allow the external clock to be inverted */
devc->selected_clock_source = CLOCK_SOURCE_EXT_RISE;
} else {
sr_info("Disabling external clock.");
devc->selected_clock_source = CLOCK_SOURCE_INT;
}
if (sdi->status == SR_ST_ACTIVE)
return lwla_set_clock_source(sdi);
break;
2014-01-13 21:49:55 +00:00
default:
return SR_ERR_NA;
2014-01-13 21:49:55 +00:00
}
return SR_OK;
2014-01-13 21:49:55 +00:00
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_probe_group *probe_group)
2014-01-13 21:49:55 +00:00
{
GVariant *gvar;
GVariantBuilder gvb;
2014-01-13 21:49:55 +00:00
(void)sdi;
(void)probe_group;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
samplerates, ARRAY_SIZE(samplerates),
sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_TYPE:
*data = g_variant_new_string(TRIGGER_TYPES);
break;
2014-01-13 21:49:55 +00:00
default:
return SR_ERR_NA;
}
return SR_OK;
2014-01-13 21:49:55 +00:00
}
static int configure_probes(const struct sr_dev_inst *sdi)
2014-01-13 21:49:55 +00:00
{
struct dev_context *devc;
const struct sr_probe *probe;
const GSList *node;
uint64_t probe_bit;
devc = sdi->priv;
devc->channel_mask = 0;
devc->trigger_mask = 0;
devc->trigger_edge_mask = 0;
devc->trigger_values = 0;
for (node = sdi->probes; node != NULL; node = node->next) {
probe = node->data;
if (!probe || !probe->enabled)
continue;
if (probe->index >= NUM_PROBES) {
sr_err("Channel index %d out of range.", probe->index);
return SR_ERR_BUG;
}
probe_bit = (uint64_t)1 << probe->index;
/* Enable input channel for this probe. */
devc->channel_mask |= probe_bit;
if (!probe->trigger || probe->trigger[0] == '\0')
continue;
if (probe->trigger[1] != '\0') {
sr_err("Only one trigger stage is supported.");
return SR_ERR;
}
/* Enable trigger for this probe. */
devc->trigger_mask |= probe_bit;
/* Configure edge mask and trigger value. */
switch (probe->trigger[0]) {
case '1': devc->trigger_values |= probe_bit;
case '0': break;
case 'r': devc->trigger_values |= probe_bit;
case 'f': devc->trigger_edge_mask |= probe_bit;
break;
default:
sr_err("Trigger type '%c' is not supported.",
probe->trigger[0]);
return SR_ERR;
}
}
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
struct drv_context *drvc;
struct dev_context *devc;
struct acquisition_state *acq;
int ret;
2014-01-13 21:49:55 +00:00
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
drvc = di->priv;
if (devc->acquisition) {
sr_err("Acquisition still in progress?");
return SR_ERR;
}
acq = lwla_alloc_acquisition_state();
if (!acq)
return SR_ERR_MALLOC;
devc->stopping_in_progress = FALSE;
devc->transfer_error = FALSE;
ret = configure_probes(sdi);
if (ret != SR_OK) {
sr_err("Failed to configure probes.");
lwla_free_acquisition_state(acq);
return ret;
}
sr_info("Starting acquisition.");
devc->acquisition = acq;
ret = lwla_setup_acquisition(sdi);
if (ret != SR_OK) {
sr_err("Failed to set up aquisition.");
devc->acquisition = NULL;
lwla_free_acquisition_state(acq);
return ret;
}
ret = lwla_start_acquisition(sdi);
if (ret != SR_OK) {
sr_err("Failed to start aquisition.");
devc->acquisition = NULL;
lwla_free_acquisition_state(acq);
return ret;
}
usb_source_add(drvc->sr_ctx, 100, &lwla_receive_data,
(struct sr_dev_inst *)sdi);
sr_info("Waiting for data.");
/* Send header packet to the session bus. */
std_session_send_df_header(sdi, LOG_PREFIX);
2014-01-13 21:49:55 +00:00
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
sr_dbg("Stopping acquisition.");
sdi->status = SR_ST_STOPPING;
2014-01-13 21:49:55 +00:00
return SR_OK;
}
SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info = {
.name = "sysclk-lwla",
.longname = "SysClk LWLA series",
2014-01-13 21:49:55 +00:00
.api_version = 1,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};