zeroplus-logic-cube: Fix samplerate and trigger

- Default to 1MHz.
   The default sample rate is the lowest frequency (100Hz),
   but it takes a very long time until 128K memory is full.

 - Fix the 1MHz setting.

 - Use samplerate list.

 - Fix 10MHz frequency.

 - Fix trigger.

 - Change the size of memory according to the number of samples.

 - Add pre-trigger (capture ratio) setting.

 - Fix the first acquisition after power on.
This commit is contained in:
Toshiaki Yoshida 2012-11-05 16:06:14 +09:00 committed by Bert Vermeulen
parent 41d9427f27
commit 0ab0cb942f
3 changed files with 292 additions and 91 deletions

View File

@ -110,11 +110,11 @@ static int g_trigger_count = 1;
static int g_filter_status[8] = { 0 }; static int g_filter_status[8] = { 0 };
static int g_filter_enable = 0; static int g_filter_enable = 0;
static int g_freq_value = 100; static int g_freq_value = 1;
static int g_freq_scale = FREQ_SCALE_MHZ; static int g_freq_scale = FREQ_SCALE_MHZ;
static int g_memory_size = MEMORY_SIZE_512K; static int g_memory_size = MEMORY_SIZE_8K;
static int g_ramsize_triggerbar_addr = 0x80000 >> 2; static int g_ramsize_triggerbar_addr = 2 * 1024;
static int g_triggerbar_addr = 0x3fe; static int g_triggerbar_addr = 0;
static int g_compression = COMPRESSION_NONE; static int g_compression = COMPRESSION_NONE;
/* Maybe unk specifies an "endpoint" or "register" of sorts. */ /* Maybe unk specifies an "endpoint" or "register" of sorts. */
@ -125,6 +125,7 @@ static int analyzer_write_status(libusb_device_handle *devh, unsigned char unk,
return gl_reg_write(devh, START_STATUS, unk << 6 | flags); return gl_reg_write(devh, START_STATUS, unk << 6 | flags);
} }
#if 0
static int __analyzer_set_freq(libusb_device_handle *devh, int freq, int scale) static int __analyzer_set_freq(libusb_device_handle *devh, int freq, int scale)
{ {
int reg0 = 0, divisor = 0, reg2 = 0; int reg0 = 0, divisor = 0, reg2 = 0;
@ -261,6 +262,80 @@ static int __analyzer_set_freq(libusb_device_handle *devh, int freq, int scale)
return 0; return 0;
} }
#endif
/*
* It seems that ...
* FREQUENCT_REG0 - division factor (?)
* FREQUENCT_REG1 - multiplication factor (?)
* FREQUENCT_REG4 - clock selection (?)
*
* clock selection
* 0 10MHz 16 1MHz 32 100kHz 48 10kHz 64 1kHz
* 1 5MHz 17 500kHz 33 50kHz 49 5kHz 65 500Hz
* 2 2.5MHz . . 50 2.5kHz 66 250Hz
* . . . . 67 125Hz
* . . . . 68 62.5Hz
*/
static int __analyzer_set_freq(libusb_device_handle *devh, int freq, int scale)
{
struct freq_factor {
int freq;
int scale;
int sel;
int div;
int mul;
};
static const struct freq_factor f[] = {
{ 200, FREQ_SCALE_MHZ, 0, 1, 20 },
{ 150, FREQ_SCALE_MHZ, 0, 1, 15 },
{ 100, FREQ_SCALE_MHZ, 0, 1, 10 },
{ 80, FREQ_SCALE_MHZ, 0, 2, 16 },
{ 50, FREQ_SCALE_MHZ, 0, 2, 10 },
{ 25, FREQ_SCALE_MHZ, 1, 5, 25 },
{ 10, FREQ_SCALE_MHZ, 1, 5, 10 },
{ 1, FREQ_SCALE_MHZ, 16, 5, 5 },
{ 800, FREQ_SCALE_KHZ, 17, 5, 8 },
{ 400, FREQ_SCALE_KHZ, 32, 5, 20 },
{ 200, FREQ_SCALE_KHZ, 32, 5, 10 },
{ 100, FREQ_SCALE_KHZ, 32, 5, 5 },
{ 50, FREQ_SCALE_KHZ, 33, 5, 5 },
{ 25, FREQ_SCALE_KHZ, 49, 5, 25 },
{ 5, FREQ_SCALE_KHZ, 50, 5, 10 },
{ 1, FREQ_SCALE_KHZ, 64, 5, 5 },
{ 500, FREQ_SCALE_HZ, 64, 10, 5 },
{ 100, FREQ_SCALE_HZ, 68, 5, 8 },
{ 0, 0, 0, 0, 0 }
};
int i;
for (i = 0; f[i].freq; i++) {
if (scale == f[i].scale && freq == f[i].freq)
break;
}
if (!f[i].freq)
return -1;
sr_dbg("zp: Setting samplerate regs (freq=%d, scale=%d): "
"reg0: %d, reg1: %d, reg2: %d, reg3: %d.",
freq, scale, f[i].div, f[i].mul, 0x02, f[i].sel);
if (gl_reg_write(devh, FREQUENCY_REG0, f[i].div) < 0)
return -1;
if (gl_reg_write(devh, FREQUENCY_REG1, f[i].mul) < 0)
return -1;
if (gl_reg_write(devh, FREQUENCY_REG2, 0x02) < 0)
return -1;
if (gl_reg_write(devh, FREQUENCY_REG4, f[i].sel) < 0)
return -1;
return 0;
}
static void __analyzer_set_ramsize_trigger_address(libusb_device_handle *devh, static void __analyzer_set_ramsize_trigger_address(libusb_device_handle *devh,
unsigned int address) unsigned int address)
@ -399,6 +474,9 @@ SR_PRIV void analyzer_configure(libusb_device_handle *devh)
__analyzer_set_triggerbar_address(devh, g_triggerbar_addr); __analyzer_set_triggerbar_address(devh, g_triggerbar_addr);
/* Set_Dont_Care_TriggerBar */ /* Set_Dont_Care_TriggerBar */
if (g_triggerbar_addr)
gl_reg_write(devh, DONT_CARE_TRIGGERBAR, 0x00);
else
gl_reg_write(devh, DONT_CARE_TRIGGERBAR, 0x01); gl_reg_write(devh, DONT_CARE_TRIGGERBAR, 0x01);
/* Enable_Status */ /* Enable_Status */
@ -413,44 +491,26 @@ SR_PRIV void analyzer_configure(libusb_device_handle *devh)
SR_PRIV void analyzer_add_trigger(int channel, int type) SR_PRIV void analyzer_add_trigger(int channel, int type)
{ {
int i; switch (type) {
case TRIGGER_HIGH:
if ((channel & 0xf) >= 8) g_trigger_status[channel / 4] |= 1 << (channel % 4 * 2);
return; break;
case TRIGGER_LOW:
if (type == TRIGGER_HIGH || type == TRIGGER_LOW) { g_trigger_status[channel / 4] |= 2 << (channel % 4 * 2);
if (channel & CHANNEL_A) break;
i = 0; #if 0
else if (channel & CHANNEL_B) case TRIGGER_POSEDGE:
i = 2; g_trigger_status[8] = 0x40 | channel;
else if (channel & CHANNEL_C) break;
i = 4; case TRIGGER_NEGEDGE:
else if (channel & CHANNEL_D) g_trigger_status[8] = 0x80 | channel;
i = 6; break;
else case TRIGGER_ANYEDGE:
return; g_trigger_status[8] = 0xc0 | channel;
if ((channel & 0xf) >= 4) { break;
i++; #endif
channel -= 4; default:
} break;
g_trigger_status[i] |=
1 << ((2 * channel) + (type == TRIGGER_LOW ? 1 : 0));
} else {
if (type == TRIGGER_POSEDGE)
g_trigger_status[8] = 0x40;
else if (type == TRIGGER_NEGEDGE)
g_trigger_status[8] = 0x80;
else
g_trigger_status[8] = 0xc0;
/* FIXME: Just guessed the index; need to verify. */
if (channel & CHANNEL_B)
g_trigger_status[8] += 8;
else if (channel & CHANNEL_C)
g_trigger_status[8] += 16;
else if (channel & CHANNEL_D)
g_trigger_status[8] += 24;
g_trigger_status[8] += channel % 8;
} }
} }
@ -511,6 +571,11 @@ SR_PRIV void analyzer_set_triggerbar_address(unsigned int address)
g_triggerbar_addr = address; g_triggerbar_addr = address;
} }
SR_PRIV unsigned int analyzer_read_status(libusb_device_handle *devh)
{
return gl_reg_read(devh, DEV_STATUS);
}
SR_PRIV unsigned int analyzer_read_id(libusb_device_handle *devh) SR_PRIV unsigned int analyzer_read_id(libusb_device_handle *devh)
{ {
return gl_reg_read(devh, DEV_ID1) << 8 | gl_reg_read(devh, DEV_ID0); return gl_reg_read(devh, DEV_ID1) << 8 | gl_reg_read(devh, DEV_ID0);

View File

@ -85,6 +85,7 @@ SR_PRIV void analyzer_add_trigger(int channel, int type);
SR_PRIV void analyzer_set_trigger_count(int count); SR_PRIV void analyzer_set_trigger_count(int count);
SR_PRIV void analyzer_add_filter(int channel, int type); SR_PRIV void analyzer_add_filter(int channel, int type);
SR_PRIV unsigned int analyzer_read_status(libusb_device_handle *devh);
SR_PRIV unsigned int analyzer_read_id(libusb_device_handle *devh); SR_PRIV unsigned int analyzer_read_id(libusb_device_handle *devh);
SR_PRIV unsigned int analyzer_get_stop_address(libusb_device_handle *devh); SR_PRIV unsigned int analyzer_get_stop_address(libusb_device_handle *devh);
SR_PRIV unsigned int analyzer_get_now_address(libusb_device_handle *devh); SR_PRIV unsigned int analyzer_get_now_address(libusb_device_handle *devh);

View File

@ -42,6 +42,8 @@
#define PACKET_SIZE 2048 /* ?? */ #define PACKET_SIZE 2048 /* ?? */
//#define ZP_EXPERIMENTAL
typedef struct { typedef struct {
unsigned short vid; unsigned short vid;
unsigned short pid; unsigned short pid;
@ -149,20 +151,22 @@ static const struct sr_samplerates samplerates = {
/* Private, per-device-instance driver context. */ /* Private, per-device-instance driver context. */
struct dev_context { struct dev_context {
uint64_t cur_samplerate; uint64_t cur_samplerate;
uint64_t max_samplerate;
uint64_t limit_samples; uint64_t limit_samples;
int num_channels; /* TODO: This isn't initialized before it's needed :( */ int num_channels; /* TODO: This isn't initialized before it's needed :( */
uint64_t memory_size; int memory_size;
uint8_t probe_mask; unsigned int max_memory_size;
uint8_t trigger_mask[NUM_TRIGGER_STAGES]; //uint8_t probe_mask;
uint8_t trigger_value[NUM_TRIGGER_STAGES]; //uint8_t trigger_mask[NUM_TRIGGER_STAGES];
//uint8_t trigger_value[NUM_TRIGGER_STAGES];
// uint8_t trigger_buffer[NUM_TRIGGER_STAGES]; // uint8_t trigger_buffer[NUM_TRIGGER_STAGES];
int trigger;
unsigned int capture_ratio;
/* TODO: this belongs in the device instance */ /* TODO: this belongs in the device instance */
struct sr_usb_dev_inst *usb; struct sr_usb_dev_inst *usb;
}; };
static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
const void *value);
static int hw_dev_close(struct sr_dev_inst *sdi); static int hw_dev_close(struct sr_dev_inst *sdi);
static unsigned int get_memory_size(int type) static unsigned int get_memory_size(int type)
@ -179,6 +183,7 @@ static unsigned int get_memory_size(int type)
return 0; return 0;
} }
#if 0
static int configure_probes(const struct sr_dev_inst *sdi) static int configure_probes(const struct sr_dev_inst *sdi)
{ {
struct dev_context *devc; struct dev_context *devc;
@ -219,6 +224,53 @@ static int configure_probes(const struct sr_dev_inst *sdi)
return SR_OK; return SR_OK;
} }
#endif
static int configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const GSList *l;
const struct sr_probe *probe;
char *tc;
int type;
/* Note: sdi and sdi->priv are non-NULL, the caller checked this. */
devc = sdi->priv;
for (l = sdi->probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (probe->enabled == FALSE)
continue;
if ((tc = probe->trigger)) {
switch (*tc) {
case '1':
type = TRIGGER_HIGH;
break;
case '0':
type = TRIGGER_LOW;
break;
#if 0
case 'r':
type = TRIGGER_POSEDGE;
break;
case 'f':
type = TRIGGER_NEGEDGE;
break;
case 'c':
type = TRIGGER_ANYEDGE;
break;
#endif
default:
return SR_ERR;
}
analyzer_add_trigger(probe->index, type);
devc->trigger = 1;
}
}
return SR_OK;
}
static int clear_instances(void) static int clear_instances(void)
{ {
@ -325,7 +377,15 @@ static GSList *hw_scan(GSList *options)
} }
sdi->priv = devc; sdi->priv = devc;
devc->num_channels = prof->channels; devc->num_channels = prof->channels;
devc->memory_size = prof->sample_depth * 1024; #ifdef ZP_EXPERIMENTAL
devc->max_memory_size = 128 * 1024;
devc->max_samplerate = 200;
#else
devc->max_memory_size = prof->sample_depth * 1024;
devc->max_samplerate = prof->max_sampling_freq;
#endif
devc->max_samplerate *= SR_MHZ(1);
devc->memory_size = MEMORY_SIZE_8K;
// memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES); // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
/* Fill in probelist according to this device's profile. */ /* Fill in probelist according to this device's profile. */
@ -418,16 +478,18 @@ static int hw_dev_open(struct sr_dev_inst *sdi)
return SR_ERR; return SR_ERR;
} }
/* Set default configuration after power on */
if (analyzer_read_status(devc->usb->devhdl) == 0)
analyzer_configure(devc->usb->devhdl);
analyzer_reset(devc->usb->devhdl); analyzer_reset(devc->usb->devhdl);
analyzer_initialize(devc->usb->devhdl); analyzer_initialize(devc->usb->devhdl);
analyzer_set_memory_size(MEMORY_SIZE_512K); //analyzer_set_memory_size(MEMORY_SIZE_512K);
// analyzer_set_freq(g_freq, g_freq_scale); // analyzer_set_freq(g_freq, g_freq_scale);
analyzer_set_trigger_count(1); analyzer_set_trigger_count(1);
// analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger) // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
// * get_memory_size(g_memory_size)) / 100) >> 2); // * get_memory_size(g_memory_size)) / 100) >> 2);
analyzer_set_ramsize_trigger_address(
(100 * get_memory_size(MEMORY_SIZE_512K) / 100) >> 2);
#if 0 #if 0
if (g_double_mode == 1) if (g_double_mode == 1)
@ -439,10 +501,9 @@ static int hw_dev_open(struct sr_dev_inst *sdi)
analyzer_set_compression(COMPRESSION_NONE); analyzer_set_compression(COMPRESSION_NONE);
if (devc->cur_samplerate == 0) { if (devc->cur_samplerate == 0) {
/* Samplerate hasn't been set. Default to the slowest one. */ /* Samplerate hasn't been set. Default to 1MHz. */
if (hw_dev_config_set(sdi, SR_HWCAP_SAMPLERATE, analyzer_set_freq(1, FREQ_SCALE_MHZ);
&samplerates.list[0]) == SR_ERR) devc->cur_samplerate = SR_MHZ(1);
return SR_ERR;
} }
return SR_OK; return SR_OK;
@ -533,7 +594,70 @@ static int hw_info_get(int info_id, const void **data,
return SR_OK; return SR_OK;
} }
static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) static int set_samplerate(struct dev_context *devc, uint64_t samplerate)
{
int i;
for (i = 0; supported_samplerates[i]; i++)
if (samplerate == supported_samplerates[i])
break;
if (!supported_samplerates[i] || samplerate > devc->max_samplerate) {
sr_err("zp: %s: unsupported samplerate", __func__);
return SR_ERR_ARG;
}
sr_info("zp: Setting samplerate to %" PRIu64 "Hz.", samplerate);
if (samplerate >= SR_MHZ(1))
analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
else if (samplerate >= SR_KHZ(1))
analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
else
analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
devc->cur_samplerate = samplerate;
return SR_OK;
}
static int set_limit_samples(struct dev_context *devc, uint64_t samples)
{
devc->limit_samples = samples;
if (samples <= 2 * 1024)
devc->memory_size = MEMORY_SIZE_8K;
else if (samples <= 16 * 1024)
devc->memory_size = MEMORY_SIZE_64K;
else if (samples <= 32 * 1024 ||
devc->max_memory_size <= 32 * 1024)
devc->memory_size = MEMORY_SIZE_128K;
else
devc->memory_size = MEMORY_SIZE_512K;
sr_info("zp: Setting memory size to %dK.",
get_memory_size(devc->memory_size) / 1024);
analyzer_set_memory_size(devc->memory_size);
return SR_OK;
}
static int set_capture_ratio(struct dev_context *devc, uint64_t ratio)
{
if (ratio > 100) {
sr_err("zp: %s: invalid capture ratio", __func__);
return SR_ERR_ARG;
}
devc->capture_ratio = ratio;
sr_info("zp: Setting capture ratio to %d%%.", devc->capture_ratio);
return SR_OK;
}
static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
const void *value)
{ {
struct dev_context *devc; struct dev_context *devc;
@ -547,41 +671,47 @@ static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
return SR_ERR_ARG; return SR_ERR_ARG;
} }
sr_info("zp: Setting samplerate to %" PRIu64 "Hz.", samplerate);
if (samplerate > SR_MHZ(1))
analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
else if (samplerate > SR_KHZ(1))
analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
else
analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
devc->cur_samplerate = samplerate;
return SR_OK;
}
static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
const void *value)
{
struct dev_context *devc;
if (!(devc = sdi->priv)) {
sr_err("zp: %s: sdi->priv was NULL", __func__);
return SR_ERR_ARG;
}
switch (hwcap) { switch (hwcap) {
case SR_HWCAP_SAMPLERATE: case SR_HWCAP_SAMPLERATE:
return set_samplerate(sdi, *(const uint64_t *)value); return set_samplerate(devc, *(const uint64_t *)value);
case SR_HWCAP_LIMIT_SAMPLES: case SR_HWCAP_LIMIT_SAMPLES:
devc->limit_samples = *(const uint64_t *)value; return set_limit_samples(devc, *(const uint64_t *)value);
return SR_OK; case SR_HWCAP_CAPTURE_RATIO:
return set_capture_ratio(devc, *(const uint64_t *)value);
default: default:
return SR_ERR; return SR_ERR;
} }
} }
static void set_triggerbar(struct dev_context *devc)
{
unsigned int ramsize;
unsigned int n;
unsigned int triggerbar;
ramsize = get_memory_size(devc->memory_size) / 4;
if (devc->trigger) {
n = ramsize;
if (devc->max_memory_size < n)
n = devc->max_memory_size;
if (devc->limit_samples < n)
n = devc->limit_samples;
n = n * devc->capture_ratio / 100;
if (n > ramsize - 8)
triggerbar = ramsize - 8;
else
triggerbar = n;
} else {
triggerbar = 0;
}
analyzer_set_triggerbar_address(triggerbar);
analyzer_set_ramsize_trigger_address(ramsize - triggerbar);
sr_dbg("zp: triggerbar_address = %d(0x%x)", triggerbar, triggerbar);
sr_dbg("zp: ramsize_triggerbar_address = %d(0x%x)",
ramsize - triggerbar, ramsize - triggerbar);
}
static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi, static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data) void *cb_data)
{ {
@ -589,9 +719,10 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
struct sr_datafeed_logic logic; struct sr_datafeed_logic logic;
struct sr_datafeed_header header; struct sr_datafeed_header header;
struct sr_datafeed_meta_logic meta; struct sr_datafeed_meta_logic meta;
uint64_t samples_read; //uint64_t samples_read;
int res; int res;
unsigned int packet_num; unsigned int packet_num;
unsigned int n;
unsigned char *buf; unsigned char *buf;
struct dev_context *devc; struct dev_context *devc;
@ -605,6 +736,8 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
return SR_ERR; return SR_ERR;
} }
set_triggerbar(devc);
/* push configured settings to device */ /* push configured settings to device */
analyzer_configure(devc->usb->devhdl); analyzer_configure(devc->usb->devhdl);
@ -637,13 +770,15 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
return SR_ERR_MALLOC; return SR_ERR_MALLOC;
} }
samples_read = 0; //samples_read = 0;
analyzer_read_start(devc->usb->devhdl); analyzer_read_start(devc->usb->devhdl);
/* Send the incoming transfer to the session bus. */ /* Send the incoming transfer to the session bus. */
for (packet_num = 0; packet_num < (devc->memory_size * 4 / PACKET_SIZE); n = get_memory_size(devc->memory_size);
packet_num++) { if (devc->max_memory_size * 4 < n)
n = devc->max_memory_size * 4;
for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
res = analyzer_read_data(devc->usb->devhdl, buf, PACKET_SIZE); res = analyzer_read_data(devc->usb->devhdl, buf, PACKET_SIZE);
sr_info("zp: Tried to read %llx bytes, actually read %x bytes", sr_info("zp: Tried to read %d bytes, actually read %d bytes",
PACKET_SIZE, res); PACKET_SIZE, res);
packet.type = SR_DF_LOGIC; packet.type = SR_DF_LOGIC;
@ -652,7 +787,7 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
logic.unitsize = 4; logic.unitsize = 4;
logic.data = buf; logic.data = buf;
sr_session_send(cb_data, &packet); sr_session_send(cb_data, &packet);
samples_read += res / 4; //samples_read += res / 4;
} }
analyzer_read_stop(devc->usb->devhdl); analyzer_read_stop(devc->usb->devhdl);
g_free(buf); g_free(buf);