ols: Split into api.c and protocol.[ch].

Also, drop various no longer needed #include files.
This commit is contained in:
Uwe Hermann 2012-12-23 20:41:27 +01:00
parent a567547e20
commit 0aba65da9f
5 changed files with 1088 additions and 1060 deletions

View File

@ -23,8 +23,9 @@ if LA_OLS
noinst_LTLIBRARIES = libsigrokhwols.la
libsigrokhwols_la_SOURCES = \
ols.c \
ols.h
api.c \
protocol.c \
protocol.h
libsigrokhwols_la_CFLAGS = \
-I$(top_srcdir)

View File

@ -0,0 +1,548 @@
/*
* This file is part of the sigrok project.
*
* Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
#define SERIALCOMM "115200/8n1"
static const int hwcaps[] = {
SR_HWCAP_LOGIC_ANALYZER,
SR_HWCAP_SAMPLERATE,
SR_HWCAP_CAPTURE_RATIO,
SR_HWCAP_LIMIT_SAMPLES,
SR_HWCAP_RLE,
0,
};
/* Probes are numbered 0-31 (on the PCB silkscreen). */
SR_PRIV const char *ols_probe_names[NUM_PROBES + 1] = {
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
NULL,
};
/* default supported samplerates, can be overridden by device metadata */
static const struct sr_samplerates samplerates = {
SR_HZ(10),
SR_MHZ(200),
SR_HZ(1),
NULL,
};
SR_PRIV struct sr_dev_driver ols_driver_info;
static struct sr_dev_driver *di = &ols_driver_info;
static int hw_init(struct sr_context *sr_ctx)
{
struct drv_context *drvc;
if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) {
sr_err("Driver context malloc failed.");
return SR_ERR_MALLOC;
}
drvc->sr_ctx = sr_ctx;
di->priv = drvc;
return SR_OK;
}
static GSList *hw_scan(GSList *options)
{
struct sr_hwopt *opt;
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
struct sr_probe *probe;
struct sr_serial_dev_inst *serial;
GPollFD probefd;
GSList *l, *devices;
int ret, i;
const char *conn, *serialcomm;
char buf[8];
(void)options;
drvc = di->priv;
devices = NULL;
conn = serialcomm = NULL;
for (l = options; l; l = l->next) {
opt = l->data;
switch (opt->hwopt) {
case SR_HWOPT_CONN:
conn = opt->value;
break;
case SR_HWOPT_SERIALCOMM:
serialcomm = opt->value;
break;
}
}
if (!conn)
return NULL;
if (serialcomm == NULL)
serialcomm = SERIALCOMM;
if (!(serial = sr_serial_dev_inst_new(conn, serialcomm)))
return NULL;
/* The discovery procedure is like this: first send the Reset
* command (0x00) 5 times, since the device could be anywhere
* in a 5-byte command. Then send the ID command (0x02).
* If the device responds with 4 bytes ("OLS1" or "SLA1"), we
* have a match.
*/
sr_info("Probing %s.", conn);
if (serial_open(serial, SERIAL_RDWR | SERIAL_NONBLOCK) != SR_OK)
return NULL;
ret = SR_OK;
for (i = 0; i < 5; i++) {
if ((ret = send_shortcommand(serial, CMD_RESET)) != SR_OK) {
sr_err("Port %s is not writable.", conn);
break;
}
}
if (ret != SR_OK) {
serial_close(serial);
sr_err("Could not use port %s. Quitting.", conn);
return NULL;
}
send_shortcommand(serial, CMD_ID);
/* Wait 10ms for a response. */
g_usleep(10000);
probefd.fd = serial->fd;
probefd.events = G_IO_IN;
g_poll(&probefd, 1, 1);
if (probefd.revents != G_IO_IN)
return NULL;
if (serial_read(serial, buf, 4) != 4)
return NULL;
if (strncmp(buf, "1SLO", 4) && strncmp(buf, "1ALS", 4))
return NULL;
/* Definitely using the OLS protocol, check if it supports
* the metadata command.
*/
send_shortcommand(serial, CMD_METADATA);
if (g_poll(&probefd, 1, 10) > 0) {
/* Got metadata. */
sdi = get_metadata(serial);
sdi->index = 0;
devc = sdi->priv;
} else {
/* Not an OLS -- some other board that uses the sump protocol. */
sdi = sr_dev_inst_new(0, SR_ST_INACTIVE,
"Sump", "Logic Analyzer", "v1.0");
sdi->driver = di;
devc = ols_dev_new();
for (i = 0; i < 32; i++) {
if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
ols_probe_names[i])))
return 0;
sdi->probes = g_slist_append(sdi->probes, probe);
}
sdi->priv = devc;
}
devc->serial = serial;
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
serial_close(serial);
return devices;
}
static GSList *hw_dev_list(void)
{
struct drv_context *drvc;
drvc = di->priv;
return drvc->instances;
}
static int hw_dev_open(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
if (serial_open(devc->serial, SERIAL_RDWR) != SR_OK)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int hw_dev_close(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
devc = sdi->priv;
if (devc->serial && devc->serial->fd != -1) {
serial_close(devc->serial);
sdi->status = SR_ST_INACTIVE;
}
return SR_OK;
}
static int hw_cleanup(void)
{
GSList *l;
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
int ret = SR_OK;
if (!(drvc = di->priv))
return SR_OK;
/* Properly close and free all devices. */
for (l = drvc->instances; l; l = l->next) {
if (!(sdi = l->data)) {
/* Log error, but continue cleaning up the rest. */
sr_err("%s: sdi was NULL, continuing", __func__);
ret = SR_ERR_BUG;
continue;
}
if (!(devc = sdi->priv)) {
/* Log error, but continue cleaning up the rest. */
sr_err("%s: sdi->priv was NULL, continuing", __func__);
ret = SR_ERR_BUG;
continue;
}
hw_dev_close(sdi);
sr_serial_dev_inst_free(devc->serial);
sr_dev_inst_free(sdi);
}
g_slist_free(drvc->instances);
drvc->instances = NULL;
return ret;
}
static int hw_info_get(int info_id, const void **data,
const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
switch (info_id) {
case SR_DI_HWCAPS:
*data = hwcaps;
break;
case SR_DI_NUM_PROBES:
*data = GINT_TO_POINTER(1);
break;
case SR_DI_PROBE_NAMES:
*data = ols_probe_names;
break;
case SR_DI_SAMPLERATES:
*data = &samplerates;
break;
case SR_DI_TRIGGER_TYPES:
*data = (char *)TRIGGER_TYPES;
break;
case SR_DI_CUR_SAMPLERATE:
if (sdi) {
devc = sdi->priv;
*data = &devc->cur_samplerate;
} else
return SR_ERR;
break;
default:
return SR_ERR_ARG;
}
return SR_OK;
}
static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
const void *value)
{
struct dev_context *devc;
int ret;
const uint64_t *tmp_u64;
devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
switch (hwcap) {
case SR_HWCAP_SAMPLERATE:
ret = ols_set_samplerate(sdi, *(const uint64_t *)value,
&samplerates);
break;
case SR_HWCAP_LIMIT_SAMPLES:
tmp_u64 = value;
if (*tmp_u64 < MIN_NUM_SAMPLES)
return SR_ERR;
if (*tmp_u64 > devc->max_samples)
sr_err("Sample limit exceeds hardware maximum.");
devc->limit_samples = *tmp_u64;
sr_info("Sample limit is %" PRIu64 ".", devc->limit_samples);
ret = SR_OK;
break;
case SR_HWCAP_CAPTURE_RATIO:
devc->capture_ratio = *(const uint64_t *)value;
if (devc->capture_ratio < 0 || devc->capture_ratio > 100) {
devc->capture_ratio = 0;
ret = SR_ERR;
} else
ret = SR_OK;
break;
case SR_HWCAP_RLE:
if (GPOINTER_TO_INT(value)) {
sr_info("Enabling RLE.");
devc->flag_reg |= FLAG_RLE;
}
ret = SR_OK;
break;
default:
ret = SR_ERR;
}
return ret;
}
static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data)
{
struct sr_datafeed_packet *packet;
struct sr_datafeed_header *header;
struct sr_datafeed_meta_logic meta;
struct dev_context *devc;
uint32_t trigger_config[4];
uint32_t data;
uint16_t readcount, delaycount;
uint8_t changrp_mask;
int num_channels;
int i;
devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR;
if (ols_configure_probes(sdi) != SR_OK) {
sr_err("Failed to configure probes.");
return SR_ERR;
}
/*
* Enable/disable channel groups in the flag register according to the
* probe mask. Calculate this here, because num_channels is needed
* to limit readcount.
*/
changrp_mask = 0;
num_channels = 0;
for (i = 0; i < 4; i++) {
if (devc->probe_mask & (0xff << (i * 8))) {
changrp_mask |= (1 << i);
num_channels++;
}
}
/*
* Limit readcount to prevent reading past the end of the hardware
* buffer.
*/
readcount = MIN(devc->max_samples / num_channels, devc->limit_samples) / 4;
memset(trigger_config, 0, 16);
trigger_config[devc->num_stages - 1] |= 0x08;
if (devc->trigger_mask[0]) {
delaycount = readcount * (1 - devc->capture_ratio / 100.0);
devc->trigger_at = (readcount - delaycount) * 4 - devc->num_stages;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_MASK_0,
reverse32(devc->trigger_mask[0])) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_VALUE_0,
reverse32(devc->trigger_value[0])) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_CONFIG_0,
trigger_config[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_MASK_1,
reverse32(devc->trigger_mask[1])) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_VALUE_1,
reverse32(devc->trigger_value[1])) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_CONFIG_1,
trigger_config[1]) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_MASK_2,
reverse32(devc->trigger_mask[2])) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_VALUE_2,
reverse32(devc->trigger_value[2])) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_CONFIG_2,
trigger_config[2]) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_MASK_3,
reverse32(devc->trigger_mask[3])) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_VALUE_3,
reverse32(devc->trigger_value[3])) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_CONFIG_3,
trigger_config[3]) != SR_OK)
return SR_ERR;
} else {
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_MASK_0,
devc->trigger_mask[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_VALUE_0,
devc->trigger_value[0]) != SR_OK)
return SR_ERR;
if (send_longcommand(devc->serial, CMD_SET_TRIGGER_CONFIG_0,
0x00000008) != SR_OK)
return SR_ERR;
delaycount = readcount;
}
sr_info("Setting samplerate to %" PRIu64 "Hz (divider %u, "
"demux %s)", devc->cur_samplerate, devc->cur_samplerate_divider,
devc->flag_reg & FLAG_DEMUX ? "on" : "off");
if (send_longcommand(devc->serial, CMD_SET_DIVIDER,
reverse32(devc->cur_samplerate_divider)) != SR_OK)
return SR_ERR;
/* Send sample limit and pre/post-trigger capture ratio. */
data = ((readcount - 1) & 0xffff) << 16;
data |= (delaycount - 1) & 0xffff;
if (send_longcommand(devc->serial, CMD_CAPTURE_SIZE, reverse16(data)) != SR_OK)
return SR_ERR;
/* The flag register wants them here, and 1 means "disable channel". */
devc->flag_reg |= ~(changrp_mask << 2) & 0x3c;
devc->flag_reg |= FLAG_FILTER;
devc->rle_count = 0;
data = (devc->flag_reg << 24) | ((devc->flag_reg << 8) & 0xff0000);
if (send_longcommand(devc->serial, CMD_SET_FLAGS, data) != SR_OK)
return SR_ERR;
/* Start acquisition on the device. */
if (send_shortcommand(devc->serial, CMD_RUN) != SR_OK)
return SR_ERR;
sr_source_add(devc->serial->fd, G_IO_IN, -1, ols_receive_data,
cb_data);
if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
sr_err("Datafeed packet malloc failed.");
return SR_ERR_MALLOC;
}
if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
sr_err("Datafeed header malloc failed.");
g_free(packet);
return SR_ERR_MALLOC;
}
/* Send header packet to the session bus. */
packet->type = SR_DF_HEADER;
packet->payload = (unsigned char *)header;
header->feed_version = 1;
gettimeofday(&header->starttime, NULL);
sr_session_send(cb_data, packet);
/* Send metadata about the SR_DF_LOGIC packets to come. */
packet->type = SR_DF_META_LOGIC;
packet->payload = &meta;
meta.samplerate = devc->cur_samplerate;
meta.num_probes = NUM_PROBES;
sr_session_send(cb_data, packet);
g_free(header);
g_free(packet);
return SR_OK;
}
/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
static int hw_dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
/* Avoid compiler warnings. */
(void)cb_data;
abort_acquisition(sdi);
return SR_OK;
}
SR_PRIV struct sr_dev_driver ols_driver_info = {
.name = "ols",
.longname = "Openbench Logic Sniffer",
.api_version = 1,
.init = hw_init,
.cleanup = hw_cleanup,
.scan = hw_scan,
.dev_list = hw_dev_list,
.dev_clear = hw_cleanup,
.dev_open = hw_dev_open,
.dev_close = hw_dev_close,
.info_get = hw_info_get,
.dev_config_set = hw_dev_config_set,
.dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop,
.priv = NULL,
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,511 @@
/*
* This file is part of the sigrok project.
*
* Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
SR_PRIV struct sr_dev_driver ols_driver_info;
static struct sr_dev_driver *di = &ols_driver_info;
SR_PRIV int send_shortcommand(struct sr_serial_dev_inst *serial,
uint8_t command)
{
char buf[1];
sr_dbg("Sending cmd 0x%.2x.", command);
buf[0] = command;
if (serial_write(serial, buf, 1) != 1)
return SR_ERR;
return SR_OK;
}
SR_PRIV int send_longcommand(struct sr_serial_dev_inst *serial,
uint8_t command, uint32_t data)
{
char buf[5];
sr_dbg("Sending cmd 0x%.2x data 0x%.8x.", command, data);
buf[0] = command;
buf[1] = (data & 0xff000000) >> 24;
buf[2] = (data & 0xff0000) >> 16;
buf[3] = (data & 0xff00) >> 8;
buf[4] = data & 0xff;
if (serial_write(serial, buf, 5) != 5)
return SR_ERR;
return SR_OK;
}
SR_PRIV int ols_configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
const struct sr_probe *probe;
const GSList *l;
int probe_bit, stage, i;
char *tc;
devc = sdi->priv;
devc->probe_mask = 0;
for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
devc->trigger_mask[i] = 0;
devc->trigger_value[i] = 0;
}
devc->num_stages = 0;
for (l = sdi->probes; l; l = l->next) {
probe = (const struct sr_probe *)l->data;
if (!probe->enabled)
continue;
/*
* Set up the probe mask for later configuration into the
* flag register.
*/
probe_bit = 1 << (probe->index);
devc->probe_mask |= probe_bit;
if (!probe->trigger)
continue;
/* Configure trigger mask and value. */
stage = 0;
for (tc = probe->trigger; tc && *tc; tc++) {
devc->trigger_mask[stage] |= probe_bit;
if (*tc == '1')
devc->trigger_value[stage] |= probe_bit;
stage++;
if (stage > 3)
/*
* TODO: Only supporting parallel mode, with
* up to 4 stages.
*/
return SR_ERR;
}
if (stage > devc->num_stages)
devc->num_stages = stage;
}
return SR_OK;
}
SR_PRIV uint32_t reverse16(uint32_t in)
{
uint32_t out;
out = (in & 0xff) << 8;
out |= (in & 0xff00) >> 8;
out |= (in & 0xff0000) << 8;
out |= (in & 0xff000000) >> 8;
return out;
}
SR_PRIV uint32_t reverse32(uint32_t in)
{
uint32_t out;
out = (in & 0xff) << 24;
out |= (in & 0xff00) << 8;
out |= (in & 0xff0000) >> 8;
out |= (in & 0xff000000) >> 24;
return out;
}
SR_PRIV struct dev_context *ols_dev_new(void)
{
struct dev_context *devc;
if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
sr_err("Device context malloc failed.");
return NULL;
}
devc->trigger_at = -1;
devc->probe_mask = 0xffffffff;
devc->cur_samplerate = SR_KHZ(200);
devc->serial = NULL;
return devc;
}
SR_PRIV struct sr_dev_inst *get_metadata(struct sr_serial_dev_inst *serial)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_probe *probe;
uint32_t tmp_int, ui;
uint8_t key, type, token;
GString *tmp_str, *devname, *version;
guchar tmp_c;
sdi = sr_dev_inst_new(0, SR_ST_INACTIVE, NULL, NULL, NULL);
sdi->driver = di;
devc = ols_dev_new();
sdi->priv = devc;
devname = g_string_new("");
version = g_string_new("");
key = 0xff;
while (key) {
if (serial_read(serial, &key, 1) != 1 || key == 0x00)
break;
type = key >> 5;
token = key & 0x1f;
switch (type) {
case 0:
/* NULL-terminated string */
tmp_str = g_string_new("");
while (serial_read(serial, &tmp_c, 1) == 1 && tmp_c != '\0')
g_string_append_c(tmp_str, tmp_c);
sr_dbg("Got metadata key 0x%.2x value '%s'.",
key, tmp_str->str);
switch (token) {
case 0x01:
/* Device name */
devname = g_string_append(devname, tmp_str->str);
break;
case 0x02:
/* FPGA firmware version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "FPGA version ");
g_string_append(version, tmp_str->str);
break;
case 0x03:
/* Ancillary version */
if (version->len)
g_string_append(version, ", ");
g_string_append(version, "Ancillary version ");
g_string_append(version, tmp_str->str);
break;
default:
sr_info("ols: unknown token 0x%.2x: '%s'",
token, tmp_str->str);
break;
}
g_string_free(tmp_str, TRUE);
break;
case 1:
/* 32-bit unsigned integer */
if (serial_read(serial, &tmp_int, 4) != 4)
break;
tmp_int = reverse32(tmp_int);
sr_dbg("Got metadata key 0x%.2x value 0x%.8x.",
key, tmp_int);
switch (token) {
case 0x00:
/* Number of usable probes */
for (ui = 0; ui < tmp_int; ui++) {
if (!(probe = sr_probe_new(ui, SR_PROBE_LOGIC, TRUE,
ols_probe_names[ui])))
return 0;
sdi->probes = g_slist_append(sdi->probes, probe);
}
break;
case 0x01:
/* Amount of sample memory available (bytes) */
devc->max_samples = tmp_int;
break;
case 0x02:
/* Amount of dynamic memory available (bytes) */
/* what is this for? */
break;
case 0x03:
/* Maximum sample rate (hz) */
devc->max_samplerate = tmp_int;
break;
case 0x04:
/* protocol version */
devc->protocol_version = tmp_int;
break;
default:
sr_info("Unknown token 0x%.2x: 0x%.8x.",
token, tmp_int);
break;
}
break;
case 2:
/* 8-bit unsigned integer */
if (serial_read(serial, &tmp_c, 1) != 1)
break;
sr_dbg("Got metadata key 0x%.2x value 0x%.2x.",
key, tmp_c);
switch (token) {
case 0x00:
/* Number of usable probes */
for (ui = 0; ui < tmp_c; ui++) {
if (!(probe = sr_probe_new(ui, SR_PROBE_LOGIC, TRUE,
ols_probe_names[ui])))
return 0;
sdi->probes = g_slist_append(sdi->probes, probe);
}
break;
case 0x01:
/* protocol version */
devc->protocol_version = tmp_c;
break;
default:
sr_info("Unknown token 0x%.2x: 0x%.2x.",
token, tmp_c);
break;
}
break;
default:
/* unknown type */
break;
}
}
sdi->model = devname->str;
sdi->version = version->str;
g_string_free(devname, FALSE);
g_string_free(version, FALSE);
return sdi;
}
SR_PRIV int ols_set_samplerate(const struct sr_dev_inst *sdi,
uint64_t samplerate,
const struct sr_samplerates *samplerates)
{
struct dev_context *devc;
devc = sdi->priv;
if (devc->max_samplerate) {
if (samplerate > devc->max_samplerate)
return SR_ERR_SAMPLERATE;
} else if (samplerate < samplerates->low || samplerate > samplerates->high)
return SR_ERR_SAMPLERATE;
if (samplerate > CLOCK_RATE) {
devc->flag_reg |= FLAG_DEMUX;
devc->cur_samplerate_divider = (CLOCK_RATE * 2 / samplerate) - 1;
} else {
devc->flag_reg &= ~FLAG_DEMUX;
devc->cur_samplerate_divider = (CLOCK_RATE / samplerate) - 1;
}
/* Calculate actual samplerate used and complain if it is different
* from the requested.
*/
devc->cur_samplerate = CLOCK_RATE / (devc->cur_samplerate_divider + 1);
if (devc->flag_reg & FLAG_DEMUX)
devc->cur_samplerate *= 2;
if (devc->cur_samplerate != samplerate)
sr_err("Can't match samplerate %" PRIu64 ", using %"
PRIu64 ".", samplerate, devc->cur_samplerate);
return SR_OK;
}
SR_PRIV void abort_acquisition(const struct sr_dev_inst *sdi)
{
struct sr_datafeed_packet packet;
struct dev_context *devc;
devc = sdi->priv;
sr_source_remove(devc->serial->fd);
/* Terminate session */
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
}
SR_PRIV int ols_receive_data(int fd, int revents, void *cb_data)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_dev_inst *sdi;
struct drv_context *drvc;
struct dev_context *devc;
GSList *l;
int num_channels, offset, i, j;
unsigned char byte;
drvc = di->priv;
/* Find this device's devc struct by its fd. */
devc = NULL;
for (l = drvc->instances; l; l = l->next) {
sdi = l->data;
devc = sdi->priv;
if (devc->serial->fd == fd)
break;
devc = NULL;
}
if (!devc)
/* Shouldn't happen. */
return TRUE;
if (devc->num_transfers++ == 0) {
/*
* First time round, means the device started sending data,
* and will not stop until done. If it stops sending for
* longer than it takes to send a byte, that means it's
* finished. We'll double that to 30ms to be sure...
*/
sr_source_remove(fd);
sr_source_add(fd, G_IO_IN, 30, ols_receive_data, cb_data);
devc->raw_sample_buf = g_try_malloc(devc->limit_samples * 4);
if (!devc->raw_sample_buf) {
sr_err("Sample buffer malloc failed.");
return FALSE;
}
/* fill with 1010... for debugging */
memset(devc->raw_sample_buf, 0x82, devc->limit_samples * 4);
}
num_channels = 0;
for (i = 0x20; i > 0x02; i /= 2) {
if ((devc->flag_reg & i) == 0)
num_channels++;
}
if (revents == G_IO_IN) {
if (serial_read(devc->serial, &byte, 1) != 1)
return FALSE;
/* Ignore it if we've read enough. */
if (devc->num_samples >= devc->limit_samples)
return TRUE;
devc->sample[devc->num_bytes++] = byte;
sr_dbg("Received byte 0x%.2x.", byte);
if (devc->num_bytes == num_channels) {
/* Got a full sample. */
sr_dbg("Received sample 0x%.*x.",
devc->num_bytes * 2, *(int *)devc->sample);
if (devc->flag_reg & FLAG_RLE) {
/*
* In RLE mode -1 should never come in as a
* sample, because bit 31 is the "count" flag.
*/
if (devc->sample[devc->num_bytes - 1] & 0x80) {
devc->sample[devc->num_bytes - 1] &= 0x7f;
/*
* FIXME: This will only work on
* little-endian systems.
*/
devc->rle_count = *(int *)(devc->sample);
sr_dbg("RLE count: %d.", devc->rle_count);
devc->num_bytes = 0;
return TRUE;
}
}
devc->num_samples += devc->rle_count + 1;
if (devc->num_samples > devc->limit_samples) {
/* Save us from overrunning the buffer. */
devc->rle_count -= devc->num_samples - devc->limit_samples;
devc->num_samples = devc->limit_samples;
}
if (num_channels < 4) {
/*
* Some channel groups may have been turned
* off, to speed up transfer between the
* hardware and the PC. Expand that here before
* submitting it over the session bus --
* whatever is listening on the bus will be
* expecting a full 32-bit sample, based on
* the number of probes.
*/
j = 0;
memset(devc->tmp_sample, 0, 4);
for (i = 0; i < 4; i++) {
if (((devc->flag_reg >> 2) & (1 << i)) == 0) {
/*
* This channel group was
* enabled, copy from received
* sample.
*/
devc->tmp_sample[i] = devc->sample[j++];
}
}
memcpy(devc->sample, devc->tmp_sample, 4);
sr_dbg("Full sample: 0x%.8x.", *(int *)devc->sample);
}
/* the OLS sends its sample buffer backwards.
* store it in reverse order here, so we can dump
* this on the session bus later.
*/
offset = (devc->limit_samples - devc->num_samples) * 4;
for (i = 0; i <= devc->rle_count; i++) {
memcpy(devc->raw_sample_buf + offset + (i * 4),
devc->sample, 4);
}
memset(devc->sample, 0, 4);
devc->num_bytes = 0;
devc->rle_count = 0;
}
} else {
/*
* This is the main loop telling us a timeout was reached, or
* we've acquired all the samples we asked for -- we're done.
* Send the (properly-ordered) buffer to the frontend.
*/
if (devc->trigger_at != -1) {
/* a trigger was set up, so we need to tell the frontend
* about it.
*/
if (devc->trigger_at > 0) {
/* there are pre-trigger samples, send those first */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = devc->trigger_at * 4;
logic.unitsize = 4;
logic.data = devc->raw_sample_buf +
(devc->limit_samples - devc->num_samples) * 4;
sr_session_send(cb_data, &packet);
}
/* send the trigger */
packet.type = SR_DF_TRIGGER;
sr_session_send(cb_data, &packet);
/* send post-trigger samples */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = (devc->num_samples * 4) - (devc->trigger_at * 4);
logic.unitsize = 4;
logic.data = devc->raw_sample_buf + devc->trigger_at * 4 +
(devc->limit_samples - devc->num_samples) * 4;
sr_session_send(cb_data, &packet);
} else {
/* no trigger was used */
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = devc->num_samples * 4;
logic.unitsize = 4;
logic.data = devc->raw_sample_buf +
(devc->limit_samples - devc->num_samples) * 4;
sr_session_send(cb_data, &packet);
}
g_free(devc->raw_sample_buf);
serial_flush(devc->serial);
abort_acquisition(sdi);
serial_close(devc->serial);
}
return TRUE;
}

View File

@ -17,8 +17,14 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef LIBSIGROK_HARDWARE_OPENBENCH_LOGIC_SNIFFER_OLS_H
#define LIBSIGROK_HARDWARE_OPENBENCH_LOGIC_SNIFFER_OLS_H
#ifndef LIBSIGROK_HARDWARE_OPENBENCH_LOGIC_SNIFFER_PROTOCOL_H
#define LIBSIGROK_HARDWARE_OPENBENCH_LOGIC_SNIFFER_PROTOCOL_H
#include <stdint.h>
#include <string.h>
#include <glib.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
/* Message logging helpers with driver-specific prefix string. */
#define DRIVER_LOG_DOMAIN "ols: "
@ -100,4 +106,22 @@ struct dev_context {
struct sr_serial_dev_inst *serial;
};
SR_PRIV extern const char *ols_probe_names[NUM_PROBES + 1];
SR_PRIV int send_shortcommand(struct sr_serial_dev_inst *serial,
uint8_t command);
SR_PRIV int send_longcommand(struct sr_serial_dev_inst *serial,
uint8_t command, uint32_t data);
SR_PRIV int ols_configure_probes(const struct sr_dev_inst *sdi);
SR_PRIV uint32_t reverse16(uint32_t in);
SR_PRIV uint32_t reverse32(uint32_t in);
SR_PRIV struct dev_context *ols_dev_new(void);
SR_PRIV struct sr_dev_inst *get_metadata(struct sr_serial_dev_inst *serial);
SR_PRIV int ols_set_samplerate(const struct sr_dev_inst *sdi,
uint64_t samplerate,
const struct sr_samplerates *samplerates);
SR_PRIV void abort_acquisition(const struct sr_dev_inst *sdi);
SR_PRIV int ols_receive_data(int fd, int revents, void *cb_data);
#endif