asix-sigma: use driver-private storage for instances

This commit is contained in:
Bert Vermeulen 2012-08-02 21:20:41 +02:00
parent dc9dbe949a
commit 0e1357e896
2 changed files with 212 additions and 202 deletions

View File

@ -126,27 +126,27 @@ static const char *firmware_files[] = {
static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi, static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi,
void *cb_data); void *cb_data);
static int sigma_read(void *buf, size_t size, struct context *ctx) static int sigma_read(void *buf, size_t size, struct dev_context *devc)
{ {
int ret; int ret;
ret = ftdi_read_data(&ctx->ftdic, (unsigned char *)buf, size); ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
if (ret < 0) { if (ret < 0) {
sr_err("sigma: ftdi_read_data failed: %s", sr_err("sigma: ftdi_read_data failed: %s",
ftdi_get_error_string(&ctx->ftdic)); ftdi_get_error_string(&devc->ftdic));
} }
return ret; return ret;
} }
static int sigma_write(void *buf, size_t size, struct context *ctx) static int sigma_write(void *buf, size_t size, struct dev_context *devc)
{ {
int ret; int ret;
ret = ftdi_write_data(&ctx->ftdic, (unsigned char *)buf, size); ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
if (ret < 0) { if (ret < 0) {
sr_err("sigma: ftdi_write_data failed: %s", sr_err("sigma: ftdi_write_data failed: %s",
ftdi_get_error_string(&ctx->ftdic)); ftdi_get_error_string(&devc->ftdic));
} else if ((size_t) ret != size) { } else if ((size_t) ret != size) {
sr_err("sigma: ftdi_write_data did not complete write."); sr_err("sigma: ftdi_write_data did not complete write.");
} }
@ -155,7 +155,7 @@ static int sigma_write(void *buf, size_t size, struct context *ctx)
} }
static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len, static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
struct context *ctx) struct dev_context *devc)
{ {
size_t i; size_t i;
uint8_t buf[len + 2]; uint8_t buf[len + 2];
@ -169,16 +169,16 @@ static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4); buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
} }
return sigma_write(buf, idx, ctx); return sigma_write(buf, idx, devc);
} }
static int sigma_set_register(uint8_t reg, uint8_t value, struct context *ctx) static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
{ {
return sigma_write_register(reg, &value, 1, ctx); return sigma_write_register(reg, &value, 1, devc);
} }
static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len, static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
struct context *ctx) struct dev_context *devc)
{ {
uint8_t buf[3]; uint8_t buf[3];
@ -186,16 +186,16 @@ static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
buf[1] = REG_ADDR_HIGH | (reg >> 4); buf[1] = REG_ADDR_HIGH | (reg >> 4);
buf[2] = REG_READ_ADDR; buf[2] = REG_READ_ADDR;
sigma_write(buf, sizeof(buf), ctx); sigma_write(buf, sizeof(buf), devc);
return sigma_read(data, len, ctx); return sigma_read(data, len, devc);
} }
static uint8_t sigma_get_register(uint8_t reg, struct context *ctx) static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
{ {
uint8_t value; uint8_t value;
if (1 != sigma_read_register(reg, &value, 1, ctx)) { if (1 != sigma_read_register(reg, &value, 1, devc)) {
sr_err("sigma: sigma_get_register: 1 byte expected"); sr_err("sigma: sigma_get_register: 1 byte expected");
return 0; return 0;
} }
@ -204,7 +204,7 @@ static uint8_t sigma_get_register(uint8_t reg, struct context *ctx)
} }
static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos, static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
struct context *ctx) struct dev_context *devc)
{ {
uint8_t buf[] = { uint8_t buf[] = {
REG_ADDR_LOW | READ_TRIGGER_POS_LOW, REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
@ -218,9 +218,9 @@ static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
}; };
uint8_t result[6]; uint8_t result[6];
sigma_write(buf, sizeof(buf), ctx); sigma_write(buf, sizeof(buf), devc);
sigma_read(result, sizeof(result), ctx); sigma_read(result, sizeof(result), devc);
*triggerpos = result[0] | (result[1] << 8) | (result[2] << 16); *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
*stoppos = result[3] | (result[4] << 8) | (result[5] << 16); *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
@ -236,7 +236,7 @@ static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
} }
static int sigma_read_dram(uint16_t startchunk, size_t numchunks, static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
uint8_t *data, struct context *ctx) uint8_t *data, struct dev_context *devc)
{ {
size_t i; size_t i;
uint8_t buf[4096]; uint8_t buf[4096];
@ -245,7 +245,7 @@ static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
/* Send the startchunk. Index start with 1. */ /* Send the startchunk. Index start with 1. */
buf[0] = startchunk >> 8; buf[0] = startchunk >> 8;
buf[1] = startchunk & 0xff; buf[1] = startchunk & 0xff;
sigma_write_register(WRITE_MEMROW, buf, 2, ctx); sigma_write_register(WRITE_MEMROW, buf, 2, devc);
/* Read the DRAM. */ /* Read the DRAM. */
buf[idx++] = REG_DRAM_BLOCK; buf[idx++] = REG_DRAM_BLOCK;
@ -262,13 +262,13 @@ static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
buf[idx++] = REG_DRAM_WAIT_ACK; buf[idx++] = REG_DRAM_WAIT_ACK;
} }
sigma_write(buf, idx, ctx); sigma_write(buf, idx, devc);
return sigma_read(data, numchunks * CHUNK_SIZE, ctx); return sigma_read(data, numchunks * CHUNK_SIZE, devc);
} }
/* Upload trigger look-up tables to Sigma. */ /* Upload trigger look-up tables to Sigma. */
static int sigma_write_trigger_lut(struct triggerlut *lut, struct context *ctx) static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
{ {
int i; int i;
uint8_t tmp[2]; uint8_t tmp[2];
@ -315,13 +315,13 @@ static int sigma_write_trigger_lut(struct triggerlut *lut, struct context *ctx)
tmp[1] |= 0x80; tmp[1] |= 0x80;
sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp), sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
ctx); devc);
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, ctx); sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
} }
/* Send the parameters */ /* Send the parameters */
sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params, sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
sizeof(lut->params), ctx); sizeof(lut->params), devc);
return SR_OK; return SR_OK;
} }
@ -411,24 +411,27 @@ static void clear_instances(void)
{ {
GSList *l; GSList *l;
struct sr_dev_inst *sdi; struct sr_dev_inst *sdi;
struct context *ctx; struct drv_context *drvc;
struct dev_context *devc;
drvc = adi->priv;
/* Properly close all devices. */ /* Properly close all devices. */
for (l = adi->instances; l; l = l->next) { for (l = drvc->instances; l; l = l->next) {
if (!(sdi = l->data)) { if (!(sdi = l->data)) {
/* Log error, but continue cleaning up the rest. */ /* Log error, but continue cleaning up the rest. */
sr_err("sigma: %s: sdi was NULL, continuing", __func__); sr_err("sigma: %s: sdi was NULL, continuing", __func__);
continue; continue;
} }
if (sdi->priv) { if (sdi->priv) {
ctx = sdi->priv; devc = sdi->priv;
ftdi_free(&ctx->ftdic); ftdi_free(&devc->ftdic);
g_free(ctx); g_free(devc);
} }
sr_dev_inst_free(sdi); sr_dev_inst_free(sdi);
} }
g_slist_free(adi->instances); g_slist_free(drvc->instances);
adi->instances = NULL; drvc->instances = NULL;
} }
@ -444,7 +447,8 @@ static GSList *hw_scan(GSList *options)
{ {
struct sr_dev_inst *sdi; struct sr_dev_inst *sdi;
struct sr_probe *probe; struct sr_probe *probe;
struct context *ctx; struct drv_context *drvc;
struct dev_context *devc;
GSList *devices; GSList *devices;
struct ftdi_device_list *devlist; struct ftdi_device_list *devlist;
char serial_txt[10]; char serial_txt[10];
@ -452,19 +456,20 @@ static GSList *hw_scan(GSList *options)
int ret, i; int ret, i;
(void)options; (void)options;
drvc = adi->priv;
devices = NULL; devices = NULL;
clear_instances(); clear_instances();
if (!(ctx = g_try_malloc(sizeof(struct context)))) { if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
sr_err("sigma: %s: ctx malloc failed", __func__); sr_err("sigma: %s: devc malloc failed", __func__);
return NULL; return NULL;
} }
ftdi_init(&ctx->ftdic); ftdi_init(&devc->ftdic);
/* Look for SIGMAs. */ /* Look for SIGMAs. */
if ((ret = ftdi_usb_find_all(&ctx->ftdic, &devlist, if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
USB_VENDOR, USB_PRODUCT)) <= 0) { USB_VENDOR, USB_PRODUCT)) <= 0) {
if (ret < 0) if (ret < 0)
sr_err("ftdi_usb_find_all(): %d", ret); sr_err("ftdi_usb_find_all(): %d", ret);
@ -472,7 +477,7 @@ static GSList *hw_scan(GSList *options)
} }
/* Make sure it's a version 1 or 2 SIGMA. */ /* Make sure it's a version 1 or 2 SIGMA. */
ftdi_usb_get_strings(&ctx->ftdic, devlist->dev, NULL, 0, NULL, 0, ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
serial_txt, sizeof(serial_txt)); serial_txt, sizeof(serial_txt));
sscanf(serial_txt, "%x", &serial); sscanf(serial_txt, "%x", &serial);
@ -484,14 +489,14 @@ static GSList *hw_scan(GSList *options)
sr_info("Found ASIX SIGMA - Serial: %s", serial_txt); sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
ctx->cur_samplerate = 0; devc->cur_samplerate = 0;
ctx->period_ps = 0; devc->period_ps = 0;
ctx->limit_msec = 0; devc->limit_msec = 0;
ctx->cur_firmware = -1; devc->cur_firmware = -1;
ctx->num_probes = 0; devc->num_probes = 0;
ctx->samples_per_event = 0; devc->samples_per_event = 0;
ctx->capture_ratio = 50; devc->capture_ratio = 50;
ctx->use_triggers = 0; devc->use_triggers = 0;
/* Register SIGMA device. */ /* Register SIGMA device. */
if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME, if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
@ -509,8 +514,8 @@ static GSList *hw_scan(GSList *options)
} }
devices = g_slist_append(devices, sdi); devices = g_slist_append(devices, sdi);
adi->instances = g_slist_append(adi->instances, sdi); drvc->instances = g_slist_append(drvc->instances, sdi);
sdi->priv = ctx; sdi->priv = devc;
/* We will open the device again when we need it. */ /* We will open the device again when we need it. */
ftdi_list_free(&devlist); ftdi_list_free(&devlist);
@ -518,12 +523,12 @@ static GSList *hw_scan(GSList *options)
return devices; return devices;
free: free:
ftdi_deinit(&ctx->ftdic); ftdi_deinit(&devc->ftdic);
g_free(ctx); g_free(devc);
return NULL; return NULL;
} }
static int upload_firmware(int firmware_idx, struct context *ctx) static int upload_firmware(int firmware_idx, struct dev_context *devc)
{ {
int ret; int ret;
unsigned char *buf; unsigned char *buf;
@ -533,40 +538,40 @@ static int upload_firmware(int firmware_idx, struct context *ctx)
char firmware_path[128]; char firmware_path[128];
/* Make sure it's an ASIX SIGMA. */ /* Make sure it's an ASIX SIGMA. */
if ((ret = ftdi_usb_open_desc(&ctx->ftdic, if ((ret = ftdi_usb_open_desc(&devc->ftdic,
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) { USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
sr_err("sigma: ftdi_usb_open failed: %s", sr_err("sigma: ftdi_usb_open failed: %s",
ftdi_get_error_string(&ctx->ftdic)); ftdi_get_error_string(&devc->ftdic));
return 0; return 0;
} }
if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0xdf, BITMODE_BITBANG)) < 0) { if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
sr_err("sigma: ftdi_set_bitmode failed: %s", sr_err("sigma: ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&ctx->ftdic)); ftdi_get_error_string(&devc->ftdic));
return 0; return 0;
} }
/* Four times the speed of sigmalogan - Works well. */ /* Four times the speed of sigmalogan - Works well. */
if ((ret = ftdi_set_baudrate(&ctx->ftdic, 750000)) < 0) { if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
sr_err("sigma: ftdi_set_baudrate failed: %s", sr_err("sigma: ftdi_set_baudrate failed: %s",
ftdi_get_error_string(&ctx->ftdic)); ftdi_get_error_string(&devc->ftdic));
return 0; return 0;
} }
/* Force the FPGA to reboot. */ /* Force the FPGA to reboot. */
sigma_write(suicide, sizeof(suicide), ctx); sigma_write(suicide, sizeof(suicide), devc);
sigma_write(suicide, sizeof(suicide), ctx); sigma_write(suicide, sizeof(suicide), devc);
sigma_write(suicide, sizeof(suicide), ctx); sigma_write(suicide, sizeof(suicide), devc);
sigma_write(suicide, sizeof(suicide), ctx); sigma_write(suicide, sizeof(suicide), devc);
/* Prepare to upload firmware (FPGA specific). */ /* Prepare to upload firmware (FPGA specific). */
sigma_write(init, sizeof(init), ctx); sigma_write(init, sizeof(init), devc);
ftdi_usb_purge_buffers(&ctx->ftdic); ftdi_usb_purge_buffers(&devc->ftdic);
/* Wait until the FPGA asserts INIT_B. */ /* Wait until the FPGA asserts INIT_B. */
while (1) { while (1) {
ret = sigma_read(result, 1, ctx); ret = sigma_read(result, 1, devc);
if (result[0] & 0x20) if (result[0] & 0x20)
break; break;
} }
@ -583,34 +588,34 @@ static int upload_firmware(int firmware_idx, struct context *ctx)
/* Upload firmare. */ /* Upload firmare. */
sr_info("sigma: Uploading firmware %s", firmware_files[firmware_idx]); sr_info("sigma: Uploading firmware %s", firmware_files[firmware_idx]);
sigma_write(buf, buf_size, ctx); sigma_write(buf, buf_size, devc);
g_free(buf); g_free(buf);
if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0x00, BITMODE_RESET)) < 0) { if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
sr_err("sigma: ftdi_set_bitmode failed: %s", sr_err("sigma: ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&ctx->ftdic)); ftdi_get_error_string(&devc->ftdic));
return SR_ERR; return SR_ERR;
} }
ftdi_usb_purge_buffers(&ctx->ftdic); ftdi_usb_purge_buffers(&devc->ftdic);
/* Discard garbage. */ /* Discard garbage. */
while (1 == sigma_read(&pins, 1, ctx)) while (1 == sigma_read(&pins, 1, devc))
; ;
/* Initialize the logic analyzer mode. */ /* Initialize the logic analyzer mode. */
sigma_write(logic_mode_start, sizeof(logic_mode_start), ctx); sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
/* Expect a 3 byte reply. */ /* Expect a 3 byte reply. */
ret = sigma_read(result, 3, ctx); ret = sigma_read(result, 3, devc);
if (ret != 3 || if (ret != 3 ||
result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) { result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
sr_err("sigma: Configuration failed. Invalid reply received."); sr_err("sigma: Configuration failed. Invalid reply received.");
return SR_ERR; return SR_ERR;
} }
ctx->cur_firmware = firmware_idx; devc->cur_firmware = firmware_idx;
sr_info("sigma: Firmware uploaded"); sr_info("sigma: Firmware uploaded");
@ -619,17 +624,17 @@ static int upload_firmware(int firmware_idx, struct context *ctx)
static int hw_dev_open(struct sr_dev_inst *sdi) static int hw_dev_open(struct sr_dev_inst *sdi)
{ {
struct context *ctx; struct dev_context *devc;
int ret; int ret;
ctx = sdi->priv; devc = sdi->priv;
/* Make sure it's an ASIX SIGMA. */ /* Make sure it's an ASIX SIGMA. */
if ((ret = ftdi_usb_open_desc(&ctx->ftdic, if ((ret = ftdi_usb_open_desc(&devc->ftdic,
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) { USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
sr_err("sigma: ftdi_usb_open failed: %s", sr_err("sigma: ftdi_usb_open failed: %s",
ftdi_get_error_string(&ctx->ftdic)); ftdi_get_error_string(&devc->ftdic));
return 0; return 0;
} }
@ -642,7 +647,7 @@ static int hw_dev_open(struct sr_dev_inst *sdi)
static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
{ {
int i, ret; int i, ret;
struct context *ctx = sdi->priv; struct dev_context *devc = sdi->priv;
for (i = 0; supported_samplerates[i]; i++) { for (i = 0; supported_samplerates[i]; i++) {
if (supported_samplerates[i] == samplerate) if (supported_samplerates[i] == samplerate)
@ -652,22 +657,22 @@ static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
return SR_ERR_SAMPLERATE; return SR_ERR_SAMPLERATE;
if (samplerate <= SR_MHZ(50)) { if (samplerate <= SR_MHZ(50)) {
ret = upload_firmware(0, ctx); ret = upload_firmware(0, devc);
ctx->num_probes = 16; devc->num_probes = 16;
} }
if (samplerate == SR_MHZ(100)) { if (samplerate == SR_MHZ(100)) {
ret = upload_firmware(1, ctx); ret = upload_firmware(1, devc);
ctx->num_probes = 8; devc->num_probes = 8;
} }
else if (samplerate == SR_MHZ(200)) { else if (samplerate == SR_MHZ(200)) {
ret = upload_firmware(2, ctx); ret = upload_firmware(2, devc);
ctx->num_probes = 4; devc->num_probes = 4;
} }
ctx->cur_samplerate = samplerate; devc->cur_samplerate = samplerate;
ctx->period_ps = 1000000000000 / samplerate; devc->period_ps = 1000000000000 / samplerate;
ctx->samples_per_event = 16 / ctx->num_probes; devc->samples_per_event = 16 / devc->num_probes;
ctx->state.state = SIGMA_IDLE; devc->state.state = SIGMA_IDLE;
return ret; return ret;
} }
@ -682,13 +687,13 @@ static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
*/ */
static int configure_probes(const struct sr_dev_inst *sdi, const GSList *probes) static int configure_probes(const struct sr_dev_inst *sdi, const GSList *probes)
{ {
struct context *ctx = sdi->priv; struct dev_context *devc = sdi->priv;
const struct sr_probe *probe; const struct sr_probe *probe;
const GSList *l; const GSList *l;
int trigger_set = 0; int trigger_set = 0;
int probebit; int probebit;
memset(&ctx->trigger, 0, sizeof(struct sigma_trigger)); memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
for (l = probes; l; l = l->next) { for (l = probes; l; l = l->next) {
probe = (struct sr_probe *)l->data; probe = (struct sr_probe *)l->data;
@ -697,7 +702,7 @@ static int configure_probes(const struct sr_dev_inst *sdi, const GSList *probes)
if (!probe->enabled || !probe->trigger) if (!probe->enabled || !probe->trigger)
continue; continue;
if (ctx->cur_samplerate >= SR_MHZ(100)) { if (devc->cur_samplerate >= SR_MHZ(100)) {
/* Fast trigger support. */ /* Fast trigger support. */
if (trigger_set) { if (trigger_set) {
sr_err("sigma: ASIX SIGMA only supports a single " sr_err("sigma: ASIX SIGMA only supports a single "
@ -705,9 +710,9 @@ static int configure_probes(const struct sr_dev_inst *sdi, const GSList *probes)
return SR_ERR; return SR_ERR;
} }
if (probe->trigger[0] == 'f') if (probe->trigger[0] == 'f')
ctx->trigger.fallingmask |= probebit; devc->trigger.fallingmask |= probebit;
else if (probe->trigger[0] == 'r') else if (probe->trigger[0] == 'r')
ctx->trigger.risingmask |= probebit; devc->trigger.risingmask |= probebit;
else { else {
sr_err("sigma: ASIX SIGMA only supports " sr_err("sigma: ASIX SIGMA only supports "
"rising/falling trigger in 100 " "rising/falling trigger in 100 "
@ -719,19 +724,19 @@ static int configure_probes(const struct sr_dev_inst *sdi, const GSList *probes)
} else { } else {
/* Simple trigger support (event). */ /* Simple trigger support (event). */
if (probe->trigger[0] == '1') { if (probe->trigger[0] == '1') {
ctx->trigger.simplevalue |= probebit; devc->trigger.simplevalue |= probebit;
ctx->trigger.simplemask |= probebit; devc->trigger.simplemask |= probebit;
} }
else if (probe->trigger[0] == '0') { else if (probe->trigger[0] == '0') {
ctx->trigger.simplevalue &= ~probebit; devc->trigger.simplevalue &= ~probebit;
ctx->trigger.simplemask |= probebit; devc->trigger.simplemask |= probebit;
} }
else if (probe->trigger[0] == 'f') { else if (probe->trigger[0] == 'f') {
ctx->trigger.fallingmask |= probebit; devc->trigger.fallingmask |= probebit;
++trigger_set; ++trigger_set;
} }
else if (probe->trigger[0] == 'r') { else if (probe->trigger[0] == 'r') {
ctx->trigger.risingmask |= probebit; devc->trigger.risingmask |= probebit;
++trigger_set; ++trigger_set;
} }
@ -748,7 +753,7 @@ static int configure_probes(const struct sr_dev_inst *sdi, const GSList *probes)
} }
if (trigger_set) if (trigger_set)
ctx->use_triggers = 1; devc->use_triggers = 1;
} }
return SR_OK; return SR_OK;
@ -756,16 +761,16 @@ static int configure_probes(const struct sr_dev_inst *sdi, const GSList *probes)
static int hw_dev_close(struct sr_dev_inst *sdi) static int hw_dev_close(struct sr_dev_inst *sdi)
{ {
struct context *ctx; struct dev_context *devc;
if (!(ctx = sdi->priv)) { if (!(devc = sdi->priv)) {
sr_err("sigma: %s: sdi->priv was NULL", __func__); sr_err("sigma: %s: sdi->priv was NULL", __func__);
return SR_ERR_BUG; return SR_ERR_BUG;
} }
/* TODO */ /* TODO */
if (sdi->status == SR_ST_ACTIVE) if (sdi->status == SR_ST_ACTIVE)
ftdi_usb_close(&ctx->ftdic); ftdi_usb_close(&devc->ftdic);
sdi->status = SR_ST_INACTIVE; sdi->status = SR_ST_INACTIVE;
@ -783,7 +788,7 @@ static int hw_cleanup(void)
static int hw_info_get(int info_id, const void **data, static int hw_info_get(int info_id, const void **data,
const struct sr_dev_inst *sdi) const struct sr_dev_inst *sdi)
{ {
struct context *ctx; struct dev_context *devc;
switch (info_id) { switch (info_id) {
case SR_DI_HWCAPS: case SR_DI_HWCAPS:
@ -803,8 +808,8 @@ static int hw_info_get(int info_id, const void **data,
break; break;
case SR_DI_CUR_SAMPLERATE: case SR_DI_CUR_SAMPLERATE:
if (sdi) { if (sdi) {
ctx = sdi->priv; devc = sdi->priv;
*data = &ctx->cur_samplerate; *data = &devc->cur_samplerate;
} else } else
return SR_ERR; return SR_ERR;
break; break;
@ -818,24 +823,24 @@ static int hw_info_get(int info_id, const void **data,
static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap, static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
const void *value) const void *value)
{ {
struct context *ctx; struct dev_context *devc;
int ret; int ret;
ctx = sdi->priv; devc = sdi->priv;
if (hwcap == SR_HWCAP_SAMPLERATE) { if (hwcap == SR_HWCAP_SAMPLERATE) {
ret = set_samplerate(sdi, *(const uint64_t *)value); ret = set_samplerate(sdi, *(const uint64_t *)value);
} else if (hwcap == SR_HWCAP_PROBECONFIG) { } else if (hwcap == SR_HWCAP_PROBECONFIG) {
ret = configure_probes(sdi, value); ret = configure_probes(sdi, value);
} else if (hwcap == SR_HWCAP_LIMIT_MSEC) { } else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
ctx->limit_msec = *(const uint64_t *)value; devc->limit_msec = *(const uint64_t *)value;
if (ctx->limit_msec > 0) if (devc->limit_msec > 0)
ret = SR_OK; ret = SR_OK;
else else
ret = SR_ERR; ret = SR_ERR;
} else if (hwcap == SR_HWCAP_CAPTURE_RATIO) { } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
ctx->capture_ratio = *(const uint64_t *)value; devc->capture_ratio = *(const uint64_t *)value;
if (ctx->capture_ratio < 0 || ctx->capture_ratio > 100) if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
ret = SR_ERR; ret = SR_ERR;
else else
ret = SR_OK; ret = SR_OK;
@ -891,21 +896,21 @@ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
uint16_t limit_chunk, void *cb_data) uint16_t limit_chunk, void *cb_data)
{ {
struct sr_dev_inst *sdi = cb_data; struct sr_dev_inst *sdi = cb_data;
struct context *ctx = sdi->priv; struct dev_context *devc = sdi->priv;
uint16_t tsdiff, ts; uint16_t tsdiff, ts;
uint16_t samples[65536 * ctx->samples_per_event]; uint16_t samples[65536 * devc->samples_per_event];
struct sr_datafeed_packet packet; struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic; struct sr_datafeed_logic logic;
int i, j, k, l, numpad, tosend; int i, j, k, l, numpad, tosend;
size_t n = 0, sent = 0; size_t n = 0, sent = 0;
int clustersize = EVENTS_PER_CLUSTER * ctx->samples_per_event; int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
uint16_t *event; uint16_t *event;
uint16_t cur_sample; uint16_t cur_sample;
int triggerts = -1; int triggerts = -1;
/* Check if trigger is in this chunk. */ /* Check if trigger is in this chunk. */
if (triggerpos != -1) { if (triggerpos != -1) {
if (ctx->cur_samplerate <= SR_MHZ(50)) if (devc->cur_samplerate <= SR_MHZ(50))
triggerpos -= EVENTS_PER_CLUSTER - 1; triggerpos -= EVENTS_PER_CLUSTER - 1;
if (triggerpos < 0) if (triggerpos < 0)
@ -926,7 +931,7 @@ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
return SR_OK; return SR_OK;
/* Pad last sample up to current point. */ /* Pad last sample up to current point. */
numpad = tsdiff * ctx->samples_per_event - clustersize; numpad = tsdiff * devc->samples_per_event - clustersize;
if (numpad > 0) { if (numpad > 0) {
for (j = 0; j < numpad; ++j) for (j = 0; j < numpad; ++j)
samples[j] = *lastsample; samples[j] = *lastsample;
@ -944,7 +949,7 @@ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
logic.length = tosend * sizeof(uint16_t); logic.length = tosend * sizeof(uint16_t);
logic.unitsize = 2; logic.unitsize = 2;
logic.data = samples + sent; logic.data = samples + sent;
sr_session_send(ctx->session_dev_id, &packet); sr_session_send(devc->session_dev_id, &packet);
sent += tosend; sent += tosend;
} }
@ -957,13 +962,13 @@ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
for (j = 0; j < 7; ++j) { for (j = 0; j < 7; ++j) {
/* For each sample in event. */ /* For each sample in event. */
for (k = 0; k < ctx->samples_per_event; ++k) { for (k = 0; k < devc->samples_per_event; ++k) {
cur_sample = 0; cur_sample = 0;
/* For each probe. */ /* For each probe. */
for (l = 0; l < ctx->num_probes; ++l) for (l = 0; l < devc->num_probes; ++l)
cur_sample |= (!!(event[j] & (1 << (l * cur_sample |= (!!(event[j] & (1 << (l *
ctx->samples_per_event + k)))) << l; devc->samples_per_event + k)))) << l;
samples[n++] = cur_sample; samples[n++] = cur_sample;
} }
@ -979,7 +984,7 @@ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
* samples to pinpoint the exact position of the trigger. * samples to pinpoint the exact position of the trigger.
*/ */
tosend = get_trigger_offset(samples, *lastsample, tosend = get_trigger_offset(samples, *lastsample,
&ctx->trigger); &devc->trigger);
if (tosend > 0) { if (tosend > 0) {
packet.type = SR_DF_LOGIC; packet.type = SR_DF_LOGIC;
@ -987,15 +992,15 @@ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
logic.length = tosend * sizeof(uint16_t); logic.length = tosend * sizeof(uint16_t);
logic.unitsize = 2; logic.unitsize = 2;
logic.data = samples; logic.data = samples;
sr_session_send(ctx->session_dev_id, &packet); sr_session_send(devc->session_dev_id, &packet);
sent += tosend; sent += tosend;
} }
/* Only send trigger if explicitly enabled. */ /* Only send trigger if explicitly enabled. */
if (ctx->use_triggers) { if (devc->use_triggers) {
packet.type = SR_DF_TRIGGER; packet.type = SR_DF_TRIGGER;
sr_session_send(ctx->session_dev_id, &packet); sr_session_send(devc->session_dev_id, &packet);
} }
} }
@ -1008,7 +1013,7 @@ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
logic.length = tosend * sizeof(uint16_t); logic.length = tosend * sizeof(uint16_t);
logic.unitsize = 2; logic.unitsize = 2;
logic.data = samples + sent; logic.data = samples + sent;
sr_session_send(ctx->session_dev_id, &packet); sr_session_send(devc->session_dev_id, &packet);
} }
*lastsample = samples[n - 1]; *lastsample = samples[n - 1];
@ -1020,7 +1025,7 @@ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
static int receive_data(int fd, int revents, void *cb_data) static int receive_data(int fd, int revents, void *cb_data)
{ {
struct sr_dev_inst *sdi = cb_data; struct sr_dev_inst *sdi = cb_data;
struct context *ctx = sdi->priv; struct dev_context *devc = sdi->priv;
struct sr_datafeed_packet packet; struct sr_datafeed_packet packet;
const int chunks_per_read = 32; const int chunks_per_read = 32;
unsigned char buf[chunks_per_read * CHUNK_SIZE]; unsigned char buf[chunks_per_read * CHUNK_SIZE];
@ -1033,50 +1038,50 @@ static int receive_data(int fd, int revents, void *cb_data)
(void)revents; (void)revents;
/* Get the current position. */ /* Get the current position. */
sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx); sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
numchunks = (ctx->state.stoppos + 511) / 512; numchunks = (devc->state.stoppos + 511) / 512;
if (ctx->state.state == SIGMA_IDLE) if (devc->state.state == SIGMA_IDLE)
return TRUE; return TRUE;
if (ctx->state.state == SIGMA_CAPTURE) { if (devc->state.state == SIGMA_CAPTURE) {
/* Check if the timer has expired, or memory is full. */ /* Check if the timer has expired, or memory is full. */
gettimeofday(&tv, 0); gettimeofday(&tv, 0);
running_msec = (tv.tv_sec - ctx->start_tv.tv_sec) * 1000 + running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
(tv.tv_usec - ctx->start_tv.tv_usec) / 1000; (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
if (running_msec < ctx->limit_msec && numchunks < 32767) if (running_msec < devc->limit_msec && numchunks < 32767)
return TRUE; /* While capturing... */ return TRUE; /* While capturing... */
else else
hw_dev_acquisition_stop(sdi, sdi); hw_dev_acquisition_stop(sdi, sdi);
} else if (ctx->state.state == SIGMA_DOWNLOAD) { } else if (devc->state.state == SIGMA_DOWNLOAD) {
if (ctx->state.chunks_downloaded >= numchunks) { if (devc->state.chunks_downloaded >= numchunks) {
/* End of samples. */ /* End of samples. */
packet.type = SR_DF_END; packet.type = SR_DF_END;
sr_session_send(ctx->session_dev_id, &packet); sr_session_send(devc->session_dev_id, &packet);
ctx->state.state = SIGMA_IDLE; devc->state.state = SIGMA_IDLE;
return TRUE; return TRUE;
} }
newchunks = MIN(chunks_per_read, newchunks = MIN(chunks_per_read,
numchunks - ctx->state.chunks_downloaded); numchunks - devc->state.chunks_downloaded);
sr_info("sigma: Downloading sample data: %.0f %%", sr_info("sigma: Downloading sample data: %.0f %%",
100.0 * ctx->state.chunks_downloaded / numchunks); 100.0 * devc->state.chunks_downloaded / numchunks);
bufsz = sigma_read_dram(ctx->state.chunks_downloaded, bufsz = sigma_read_dram(devc->state.chunks_downloaded,
newchunks, buf, ctx); newchunks, buf, devc);
/* TODO: Check bufsz. For now, just avoid compiler warnings. */ /* TODO: Check bufsz. For now, just avoid compiler warnings. */
(void)bufsz; (void)bufsz;
/* Find first ts. */ /* Find first ts. */
if (ctx->state.chunks_downloaded == 0) { if (devc->state.chunks_downloaded == 0) {
ctx->state.lastts = *(uint16_t *) buf - 1; devc->state.lastts = *(uint16_t *) buf - 1;
ctx->state.lastsample = 0; devc->state.lastsample = 0;
} }
/* Decode chunks and send them to sigrok. */ /* Decode chunks and send them to sigrok. */
@ -1084,24 +1089,24 @@ static int receive_data(int fd, int revents, void *cb_data)
int limit_chunk = 0; int limit_chunk = 0;
/* The last chunk may potentially be only in part. */ /* The last chunk may potentially be only in part. */
if (ctx->state.chunks_downloaded == numchunks - 1) { if (devc->state.chunks_downloaded == numchunks - 1) {
/* Find the last valid timestamp */ /* Find the last valid timestamp */
limit_chunk = ctx->state.stoppos % 512 + ctx->state.lastts; limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
} }
if (ctx->state.chunks_downloaded + i == ctx->state.triggerchunk) if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
decode_chunk_ts(buf + (i * CHUNK_SIZE), decode_chunk_ts(buf + (i * CHUNK_SIZE),
&ctx->state.lastts, &devc->state.lastts,
&ctx->state.lastsample, &devc->state.lastsample,
ctx->state.triggerpos & 0x1ff, devc->state.triggerpos & 0x1ff,
limit_chunk, sdi); limit_chunk, sdi);
else else
decode_chunk_ts(buf + (i * CHUNK_SIZE), decode_chunk_ts(buf + (i * CHUNK_SIZE),
&ctx->state.lastts, &devc->state.lastts,
&ctx->state.lastsample, &devc->state.lastsample,
-1, limit_chunk, sdi); -1, limit_chunk, sdi);
++ctx->state.chunks_downloaded; ++devc->state.chunks_downloaded;
} }
} }
@ -1219,7 +1224,7 @@ static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
* simple pin change and state triggers. Only two transitions (rise/fall) can be * simple pin change and state triggers. Only two transitions (rise/fall) can be
* set at any time, but a full mask and value can be set (0/1). * set at any time, but a full mask and value can be set (0/1).
*/ */
static int build_basic_trigger(struct triggerlut *lut, struct context *ctx) static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
{ {
int i,j; int i,j;
uint16_t masks[2] = { 0, 0 }; uint16_t masks[2] = { 0, 0 };
@ -1230,13 +1235,13 @@ static int build_basic_trigger(struct triggerlut *lut, struct context *ctx)
lut->m4 = 0xa000; lut->m4 = 0xa000;
/* Value/mask trigger support. */ /* Value/mask trigger support. */
build_lut_entry(ctx->trigger.simplevalue, ctx->trigger.simplemask, build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
lut->m2d); lut->m2d);
/* Rise/fall trigger support. */ /* Rise/fall trigger support. */
for (i = 0, j = 0; i < 16; ++i) { for (i = 0, j = 0; i < 16; ++i) {
if (ctx->trigger.risingmask & (1 << i) || if (devc->trigger.risingmask & (1 << i) ||
ctx->trigger.fallingmask & (1 << i)) devc->trigger.fallingmask & (1 << i))
masks[j++] = 1 << i; masks[j++] = 1 << i;
} }
@ -1246,13 +1251,13 @@ static int build_basic_trigger(struct triggerlut *lut, struct context *ctx)
/* Add glue logic */ /* Add glue logic */
if (masks[0] || masks[1]) { if (masks[0] || masks[1]) {
/* Transition trigger. */ /* Transition trigger. */
if (masks[0] & ctx->trigger.risingmask) if (masks[0] & devc->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3); add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
if (masks[0] & ctx->trigger.fallingmask) if (masks[0] & devc->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3); add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
if (masks[1] & ctx->trigger.risingmask) if (masks[1] & devc->trigger.risingmask)
add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3); add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
if (masks[1] & ctx->trigger.fallingmask) if (masks[1] & devc->trigger.fallingmask)
add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3); add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
} else { } else {
/* Only value/mask trigger. */ /* Only value/mask trigger. */
@ -1268,7 +1273,7 @@ static int build_basic_trigger(struct triggerlut *lut, struct context *ctx)
static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi, static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
void *cb_data) void *cb_data)
{ {
struct context *ctx; struct dev_context *devc;
struct sr_datafeed_packet *packet; struct sr_datafeed_packet *packet;
struct sr_datafeed_header *header; struct sr_datafeed_header *header;
struct sr_datafeed_meta_logic meta; struct sr_datafeed_meta_logic meta;
@ -1278,24 +1283,24 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
struct triggerinout triggerinout_conf; struct triggerinout triggerinout_conf;
struct triggerlut lut; struct triggerlut lut;
ctx = sdi->priv; devc = sdi->priv;
/* If the samplerate has not been set, default to 200 kHz. */ /* If the samplerate has not been set, default to 200 kHz. */
if (ctx->cur_firmware == -1) { if (devc->cur_firmware == -1) {
if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK) if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
return ret; return ret;
} }
/* Enter trigger programming mode. */ /* Enter trigger programming mode. */
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, ctx); sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
/* 100 and 200 MHz mode. */ /* 100 and 200 MHz mode. */
if (ctx->cur_samplerate >= SR_MHZ(100)) { if (devc->cur_samplerate >= SR_MHZ(100)) {
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, ctx); sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
/* Find which pin to trigger on from mask. */ /* Find which pin to trigger on from mask. */
for (triggerpin = 0; triggerpin < 8; ++triggerpin) for (triggerpin = 0; triggerpin < 8; ++triggerpin)
if ((ctx->trigger.risingmask | ctx->trigger.fallingmask) & if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
(1 << triggerpin)) (1 << triggerpin))
break; break;
@ -1303,14 +1308,14 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7); triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
/* Default rising edge. */ /* Default rising edge. */
if (ctx->trigger.fallingmask) if (devc->trigger.fallingmask)
triggerselect |= 1 << 3; triggerselect |= 1 << 3;
/* All other modes. */ /* All other modes. */
} else if (ctx->cur_samplerate <= SR_MHZ(50)) { } else if (devc->cur_samplerate <= SR_MHZ(50)) {
build_basic_trigger(&lut, ctx); build_basic_trigger(&lut, devc);
sigma_write_trigger_lut(&lut, ctx); sigma_write_trigger_lut(&lut, devc);
triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0); triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
} }
@ -1322,24 +1327,24 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
sigma_write_register(WRITE_TRIGGER_OPTION, sigma_write_register(WRITE_TRIGGER_OPTION,
(uint8_t *) &triggerinout_conf, (uint8_t *) &triggerinout_conf,
sizeof(struct triggerinout), ctx); sizeof(struct triggerinout), devc);
/* Go back to normal mode. */ /* Go back to normal mode. */
sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, ctx); sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
/* Set clock select register. */ /* Set clock select register. */
if (ctx->cur_samplerate == SR_MHZ(200)) if (devc->cur_samplerate == SR_MHZ(200))
/* Enable 4 probes. */ /* Enable 4 probes. */
sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, ctx); sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
else if (ctx->cur_samplerate == SR_MHZ(100)) else if (devc->cur_samplerate == SR_MHZ(100))
/* Enable 8 probes. */ /* Enable 8 probes. */
sigma_set_register(WRITE_CLOCK_SELECT, 0x00, ctx); sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
else { else {
/* /*
* 50 MHz mode (or fraction thereof). Any fraction down to * 50 MHz mode (or fraction thereof). Any fraction down to
* 50 MHz / 256 can be used, but is not supported by sigrok API. * 50 MHz / 256 can be used, but is not supported by sigrok API.
*/ */
frac = SR_MHZ(50) / ctx->cur_samplerate - 1; frac = SR_MHZ(50) / devc->cur_samplerate - 1;
clockselect.async = 0; clockselect.async = 0;
clockselect.fraction = frac; clockselect.fraction = frac;
@ -1347,18 +1352,18 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
sigma_write_register(WRITE_CLOCK_SELECT, sigma_write_register(WRITE_CLOCK_SELECT,
(uint8_t *) &clockselect, (uint8_t *) &clockselect,
sizeof(clockselect), ctx); sizeof(clockselect), devc);
} }
/* Setup maximum post trigger time. */ /* Setup maximum post trigger time. */
sigma_set_register(WRITE_POST_TRIGGER, sigma_set_register(WRITE_POST_TRIGGER,
(ctx->capture_ratio * 255) / 100, ctx); (devc->capture_ratio * 255) / 100, devc);
/* Start acqusition. */ /* Start acqusition. */
gettimeofday(&ctx->start_tv, 0); gettimeofday(&devc->start_tv, 0);
sigma_set_register(WRITE_MODE, 0x0d, ctx); sigma_set_register(WRITE_MODE, 0x0d, devc);
ctx->session_dev_id = cb_data; devc->session_dev_id = cb_data;
if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) { if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
sr_err("sigma: %s: packet malloc failed.", __func__); sr_err("sigma: %s: packet malloc failed.", __func__);
@ -1375,14 +1380,14 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
packet->payload = header; packet->payload = header;
header->feed_version = 1; header->feed_version = 1;
gettimeofday(&header->starttime, NULL); gettimeofday(&header->starttime, NULL);
sr_session_send(ctx->session_dev_id, packet); sr_session_send(devc->session_dev_id, packet);
/* Send metadata about the SR_DF_LOGIC packets to come. */ /* Send metadata about the SR_DF_LOGIC packets to come. */
packet->type = SR_DF_META_LOGIC; packet->type = SR_DF_META_LOGIC;
packet->payload = &meta; packet->payload = &meta;
meta.samplerate = ctx->cur_samplerate; meta.samplerate = devc->cur_samplerate;
meta.num_probes = ctx->num_probes; meta.num_probes = devc->num_probes;
sr_session_send(ctx->session_dev_id, packet); sr_session_send(devc->session_dev_id, packet);
/* Add capture source. */ /* Add capture source. */
sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi); sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
@ -1390,7 +1395,7 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
g_free(header); g_free(header);
g_free(packet); g_free(packet);
ctx->state.state = SIGMA_CAPTURE; devc->state.state = SIGMA_CAPTURE;
return SR_OK; return SR_OK;
} }
@ -1398,36 +1403,36 @@ static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi, static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi,
void *cb_data) void *cb_data)
{ {
struct context *ctx; struct dev_context *devc;
uint8_t modestatus; uint8_t modestatus;
/* Avoid compiler warnings. */ /* Avoid compiler warnings. */
(void)cb_data; (void)cb_data;
if (!(ctx = sdi->priv)) { if (!(devc = sdi->priv)) {
sr_err("sigma: %s: sdi->priv was NULL", __func__); sr_err("sigma: %s: sdi->priv was NULL", __func__);
return SR_ERR_BUG; return SR_ERR_BUG;
} }
/* Stop acquisition. */ /* Stop acquisition. */
sigma_set_register(WRITE_MODE, 0x11, ctx); sigma_set_register(WRITE_MODE, 0x11, devc);
/* Set SDRAM Read Enable. */ /* Set SDRAM Read Enable. */
sigma_set_register(WRITE_MODE, 0x02, ctx); sigma_set_register(WRITE_MODE, 0x02, devc);
/* Get the current position. */ /* Get the current position. */
sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx); sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
/* Check if trigger has fired. */ /* Check if trigger has fired. */
modestatus = sigma_get_register(READ_MODE, ctx); modestatus = sigma_get_register(READ_MODE, devc);
if (modestatus & 0x20) if (modestatus & 0x20)
ctx->state.triggerchunk = ctx->state.triggerpos / 512; devc->state.triggerchunk = devc->state.triggerpos / 512;
else else
ctx->state.triggerchunk = -1; devc->state.triggerchunk = -1;
ctx->state.chunks_downloaded = 0; devc->state.chunks_downloaded = 0;
ctx->state.state = SIGMA_DOWNLOAD; devc->state.state = SIGMA_DOWNLOAD;
return SR_OK; return SR_OK;
} }
@ -1445,5 +1450,5 @@ SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
.dev_config_set = hw_dev_config_set, .dev_config_set = hw_dev_config_set,
.dev_acquisition_start = hw_dev_acquisition_start, .dev_acquisition_start = hw_dev_acquisition_start,
.dev_acquisition_stop = hw_dev_acquisition_stop, .dev_acquisition_stop = hw_dev_acquisition_stop,
.instances = NULL, .priv = NULL,
}; };

View File

@ -173,8 +173,13 @@ struct sigma_state {
int chunks_downloaded; int chunks_downloaded;
}; };
/* Private driver context. */
struct drv_context {
GSList *instances;
};
/* Private, per-device-instance driver context. */ /* Private, per-device-instance driver context. */
struct context { struct dev_context {
struct ftdi_context ftdic; struct ftdi_context ftdic;
uint64_t cur_samplerate; uint64_t cur_samplerate;
uint64_t period_ps; uint64_t period_ps;