lecroy-xstream: Add the actual driver implementation

Signed-off-by: Sven Schnelle <svens@stackframe.org>
This commit is contained in:
Sven Schnelle 2017-02-12 20:18:16 +01:00 committed by Uwe Hermann
parent e3b83c5ec3
commit 3f2c7c94a1
3 changed files with 1247 additions and 67 deletions

View File

@ -18,37 +18,110 @@
*/
#include <config.h>
#include <stdlib.h>
#include "scpi.h"
#include "protocol.h"
SR_PRIV struct sr_dev_driver lecroy_xstream_driver_info;
static struct sr_dev_driver lecroy_xstream_driver_info;
static const char *manufacturers[] = {
"LECROY",
};
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
static int check_manufacturer(const char *manufacturer)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(manufacturers); i++)
if (!strcmp(manufacturer, manufacturers[i]))
return SR_OK;
return SR_ERR;
}
static struct sr_dev_inst *probe_serial_device(struct sr_scpi_dev_inst *scpi)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_scpi_hw_info *hw_info;
sdi = NULL;
devc = NULL;
hw_info = NULL;
sr_scpi_send(scpi, "COMM_HEADER OFF,WORD,BIN");
if (sr_scpi_get_hw_id(scpi, &hw_info) != SR_OK) {
sr_info("Couldn't get IDN response.");
goto fail;
}
if (check_manufacturer(hw_info->manufacturer) != SR_OK)
goto fail;
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->vendor = g_strdup(hw_info->manufacturer);
sdi->model = g_strdup(hw_info->model);
sdi->version = g_strdup(hw_info->firmware_version);
sdi->serial_num = g_strdup(hw_info->serial_number);
sdi->driver = &lecroy_xstream_driver_info;
sdi->inst_type = SR_INST_SCPI;
sdi->conn = scpi;
sr_scpi_hw_info_free(hw_info);
hw_info = NULL;
devc = g_malloc0(sizeof(struct dev_context));
sdi->priv = devc;
if (lecroy_xstream_init_device(sdi) != SR_OK)
goto fail;
return sdi;
fail:
sr_scpi_hw_info_free(hw_info);
if (sdi)
sr_dev_inst_free(sdi);
g_free(devc);
return NULL;
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct drv_context *drvc;
GSList *devices;
return sr_scpi_scan(di->context, options, probe_serial_device);
}
(void)options;
static void clear_helper(void *priv)
{
struct dev_context *devc;
devices = NULL;
drvc = di->context;
drvc->instances = NULL;
devc = priv;
/* TODO: scan for devices, either based on a SR_CONF_CONN option
* or on a USB scan. */
lecroy_xstream_state_free(devc->model_state);
return devices;
g_free(devc->analog_groups);
g_free(devc);
}
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear(di, NULL);
return std_dev_clear(di, clear_helper);
}
static int dev_open(struct sr_dev_inst *sdi)
{
(void)sdi;
if (sdi->status != SR_ST_ACTIVE && sr_scpi_open(sdi->conn) != SR_OK)
return SR_ERR;
/* TODO: get handle from sdi->conn and open it. */
if (lecroy_xstream_state_get(sdi) != SR_OK)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
@ -57,9 +130,10 @@ static int dev_open(struct sr_dev_inst *sdi)
static int dev_close(struct sr_dev_inst *sdi)
{
(void)sdi;
if (sdi->status == SR_ST_INACTIVE)
return SR_OK;
/* TODO: get handle from sdi->conn and close it. */
sr_scpi_close(sdi->conn);
sdi->status = SR_ST_INACTIVE;
@ -67,88 +141,469 @@ static int dev_close(struct sr_dev_inst *sdi)
}
static int config_get(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
int ret;
unsigned int i;
struct dev_context *devc;
const struct scope_config *model;
struct scope_state *state;
(void)sdi;
(void)data;
(void)cg;
if (!sdi)
return SR_ERR_ARG;
ret = SR_OK;
devc = sdi->priv;
ret = SR_ERR_NA;
model = devc->model_config;
state = devc->model_state;
*data = NULL;
switch (key) {
/* TODO */
default:
return SR_ERR_NA;
case SR_CONF_NUM_HDIV:
*data = g_variant_new_int32(model->num_xdivs);
ret = SR_OK;
break;
case SR_CONF_TIMEBASE:
*data = g_variant_new("(tt)",
model->timebases[state->timebase].p,
model->timebases[state->timebase].q);
ret = SR_OK;
break;
case SR_CONF_NUM_VDIV:
for (i = 0; i < model->analog_channels; i++) {
if (cg != devc->analog_groups[i])
continue;
*data = g_variant_new_int32(model->num_ydivs);
ret = SR_OK;
}
return ret;
}
static int config_set(uint32_t key, GVariant *data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
int ret;
(void)data;
(void)cg;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
break;
case SR_CONF_VDIV:
for (i = 0; i < model->analog_channels; i++) {
if (cg != devc->analog_groups[i])
continue;
*data = g_variant_new("(tt)",
model->vdivs[state->analog_channels[i].vdiv].p,
model->vdivs[state->analog_channels[i].vdiv].q);
ret = SR_OK;
switch (key) {
/* TODO */
}
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_string((*model->trigger_sources)[state->trigger_source]);
ret = SR_OK;
break;
case SR_CONF_TRIGGER_SLOPE:
*data = g_variant_new_string((*model->trigger_slopes)[state->trigger_slope]);
ret = SR_OK;
break;
case SR_CONF_HORIZ_TRIGGERPOS:
*data = g_variant_new_double(state->horiz_triggerpos);
ret = SR_OK;
break;
case SR_CONF_COUPLING:
for (i = 0; i < model->analog_channels; i++) {
if (cg != devc->analog_groups[i]) {
continue;
}
*data = g_variant_new_string((*model->coupling_options)[state->analog_channels[i].coupling]);
ret = SR_OK;
}
break;
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(state->sample_rate);
ret = SR_OK;
break;
case SR_CONF_ENABLED:
*data = g_variant_new_boolean(FALSE);
ret = SR_OK;
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static GVariant *build_tuples(const struct sr_rational *array, unsigned int n)
{
unsigned int i;
GVariant *rational[2];
GVariantBuilder gvb;
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < n; i++) {
rational[0] = g_variant_new_uint64(array[i].p);
rational[1] = g_variant_new_uint64(array[i].q);
/* FIXME: Valgrind reports a memory leak here. */
g_variant_builder_add_value(&gvb, g_variant_new_tuple(rational, 2));
}
return g_variant_builder_end(&gvb);
}
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
int ret;
unsigned int i, j;
char command[MAX_COMMAND_SIZE];
struct dev_context *devc;
const struct scope_config *model;
struct scope_state *state;
const char *tmp;
int64_t p;
uint64_t q;
double tmp_d;
gboolean update_sample_rate;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
model = devc->model_config;
state = devc->model_state;
update_sample_rate = FALSE;
ret = SR_ERR_NA;
switch (key) {
case SR_CONF_LIMIT_FRAMES:
devc->frame_limit = g_variant_get_uint64(data);
ret = SR_OK;
break;
case SR_CONF_TRIGGER_SOURCE:
tmp = g_variant_get_string(data, NULL);
for (i = 0; (*model->trigger_sources)[i]; i++) {
if (g_strcmp0(tmp, (*model->trigger_sources)[i]) != 0)
continue;
state->trigger_source = i;
g_snprintf(command, sizeof(command),
"SET TRIGGER SOURCE %s",
(*model->trigger_sources)[i]);
ret = sr_scpi_send(sdi->conn, command);
break;
}
break;
case SR_CONF_VDIV:
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < model->num_vdivs; i++) {
if (p != model->vdivs[i].p || q != model->vdivs[i].q)
continue;
for (j = 1; j <= model->analog_channels; j++) {
if (cg != devc->analog_groups[j - 1])
continue;
state->analog_channels[j - 1].vdiv = i;
g_snprintf(command, sizeof(command),
"C%d:VDIV %E", j, (float)p/q);
if (sr_scpi_send(sdi->conn, command) != SR_OK ||
sr_scpi_get_opc(sdi->conn) != SR_OK)
return SR_ERR;
break;
}
ret = SR_OK;
break;
}
break;
case SR_CONF_TIMEBASE:
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < model->num_timebases; i++) {
if (p != model->timebases[i].p ||
q != model->timebases[i].q)
continue;
state->timebase = i;
g_snprintf(command, sizeof(command),
"TIME_DIV %E", (float)p/q);
ret = sr_scpi_send(sdi->conn, command);
update_sample_rate = TRUE;
break;
}
break;
case SR_CONF_HORIZ_TRIGGERPOS:
tmp_d = g_variant_get_double(data);
if (tmp_d < 0.0 || tmp_d > 1.0)
return SR_ERR;
state->horiz_triggerpos = tmp_d;
tmp_d = -(tmp_d - 0.5) *
((double)model->timebases[state->timebase].p /
model->timebases[state->timebase].q)
* model->num_xdivs;
g_snprintf(command, sizeof(command), "TRIG POS %e S", tmp_d);
ret = sr_scpi_send(sdi->conn, command);
break;
case SR_CONF_TRIGGER_SLOPE:
tmp = g_variant_get_string(data, NULL);
for (i = 0; (*model->trigger_slopes)[i]; i++) {
if (g_strcmp0(tmp, (*model->trigger_slopes)[i]) != 0)
continue;
state->trigger_slope = i;
g_snprintf(command, sizeof(command),
"SET TRIGGER SLOPE %s",
(*model->trigger_slopes)[i]);
ret = sr_scpi_send(sdi->conn, command);
break;
}
break;
case SR_CONF_COUPLING:
tmp = g_variant_get_string(data, NULL);
for (i = 0; (*model->coupling_options)[i]; i++) {
if (strcmp(tmp, (*model->coupling_options)[i]) != 0)
continue;
for (j = 1; j <= model->analog_channels; j++) {
if (cg != devc->analog_groups[j - 1])
continue;
state->analog_channels[j-1].coupling = i;
g_snprintf(command, sizeof(command),
"C%d:COUPLING %s", j, tmp);
if (sr_scpi_send(sdi->conn, command) != SR_OK ||
sr_scpi_get_opc(sdi->conn) != SR_OK)
return SR_ERR;
break;
}
ret = SR_OK;
break;
}
break;
default:
ret = SR_ERR_NA;
break;
}
if (ret == SR_OK)
ret = sr_scpi_get_opc(sdi->conn);
if (ret == SR_OK && update_sample_rate)
ret = lecroy_xstream_update_sample_rate(sdi);
return ret;
}
static int config_list(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
int ret;
(void)sdi;
(void)data;
struct dev_context *devc = NULL;
const struct scope_config *model = NULL;
(void)cg;
ret = SR_OK;
if (sdi) {
devc = sdi->priv;
model = devc->model_config;
}
switch (key) {
/* TODO */
case SR_CONF_SCAN_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
break;
case SR_CONF_DEVICE_OPTIONS:
if (!cg) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
model->devopts,
model->num_devopts,
sizeof(uint32_t));
break;
}
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
model->analog_devopts,
model->num_analog_devopts,
sizeof(uint32_t));
break;
case SR_CONF_COUPLING:
*data = g_variant_new_strv(*model->coupling_options,
g_strv_length((char **)*model->coupling_options));
break;
case SR_CONF_TRIGGER_SOURCE:
if (!model)
return SR_ERR_ARG;
*data = g_variant_new_strv(*model->trigger_sources,
g_strv_length((char **)*model->trigger_sources));
break;
case SR_CONF_TRIGGER_SLOPE:
if (!model)
return SR_ERR_ARG;
*data = g_variant_new_strv(*model->trigger_slopes,
g_strv_length((char **)*model->trigger_slopes));
break;
case SR_CONF_TIMEBASE:
if (!model)
return SR_ERR_ARG;
*data = build_tuples(model->timebases, model->num_timebases);
break;
case SR_CONF_VDIV:
if (!model)
return SR_ERR_ARG;
*data = build_tuples(model->vdivs, model->num_vdivs);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
return ret;
SR_PRIV int lecroy_xstream_request_data(const struct sr_dev_inst *sdi)
{
char command[MAX_COMMAND_SIZE];
struct sr_channel *ch;
struct dev_context *devc;
devc = sdi->priv;
ch = devc->current_channel->data;
if (ch->type != SR_CHANNEL_ANALOG)
return SR_ERR;
g_snprintf(command, sizeof(command),
"COMM_FORMAT DEF9,WORD,BIN;C%d:WAVEFORM?", ch->index+1);
return sr_scpi_send(sdi->conn, command);
}
static int lecroy_setup_channels(const struct sr_dev_inst *sdi)
{
GSList *l;
gboolean setup_changed;
char command[MAX_COMMAND_SIZE];
struct scope_state *state;
struct sr_channel *ch;
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
devc = sdi->priv;
scpi = sdi->conn;
state = devc->model_state;
setup_changed = FALSE;
for (l = sdi->channels; l; l = l->next) {
ch = l->data;
switch (ch->type) {
case SR_CHANNEL_ANALOG:
if (ch->enabled == state->analog_channels[ch->index].state)
break;
g_snprintf(command, sizeof(command), "C%d:TRACE %s",
ch->index+1, ch->enabled ? "ON" : "OFF");
if (sr_scpi_send(scpi, command) != SR_OK)
return SR_ERR;
state->analog_channels[ch->index].state = ch->enabled;
setup_changed = TRUE;
break;
default:
return SR_ERR;
}
}
if (setup_changed && lecroy_xstream_update_sample_rate(sdi) != SR_OK)
return SR_ERR;
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi)
{
GSList *l;
struct sr_channel *ch;
struct dev_context *devc;
int ret;
struct sr_scpi_dev_inst *scpi;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
/* TODO: configure hardware, reset acquisition state, set up
* callbacks and send header packet. */
devc = sdi->priv;
scpi = sdi->conn;
/* Preset empty results. */
g_slist_free(devc->enabled_channels);
devc->enabled_channels = NULL;
return SR_OK;
/*
* Contruct the list of enabled channels. Determine the highest
* number of digital pods involved in the acquisition.
*/
for (l = sdi->channels; l; l = l->next) {
ch = l->data;
if (!ch->enabled)
continue;
/* Only add a single digital channel per group (pod). */
devc->enabled_channels = g_slist_append(
devc->enabled_channels, ch);
}
if (!devc->enabled_channels)
return SR_ERR;
/*
* Configure the analog channels and the
* corresponding digital pods.
*/
if (lecroy_setup_channels(sdi) != SR_OK) {
sr_err("Failed to setup channel configuration!");
ret = SR_ERR;
goto free_enabled;
}
/*
* Start acquisition on the first enabled channel. The
* receive routine will continue driving the acquisition.
*/
sr_scpi_source_add(sdi->session, scpi, G_IO_IN, 50,
lecroy_xstream_receive_data, (void *)sdi);
std_session_send_df_header(sdi);
devc->current_channel = devc->enabled_channels;
return lecroy_xstream_request_data(sdi);
free_enabled:
g_slist_free(devc->enabled_channels);
devc->enabled_channels = NULL;
return ret;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
std_session_send_df_end(sdi);
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
/* TODO: stop acquisition. */
devc = sdi->priv;
devc->num_frames = 0;
g_slist_free(devc->enabled_channels);
devc->enabled_channels = NULL;
scpi = sdi->conn;
sr_scpi_source_remove(sdi->session, scpi);
return SR_OK;
}
SR_PRIV struct sr_dev_driver lecroy_xstream_driver_info = {
static struct sr_dev_driver lecroy_xstream_driver_info = {
.name = "lecroy-xstream",
.longname = "lecroy-xstream",
.longname = "LeCroy Xstream based scopes",
.api_version = 1,
.init = std_init,
.cleanup = std_cleanup,
@ -164,5 +619,4 @@ SR_PRIV struct sr_dev_driver lecroy_xstream_driver_info = {
.dev_acquisition_stop = dev_acquisition_stop,
.context = NULL,
};
SR_REGISTER_DEV_DRIVER(lecroy_xstream_driver_info);

View File

@ -18,14 +18,607 @@
*/
#include <config.h>
#include <math.h>
#include <stdlib.h>
#include "scpi.h"
#include "protocol.h"
SR_PRIV void lecroy_queue_logic_data(struct dev_context *devc,
size_t group, GByteArray *pod_data);
SR_PRIV void lecroy_send_logic_packet(struct sr_dev_inst *sdi,
struct dev_context *devc);
SR_PRIV void lecroy_cleanup_logic_data(struct dev_context *devc);
struct lecroy_wavedesc_2_x {
uint16_t comm_type;
uint16_t comm_order; /* 1 - little endian */
uint32_t wave_descriptor_length;
uint32_t user_text_len;
uint32_t res_desc1;
uint32_t trigtime_array_length;
uint32_t ris_time1_array_length;
uint32_t res_array1;
uint32_t wave_array1_length;
uint32_t wave_array2_length;
uint32_t wave_array3_length;
uint32_t wave_array4_length;
char instrument_name[16];
uint32_t instrument_number;
char trace_label[16];
uint32_t reserved;
uint32_t wave_array_count;
uint32_t points_per_screen;
uint32_t first_valid_point;
uint32_t last_valid_point;
uint32_t first_point;
uint32_t sparsing_factor;
uint32_t segment_index;
uint32_t subarray_count;
uint32_t sweeps_per_acq;
uint16_t points_per_pair;
uint16_t pair_offset;
float vertical_gain;
float vertical_offset;
float max_value;
float min_value;
uint16_t nominal_bits;
uint16_t nom_subarray_count;
float horiz_interval;
double horiz_offset;
double pixel_offset;
char vertunit[48];
char horunit[48];
uint32_t reserved1;
double trigger_time;
} __attribute__((packed));
struct lecroy_wavedesc {
char descriptor_name[16];
char template_name[16];
union {
struct lecroy_wavedesc_2_x version_2_x;
};
} __attribute__((packed));
static const uint32_t lecroy_devopts[] = {
SR_CONF_OSCILLOSCOPE,
SR_CONF_LIMIT_FRAMES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TIMEBASE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_NUM_HDIV | SR_CONF_GET,
SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_HORIZ_TRIGGERPOS | SR_CONF_GET | SR_CONF_SET,
SR_CONF_SAMPLERATE | SR_CONF_GET,
};
static const uint32_t lecroy_analog_devopts[] = {
SR_CONF_NUM_VDIV | SR_CONF_GET,
SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
};
static const char *lecroy_coupling_options[] = {
"A1M", // AC with 1 MOhm termination
"D50", // DC with 50 Ohm termination
"D1M", // DC with 1 MOhm termination
"GND",
"OVL",
NULL,
};
static const char *scope_trigger_slopes[] = {
"POS",
"NEG",
NULL,
};
static const char *lecroy_xstream_trigger_sources[] = {
"C1",
"C2",
"C3",
"C4",
"LINE",
"EXT",
NULL,
};
static const struct sr_rational lecroy_timebases[] = {
/* picoseconds */
{ 20, 1000000000000 },
{ 50, 1000000000000 },
{ 100, 1000000000000 },
{ 200, 1000000000000 },
{ 500, 1000000000000 },
/* nanoseconds */
{ 1, 1000000000 },
{ 2, 1000000000 },
{ 5, 1000000000 },
{ 10, 1000000000 },
{ 20, 1000000000 },
{ 50, 1000000000 },
{ 100, 1000000000 },
{ 200, 1000000000 },
{ 500, 1000000000 },
/* microseconds */
{ 1, 1000000 },
{ 2, 1000000 },
{ 5, 1000000 },
{ 10, 1000000 },
{ 20, 1000000 },
{ 50, 1000000 },
{ 100, 1000000 },
{ 200, 1000000 },
{ 500, 1000000 },
/* milliseconds */
{ 1, 1000 },
{ 2, 1000 },
{ 5, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* seconds */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
{ 10, 1 },
{ 20, 1 },
{ 50, 1 },
{ 100, 1 },
{ 200, 1 },
{ 500, 1 },
{ 1000, 1 },
};
static const struct sr_rational lecroy_vdivs[] = {
/* millivolts */
{ 1, 1000 },
{ 2, 1000 },
{ 5, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* volts */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
{ 10, 1 },
{ 20, 1 },
{ 50, 1 },
};
static const char *scope_analog_channel_names[] = {
"CH1",
"CH2",
"CH3",
"CH4",
};
static const struct scope_config scope_models[] = {
{
.name = { "WP7000", "WP7100", "WP7200", "WP7300" },
.analog_channels = 4,
.analog_names = &scope_analog_channel_names,
.devopts = &lecroy_devopts,
.num_devopts = ARRAY_SIZE(lecroy_devopts),
.analog_devopts = &lecroy_analog_devopts,
.num_analog_devopts = ARRAY_SIZE(lecroy_analog_devopts),
.coupling_options = &lecroy_coupling_options,
.trigger_sources = &lecroy_xstream_trigger_sources,
.trigger_slopes = &scope_trigger_slopes,
.timebases = lecroy_timebases,
.num_timebases = ARRAY_SIZE(lecroy_timebases),
.vdivs = lecroy_vdivs,
.num_vdivs = ARRAY_SIZE(lecroy_vdivs),
.num_xdivs = 10,
.num_ydivs = 8,
},
};
static void scope_state_dump(const struct scope_config *config,
struct scope_state *state)
{
unsigned int i;
char *tmp;
for (i = 0; i < config->analog_channels; i++) {
tmp = sr_voltage_string(config->vdivs[state->analog_channels[i].vdiv].p,
config->vdivs[state->analog_channels[i].vdiv].q);
sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
i + 1, state->analog_channels[i].state ? "On" : "Off",
(*config->coupling_options)[state->analog_channels[i].coupling],
tmp, state->analog_channels[i].vertical_offset);
}
tmp = sr_period_string_f(1.0/(((float)config->timebases[state->timebase].p) /
((float)config->timebases[state->timebase].q)), 0);
sr_info("Current timebase: %s", tmp);
g_free(tmp);
tmp = sr_samplerate_string(state->sample_rate);
sr_info("Current samplerate: %s", tmp);
g_free(tmp);
sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)",
(*config->trigger_sources)[state->trigger_source],
(*config->trigger_slopes)[state->trigger_slope],
state->horiz_triggerpos);
}
static int scope_state_get_array_option(const char *resp,
const char *(*array)[],
int *result)
{
unsigned int i;
for (i = 0; (*array)[i]; i++) {
if (!g_strcmp0(resp, (*array)[i])) {
*result = i;
return SR_OK;
}
}
return SR_ERR;
}
/**
* This function takes a value of the form "2.000E-03" and returns the index
* of an array where a matching pair was found.
*
* @param value The string to be parsed.
* @param array The array of s/f pairs.
* @param array_len The number of pairs in the array.
* @param result The index at which a matching pair was found.
*
* @return SR_ERR on any parsing error, SR_OK otherwise.
*/
static int array_float_get(gchar *value, const struct sr_rational *aval,
int array_len, unsigned int *result)
{
struct sr_rational rval;
if (sr_parse_rational(value, &rval) != SR_OK)
return SR_ERR;
for (int i = 0; i < array_len; i++) {
if (sr_rational_eq(&rval, aval+i)) {
*result = i;
return SR_OK;
}
}
return SR_ERR;
}
static int analog_channel_state_get(struct sr_scpi_dev_inst *scpi,
const struct scope_config *config,
struct scope_state *state)
{
unsigned int i, j;
char command[MAX_COMMAND_SIZE];
char *tmp_str;
for (i = 0; i < config->analog_channels; i++) {
g_snprintf(command, sizeof(command), "C%d:TRACE?", i+1);
if (sr_scpi_get_bool(scpi, command,
&state->analog_channels[i].state) != SR_OK)
return SR_ERR;
g_snprintf(command, sizeof(command), "C%d:VDIV?", i+1);
if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
return SR_ERR;
if (array_float_get(tmp_str, lecroy_vdivs, ARRAY_SIZE(lecroy_vdivs),
&j) != SR_OK) {
g_free(tmp_str);
sr_err("Could not determine array index for vertical div scale.");
return SR_ERR;
}
g_free(tmp_str);
state->analog_channels[i].vdiv = j;
g_snprintf(command, sizeof(command), "C%d:OFFSET?", i+1);
if (sr_scpi_get_float(scpi, command, &state->analog_channels[i].vertical_offset) != SR_OK)
return SR_ERR;
g_snprintf(command, sizeof(command), "C%d:COUPLING?", i+1);
if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
return SR_ERR;
if (scope_state_get_array_option(tmp_str, config->coupling_options,
&state->analog_channels[i].coupling) != SR_OK)
return SR_ERR;
g_free(tmp_str);
}
return SR_OK;
}
SR_PRIV int lecroy_xstream_update_sample_rate(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct scope_state *state;
const struct scope_config *config;
float memsize, timediv;
devc = sdi->priv;
state = devc->model_state;
config = devc->model_config;
if (sr_scpi_get_float(sdi->conn, "MEMORY_SIZE?", &memsize) != SR_OK)
return SR_ERR;
if (sr_scpi_get_float(sdi->conn, "TIME_DIV?", &timediv) != SR_OK)
return SR_ERR;
state->sample_rate = 1/((timediv * config->num_xdivs) / memsize);
return SR_OK;
}
SR_PRIV int lecroy_xstream_state_get(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct scope_state *state
; const struct scope_config *config;
unsigned int i;
char *tmp_str, *tmp_str2, *tmpp, *p, *key;
char command[MAX_COMMAND_SIZE];
char *trig_source = NULL;
devc = sdi->priv;
config = devc->model_config;
state = devc->model_state;
sr_info("Fetching scope state");
if (analog_channel_state_get(sdi->conn, config, state) != SR_OK)
return SR_ERR;
if (sr_scpi_get_string(sdi->conn, "TIME_DIV?", &tmp_str) != SR_OK)
return SR_ERR;
if (array_float_get(tmp_str, lecroy_timebases, ARRAY_SIZE(lecroy_timebases),
&i) != SR_OK) {
g_free(tmp_str);
sr_err("Could not determine array index for timbase scale.");
return SR_ERR;
}
g_free(tmp_str);
state->timebase = i;
if (sr_scpi_get_string(sdi->conn, "TRIG_SELECT?", &tmp_str) != SR_OK)
return SR_ERR;
tmp_str2 = tmp_str;
i = 0;
while((p = strtok_r(tmp_str2, ",", &tmpp))) {
tmp_str2 = NULL;
if (i == 0) {
/* trigger type */
} else if (i & 1) {
key = p;
/* key */
} else if (!(i & 1)) {
if (!strcmp(key, "SR"))
trig_source = p;
}
i++;
}
if (!trig_source || scope_state_get_array_option(trig_source, config->trigger_sources,
&state->trigger_source) != SR_OK)
return SR_ERR;
g_snprintf(command, sizeof(command), "%s:TRIG_SLOPE?", trig_source);
if (sr_scpi_get_string(sdi->conn, command, &tmp_str) != SR_OK)
return SR_ERR;
if (scope_state_get_array_option(tmp_str,
config->trigger_slopes, &state->trigger_slope) != SR_OK)
return SR_ERR;
if (sr_scpi_get_float(sdi->conn, "TRIG_DELAY?", &state->horiz_triggerpos) != SR_OK)
return SR_ERR;
if (lecroy_xstream_update_sample_rate(sdi) != SR_OK)
return SR_ERR;
sr_info("Fetching finished.");
scope_state_dump(config, state);
return SR_OK;
}
static struct scope_state *scope_state_new(const struct scope_config *config)
{
struct scope_state *state;
state = g_malloc0(sizeof(struct scope_state));
state->analog_channels = g_malloc0_n(config->analog_channels,
sizeof(struct analog_channel_state));
return state;
}
SR_PRIV void lecroy_xstream_state_free(struct scope_state *state)
{
g_free(state->analog_channels);
g_free(state);
}
SR_PRIV int lecroy_xstream_init_device(struct sr_dev_inst *sdi)
{
char command[MAX_COMMAND_SIZE];
int model_index;
unsigned int i, j;
struct sr_channel *ch;
struct dev_context *devc;
gboolean channel_enabled;
devc = sdi->priv;
model_index = -1;
/* Find the exact model. */
for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
for (j = 0; scope_models[i].name[j]; j++) {
if (!strcmp(sdi->model, scope_models[i].name[j])) {
model_index = i;
break;
}
}
if (model_index != -1)
break;
}
if (model_index == -1) {
sr_dbg("Unsupported LECROY device.");
return SR_ERR_NA;
}
devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) *
scope_models[model_index].analog_channels);
/* Add analog channels. */
for (i = 0; i < scope_models[model_index].analog_channels; i++) {
g_snprintf(command, sizeof(command), "C%d:TRACE?", i+1);
if (sr_scpi_get_bool(sdi->conn, command, &channel_enabled) != SR_OK)
return SR_ERR;
g_snprintf(command, sizeof(command), "C%d:VDIV?", i+1);
ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, channel_enabled,
(*scope_models[model_index].analog_names)[i]);
devc->analog_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
devc->analog_groups[i]->name = g_strdup(
(char *)(*scope_models[model_index].analog_names)[i]);
devc->analog_groups[i]->channels = g_slist_append(NULL, ch);
sdi->channel_groups = g_slist_append(sdi->channel_groups,
devc->analog_groups[i]);
}
devc->model_config = &scope_models[model_index];
devc->frame_limit = 0;
if (!(devc->model_state = scope_state_new(devc->model_config)))
return SR_ERR_MALLOC;
return SR_OK;
}
static int lecroy_waveform_2_x_to_analog(GByteArray *data,
struct lecroy_wavedesc *desc,
struct sr_datafeed_analog *analog)
{
struct sr_analog_encoding *encoding = analog->encoding;
struct sr_analog_meaning *meaning = analog->meaning;
struct sr_analog_spec *spec = analog->spec;
float *data_float;
int16_t *waveform_data;
unsigned int i, num_samples;
data_float = g_malloc(desc->version_2_x.wave_array_count * sizeof(float));
num_samples = desc->version_2_x.wave_array_count;
waveform_data = (int16_t *)(data->data +
+ desc->version_2_x.wave_descriptor_length
+ desc->version_2_x.user_text_len);
for(i = 0; i < num_samples; i++)
data_float[i] = (float)waveform_data[i]
* desc->version_2_x.vertical_gain
+ desc->version_2_x.vertical_offset;
analog->data = data_float;
analog->num_samples = num_samples;
encoding->unitsize = sizeof(float);
encoding->is_signed = TRUE;
encoding->is_float = TRUE;
encoding->is_bigendian = FALSE;
encoding->scale.p = 1;
encoding->scale.q = 1;
encoding->offset.p = 0;
encoding->offset.q = 1;
encoding->digits = 6;
encoding->is_digits_decimal = FALSE;
if (strcmp(desc->version_2_x.vertunit, "A")) {
meaning->mq = SR_MQ_CURRENT;
meaning->unit = SR_UNIT_AMPERE;
} else {
/* default to voltage */
meaning->mq = SR_MQ_VOLTAGE;
meaning->unit = SR_UNIT_VOLT;
}
meaning->mqflags = 0;
spec->spec_digits = 3;
return SR_OK;
}
static int lecroy_waveform_to_analog(GByteArray *data,
struct sr_datafeed_analog *analog)
{
struct lecroy_wavedesc *desc;
if (data->len < sizeof(struct lecroy_wavedesc))
return SR_ERR;
desc = (struct lecroy_wavedesc *)data->data;
if (!strncmp(desc->template_name, "LECROY_2_2", 16) ||
!strncmp(desc->template_name, "LECROY_2_3", 16)) {
return lecroy_waveform_2_x_to_analog(data, desc, analog);
}
sr_err("Waveformat template '%.16s' not supported\n", desc->template_name);
return SR_ERR;
}
SR_PRIV int lecroy_xstream_receive_data(int fd, int revents, void *cb_data)
{
const struct sr_dev_inst *sdi;
struct sr_channel *ch;
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_datafeed_packet packet;
GByteArray *data;
struct sr_datafeed_analog analog;
struct sr_analog_encoding encoding;
struct sr_analog_meaning meaning;
struct sr_analog_spec spec;
char buf[8];
(void)fd;
(void)revents;
data = NULL;
if (!(sdi = cb_data))
return TRUE;
@ -33,8 +626,76 @@ SR_PRIV int lecroy_xstream_receive_data(int fd, int revents, void *cb_data)
if (!(devc = sdi->priv))
return TRUE;
if (revents == G_IO_IN) {
/* TODO */
ch = devc->current_channel->data;
/*
* Send "frame begin" packet upon reception of data for the
* first enabled channel.
*/
if (devc->current_channel == devc->enabled_channels) {
packet.type = SR_DF_FRAME_BEGIN;
sr_session_send(sdi, &packet);
}
if (ch->type != SR_CHANNEL_ANALOG)
return SR_ERR;
/*
* Pass on the received data of the channel(s).
*/
if (sr_scpi_read_data(sdi->conn, buf, 4) != 4) {
sr_err("reading header failed\n");
return TRUE;
}
if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
if (data)
g_byte_array_free(data, TRUE);
return TRUE;
}
analog.encoding = &encoding;
analog.meaning = &meaning;
analog.spec = &spec;
if (lecroy_waveform_to_analog(data, &analog) != SR_OK)
return SR_ERR;
meaning.channels = g_slist_append(NULL, ch);
packet.payload = &analog;
packet.type = SR_DF_ANALOG;
sr_session_send(sdi, &packet);
g_byte_array_free(data, TRUE);
data = NULL;
g_slist_free(meaning.channels);
g_free(analog.data);
/*
* Advance to the next enabled channel. When data for all enabled
* channels was received, then flush potentially queued logic data,
* and send the "frame end" packet.
*/
if (devc->current_channel->next) {
devc->current_channel = devc->current_channel->next;
lecroy_xstream_request_data(sdi);
return TRUE;
}
packet.type = SR_DF_FRAME_END;
sr_session_send(sdi, &packet);
/*
* End of frame was reached. Stop acquisition after the specified
* number of frames, or continue reception by starting over at
* the first enabled channel.
*/
if (++devc->num_frames == devc->frame_limit) {
sdi->driver->dev_acquisition_stop(sdi);
} else {
devc->current_channel = devc->enabled_channels;
lecroy_xstream_request_data(sdi);
}
return TRUE;

View File

@ -1,7 +1,7 @@
/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2017 Sven Schnelle <svens@stackframe.org>
* Copyright (C) 2013 poljar (Damir Jelić) <poljarinho@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -20,25 +20,90 @@
#ifndef LIBSIGROK_HARDWARE_LECROY_XSTREAM_PROTOCOL_H
#define LIBSIGROK_HARDWARE_LECROY_XSTREAM_PROTOCOL_H
#include <stdint.h>
#include <glib.h>
#include <stdint.h>
#include <string.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
#define LOG_PREFIX "lecroy-xstream"
#define MAX_INSTRUMENT_VERSIONS 10
#define MAX_COMMAND_SIZE 48
#define MAX_ANALOG_CHANNEL_COUNT 4
struct scope_config {
const char *name[MAX_INSTRUMENT_VERSIONS];
const uint8_t analog_channels;
const char *(*analog_names)[];
const uint32_t (*devopts)[];
const uint8_t num_devopts;
const uint32_t (*analog_devopts)[];
const uint8_t num_analog_devopts;
const char *(*coupling_options)[];
const uint8_t num_coupling_options;
const char *(*trigger_sources)[];
const uint8_t num_trigger_sources;
const char *(*trigger_slopes)[];
const struct sr_rational *timebases;
const uint8_t num_timebases;
const struct sr_rational *vdivs;
const uint8_t num_vdivs;
const uint8_t num_xdivs;
const uint8_t num_ydivs;
};
struct analog_channel_state {
int coupling;
int vdiv;
float vertical_offset;
gboolean state;
};
struct scope_state {
struct analog_channel_state *analog_channels;
int timebase;
float horiz_triggerpos;
int trigger_source;
int trigger_slope;
uint64_t sample_rate;
};
/** Private, per-device-instance driver context. */
struct dev_context {
/* Model-specific information */
const void *model_config;
void *model_state;
/* Acquisition settings */
struct sr_channel_group **analog_groups;
/* Operational state */
GSList *enabled_channels;
GSList *current_channel;
uint64_t num_frames;
/* Temporary state across callbacks */
uint64_t frame_limit;
};
SR_PRIV int lecroy_xstream_init_device(struct sr_dev_inst *sdi);
SR_PRIV int lecroy_xstream_request_data(const struct sr_dev_inst *sdi);
SR_PRIV int lecroy_xstream_receive_data(int fd, int revents, void *cb_data);
SR_PRIV struct scope_state *lecroy_xstream_state_new(struct scope_config *config);
SR_PRIV void lecroy_xstream_state_free(struct scope_state *state);
SR_PRIV int lecroy_xstream_state_get(struct sr_dev_inst *sdi);
SR_PRIV int lecroy_xstream_update_sample_rate(const struct sr_dev_inst *sdi);
#endif