OLS: Coding style fixes.

This commit is contained in:
Uwe Hermann 2010-04-15 22:16:35 +02:00
parent 986f7270bf
commit 43fc7885d3
1 changed files with 250 additions and 215 deletions

View File

@ -30,76 +30,77 @@
#include <inttypes.h> #include <inttypes.h>
#include <arpa/inet.h> #include <arpa/inet.h>
#include <glib.h> #include <glib.h>
#include "sigrok.h" #include <sigrok.h>
#define NUM_PROBES 32 #define NUM_PROBES 32
#define NUM_TRIGGER_STAGES 4 #define NUM_TRIGGER_STAGES 4
#define TRIGGER_TYPES "01" #define TRIGGER_TYPES "01"
#define SERIAL_SPEED B115200 #define SERIAL_SPEED B115200
/* TODO: SERIAL_ bits, parity, stop bit */ /* TODO: SERIAL_ bits, parity, stop bit */
#define CLOCK_RATE 100000000 #define CLOCK_RATE 100000000
/* Command opcodes */
/* command opcodes */ #define CMD_RESET 0x00
#define CMD_RESET 0x00 #define CMD_ID 0x02
#define CMD_ID 0x02 #define CMD_SET_FLAGS 0x82
#define CMD_SET_FLAGS 0x82
#define CMD_SET_DIVIDER 0x80 #define CMD_SET_DIVIDER 0x80
#define CMD_RUN 0x01 #define CMD_RUN 0x01
#define CMD_CAPTURE_SIZE 0x81 #define CMD_CAPTURE_SIZE 0x81
#define CMD_SET_TRIGGER_MASK_0 0xc0 #define CMD_SET_TRIGGER_MASK_0 0xc0
#define CMD_SET_TRIGGER_MASK_1 0xc4 #define CMD_SET_TRIGGER_MASK_1 0xc4
#define CMD_SET_TRIGGER_MASK_2 0xc8 #define CMD_SET_TRIGGER_MASK_2 0xc8
#define CMD_SET_TRIGGER_MASK_3 0xcc #define CMD_SET_TRIGGER_MASK_3 0xcc
#define CMD_SET_TRIGGER_VALUE_0 0xc1 #define CMD_SET_TRIGGER_VALUE_0 0xc1
#define CMD_SET_TRIGGER_VALUE_1 0xc5 #define CMD_SET_TRIGGER_VALUE_1 0xc5
#define CMD_SET_TRIGGER_VALUE_2 0xc9 #define CMD_SET_TRIGGER_VALUE_2 0xc9
#define CMD_SET_TRIGGER_VALUE_3 0xcd #define CMD_SET_TRIGGER_VALUE_3 0xcd
#define CMD_SET_TRIGGER_CONFIG_0 0xc2 #define CMD_SET_TRIGGER_CONFIG_0 0xc2
#define CMD_SET_TRIGGER_CONFIG_1 0xc6 #define CMD_SET_TRIGGER_CONFIG_1 0xc6
#define CMD_SET_TRIGGER_CONFIG_2 0xca #define CMD_SET_TRIGGER_CONFIG_2 0xca
#define CMD_SET_TRIGGER_CONFIG_3 0xce #define CMD_SET_TRIGGER_CONFIG_3 0xce
/* bitmasks for CMD_FLAGS */ /* Bitmasks for CMD_FLAGS */
#define FLAG_DEMUX 0x01 #define FLAG_DEMUX 0x01
#define FLAG_FILTER 0x02 #define FLAG_FILTER 0x02
#define FLAG_CHANNELGROUP_1 0x04 #define FLAG_CHANNELGROUP_1 0x04
#define FLAG_CHANNELGROUP_2 0x08 #define FLAG_CHANNELGROUP_2 0x08
#define FLAG_CHANNELGROUP_3 0x10 #define FLAG_CHANNELGROUP_3 0x10
#define FLAG_CHANNELGROUP_4 0x20 #define FLAG_CHANNELGROUP_4 0x20
#define FLAG_CLOCK_EXTERNAL 0x40 #define FLAG_CLOCK_EXTERNAL 0x40
#define FLAG_CLOCK_INVERTED 0x80 #define FLAG_CLOCK_INVERTED 0x80
#define FLAG_RLE 0x0100 #define FLAG_RLE 0x0100
static int capabilities[] = { static int capabilities[] = {
HWCAP_LOGIC_ANALYZER, HWCAP_LOGIC_ANALYZER,
HWCAP_SAMPLERATE, HWCAP_SAMPLERATE,
HWCAP_CAPTURE_RATIO, HWCAP_CAPTURE_RATIO,
HWCAP_LIMIT_SAMPLES, HWCAP_LIMIT_SAMPLES,
0 0,
}; };
static struct samplerates samplerates = { static struct samplerates samplerates = {
10, 10,
MHZ(200), MHZ(200),
1, 1,
0 0,
}; };
/* list of struct serial_device_instance */ /* List of struct serial_device_instance */
static GSList *device_instances = NULL; static GSList *device_instances = NULL;
/* current state of the flag register */ /* Current state of the flag register */
static uint32_t flag_reg = 0; static uint32_t flag_reg = 0;
static uint64_t cur_samplerate = 0; static uint64_t cur_samplerate = 0;
static uint64_t limit_samples = 0; static uint64_t limit_samples = 0;
/* pre/post trigger capture ratio, in percentage. 0 means no pre-trigger data. */ /*
* Pre/post trigger capture ratio, in percentage.
* 0 means no pre-trigger data.
*/
static int capture_ratio = 0; static int capture_ratio = 0;
static uint32_t probe_mask = 0xffffffff, trigger_mask[4] = {0}, trigger_value[4] = {0}; static uint32_t probe_mask = 0xffffffff;
static uint32_t trigger_mask[4] = { 0, 0, 0, 0 };
static uint32_t trigger_value[4] = { 0, 0, 0, 0 };
static int send_shortcommand(int fd, uint8_t command) static int send_shortcommand(int fd, uint8_t command)
{ {
@ -107,13 +108,12 @@ static int send_shortcommand(int fd, uint8_t command)
g_message("ols: sending cmd 0x%.2x", command); g_message("ols: sending cmd 0x%.2x", command);
buf[0] = command; buf[0] = command;
if(write(fd, buf, 1) != 1) if (write(fd, buf, 1) != 1)
return SIGROK_ERR; return SIGROK_ERR;
return SIGROK_OK; return SIGROK_OK;
} }
static int send_longcommand(int fd, uint8_t command, uint32_t data) static int send_longcommand(int fd, uint8_t command, uint32_t data)
{ {
char buf[5]; char buf[5];
@ -124,7 +124,7 @@ static int send_longcommand(int fd, uint8_t command, uint32_t data)
buf[2] = (data & 0xff0000) >> 16; buf[2] = (data & 0xff0000) >> 16;
buf[3] = (data & 0xff00) >> 8; buf[3] = (data & 0xff00) >> 8;
buf[4] = data & 0xff; buf[4] = data & 0xff;
if(write(fd, buf, 5) != 5) if (write(fd, buf, 5) != 5)
return SIGROK_ERR; return SIGROK_ERR;
return SIGROK_OK; return SIGROK_OK;
@ -138,32 +138,38 @@ static int configure_probes(GSList *probes)
char *tc; char *tc;
probe_mask = 0; probe_mask = 0;
for(i = 0; i < NUM_TRIGGER_STAGES; i++) { for (i = 0; i < NUM_TRIGGER_STAGES; i++) {
trigger_mask[i] = 0; trigger_mask[i] = 0;
trigger_value[i] = 0; trigger_value[i] = 0;
} }
for(l = probes; l; l = l->next) { for (l = probes; l; l = l->next) {
probe = (struct probe *) l->data; probe = (struct probe *)l->data;
if(!probe->enabled) if (!probe->enabled)
continue; continue;
/* set up the probe mask for later configuration into the flag register */ /*
* Set up the probe mask for later configuration into the
* flag register.
*/
probe_bit = 1 << (probe->index - 1); probe_bit = 1 << (probe->index - 1);
probe_mask |= probe_bit; probe_mask |= probe_bit;
if(probe->trigger) if (probe->trigger)
continue; continue;
/* configure trigger mask and value */ /* Configure trigger mask and value. */
stage = 0; stage = 0;
for(tc = probe->trigger; tc && *tc; tc++) { for (tc = probe->trigger; tc && *tc; tc++) {
trigger_mask[stage] |= probe_bit; trigger_mask[stage] |= probe_bit;
if(*tc == '1') if (*tc == '1')
trigger_value[stage] |= probe_bit; trigger_value[stage] |= probe_bit;
stage++; stage++;
if(stage > 3) if (stage > 3)
/* TODO: only supporting parallel mode, with up to 4 stages */ /*
* TODO: Only supporting parallel mode, with
* up to 4 stages.
*/
return SIGROK_ERR; return SIGROK_ERR;
} }
} }
@ -171,8 +177,7 @@ static int configure_probes(GSList *probes)
return SIGROK_OK; return SIGROK_OK;
} }
static void byteswap(uint32_t * in)
static void byteswap(uint32_t *in)
{ {
uint32_t out; uint32_t out;
@ -181,10 +186,8 @@ static void byteswap(uint32_t *in)
out |= (*in & 0xff0000) << 8; out |= (*in & 0xff0000) << 8;
out |= (*in & 0xff000000) >> 8; out |= (*in & 0xff000000) >> 8;
*in = out; *in = out;
} }
static int hw_init(char *deviceinfo) static int hw_init(char *deviceinfo)
{ {
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
@ -193,38 +196,44 @@ static int hw_init(char *deviceinfo)
int devcnt, final_devcnt, num_ports, fd, ret, i; int devcnt, final_devcnt, num_ports, fd, ret, i;
char buf[8], **device_names, **serial_params; char buf[8], **device_names, **serial_params;
if(deviceinfo) if (deviceinfo)
ports = g_slist_append(NULL, strdup(deviceinfo)); ports = g_slist_append(NULL, strdup(deviceinfo));
else else
/* no specific device given, so scan all serial ports */ /* No specific device given, so scan all serial ports. */
ports = list_serial_ports(); ports = list_serial_ports();
num_ports = g_slist_length(ports); num_ports = g_slist_length(ports);
fds = calloc(1, num_ports * sizeof(GPollFD)); fds = calloc(1, num_ports * sizeof(GPollFD));
device_names = malloc(num_ports * (sizeof(char *))); device_names = malloc(num_ports * sizeof(char *));
serial_params = malloc(num_ports * (sizeof(char *))); serial_params = malloc(num_ports * sizeof(char *));
devcnt = 0; devcnt = 0;
for(l = ports; l; l = l->next) { for (l = ports; l; l = l->next) {
/* The discovery procedure is like this: first send the Reset command (0x00) 5 times, /* The discovery procedure is like this: first send the Reset
* since the device could be anywhere in a 5-byte command. Then send the ID command * command (0x00) 5 times, since the device could be anywhere
* (0x02). If the device responds with 4 bytes ("OLS1" or "SLA1"), we have a match. * in a 5-byte command. Then send the ID command (0x02).
* Since it may take the device a while to respond at 115Kb/s, we do all the sending * If the device responds with 4 bytes ("OLS1" or "SLA1"), we
* first, then wait for all of them to respond with g_poll(). * have a match.
*
* Since it may take the device a while to respond at 115Kb/s,
* we do all the sending first, then wait for all of them to
* respond with g_poll().
*/ */
g_message("probing %s...", (char *) l->data); g_message("probing %s...", (char *)l->data);
fd = serial_open(l->data, O_RDWR | O_NONBLOCK); fd = serial_open(l->data, O_RDWR | O_NONBLOCK);
if(fd != -1) { if (fd != -1) {
serial_params[devcnt] = serial_backup_params(fd); serial_params[devcnt] = serial_backup_params(fd);
serial_set_params(fd, 115200, 8, 0, 1, 2); serial_set_params(fd, 115200, 8, 0, 1, 2);
ret = SIGROK_OK; ret = SIGROK_OK;
for(i = 0; i < 5; i++) { for (i = 0; i < 5; i++) {
if( (ret = send_shortcommand(fd, CMD_RESET)) != SIGROK_OK) { if ((ret = send_shortcommand(fd,
/* serial port is not writable */ CMD_RESET)) != SIGROK_OK) {
/* Serial port is not writable. */
break; break;
} }
} }
if(ret != SIGROK_OK) { if (ret != SIGROK_OK) {
serial_restore_params(fd, serial_params[devcnt]); serial_restore_params(fd,
serial_params[devcnt]);
serial_close(fd); serial_close(fd);
continue; continue;
} }
@ -237,23 +246,30 @@ static int hw_init(char *deviceinfo)
free(l->data); free(l->data);
} }
/* 2ms should do it, that's enough time for 28 bytes to go over the bus */ /* 2ms should do (enough time for 28 bytes to go over the bus). */
usleep(2000); usleep(2000);
final_devcnt = 0; final_devcnt = 0;
g_poll(fds, devcnt, 1); g_poll(fds, devcnt, 1);
for(i = 0; i < devcnt; i++) { for (i = 0; i < devcnt; i++) {
if(fds[i].revents == G_IO_IN) { if (fds[i].revents == G_IO_IN) {
if(read(fds[i].fd, buf, 4) == 4) { if (read(fds[i].fd, buf, 4) == 4) {
if(!strncmp(buf, "1SLO", 4) || !strncmp(buf, "1ALS", 4)) { if (!strncmp(buf, "1SLO", 4)
if(!strncmp(buf, "1SLO", 4)) || !strncmp(buf, "1ALS", 4)) {
sdi = sigrok_device_instance_new(final_devcnt, ST_INACTIVE, if (!strncmp(buf, "1SLO", 4))
"Openbench", "Logic Sniffer", "v1.0"); sdi = sigrok_device_instance_new
(final_devcnt, ST_INACTIVE,
"Openbench",
"Logic Sniffer", "v1.0");
else else
sdi = sigrok_device_instance_new(final_devcnt, ST_INACTIVE, sdi = sigrok_device_instance_new
"Sump", "Logic Analyzer", "v1.0"); (final_devcnt, ST_INACTIVE,
sdi->serial = serial_device_instance_new(device_names[i], -1); "Sump", "Logic Analyzer",
device_instances = g_slist_append(device_instances, sdi); "v1.0");
sdi->serial = serial_device_instance_new
(device_names[i], -1);
device_instances =
g_slist_append(device_instances, sdi);
final_devcnt++; final_devcnt++;
serial_close(fds[i].fd); serial_close(fds[i].fd);
fds[i].fd = 0; fds[i].fd = 0;
@ -262,7 +278,7 @@ static int hw_init(char *deviceinfo)
free(device_names[i]); free(device_names[i]);
} }
if(fds[i].fd != 0) { if (fds[i].fd != 0) {
serial_restore_params(fds[i].fd, serial_params[i]); serial_restore_params(fds[i].fd, serial_params[i]);
serial_close(fds[i].fd); serial_close(fds[i].fd);
} }
@ -279,16 +295,15 @@ static int hw_init(char *deviceinfo)
return final_devcnt; return final_devcnt;
} }
static int hw_opendev(int device_index) static int hw_opendev(int device_index)
{ {
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
if(!(sdi = get_sigrok_device_instance(device_instances, device_index))) if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return SIGROK_ERR; return SIGROK_ERR;
sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR); sdi->serial->fd = serial_open(sdi->serial->port, O_RDWR);
if(sdi->serial->fd == -1) if (sdi->serial->fd == -1)
return SIGROK_ERR; return SIGROK_ERR;
sdi->status = ST_ACTIVE; sdi->status = ST_ACTIVE;
@ -296,52 +311,46 @@ static int hw_opendev(int device_index)
return SIGROK_OK; return SIGROK_OK;
} }
static void hw_closedev(int device_index) static void hw_closedev(int device_index)
{ {
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
if(!(sdi = get_sigrok_device_instance(device_instances, device_index))) if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return; return;
if(sdi->serial->fd != -1) { if (sdi->serial->fd != -1) {
serial_close(sdi->serial->fd); serial_close(sdi->serial->fd);
sdi->serial->fd = -1; sdi->serial->fd = -1;
sdi->status = ST_INACTIVE; sdi->status = ST_INACTIVE;
} }
} }
static void hw_cleanup(void) static void hw_cleanup(void)
{ {
GSList *l; GSList *l;
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
/* properly close all devices */ /* Properly close all devices. */
for(l = device_instances; l; l = l->next) { for (l = device_instances; l; l = l->next) {
sdi = l->data; sdi = l->data;
if(sdi->serial->fd != -1) if (sdi->serial->fd != -1)
serial_close(sdi->serial->fd); serial_close(sdi->serial->fd);
sigrok_device_instance_free(sdi); sigrok_device_instance_free(sdi);
} }
g_slist_free(device_instances); g_slist_free(device_instances);
device_instances = NULL; device_instances = NULL;
} }
static void *hw_get_device_info(int device_index, int device_info_id) static void *hw_get_device_info(int device_index, int device_info_id)
{ {
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
void *info; void *info;
if( !(sdi = get_sigrok_device_instance(device_instances, device_index)) ) if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return NULL; return NULL;
info = NULL; info = NULL;
switch(device_info_id) switch (device_info_id) {
{
case DI_INSTANCE: case DI_INSTANCE:
info = sdi; info = sdi;
break; break;
@ -352,7 +361,7 @@ static void *hw_get_device_info(int device_index, int device_info_id)
info = &samplerates; info = &samplerates;
break; break;
case DI_TRIGGER_TYPES: case DI_TRIGGER_TYPES:
info = (char *) TRIGGER_TYPES; info = (char *)TRIGGER_TYPES;
break; break;
case DI_CUR_SAMPLERATE: case DI_CUR_SAMPLERATE:
info = &cur_samplerate; info = &cur_samplerate;
@ -362,172 +371,183 @@ static void *hw_get_device_info(int device_index, int device_info_id)
return info; return info;
} }
static int hw_get_status(int device_index) static int hw_get_status(int device_index)
{ {
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
if(!(sdi = get_sigrok_device_instance(device_instances, device_index))) if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return ST_NOT_FOUND; return ST_NOT_FOUND;
return sdi->status; return sdi->status;
} }
static int *hw_get_capabilities(void) static int *hw_get_capabilities(void)
{ {
return capabilities; return capabilities;
} }
static int set_configuration_samplerate(struct sigrok_device_instance *sdi,
static int set_configuration_samplerate(struct sigrok_device_instance *sdi, uint64_t samplerate) uint64_t samplerate)
{ {
uint32_t divider; uint32_t divider;
if(samplerate < samplerates.low || samplerate > samplerates.high) if (samplerate < samplerates.low || samplerate > samplerates.high)
return SIGROK_ERR_SAMPLERATE; return SIGROK_ERR_SAMPLERATE;
if(samplerate > CLOCK_RATE) { if (samplerate > CLOCK_RATE) {
flag_reg |= FLAG_DEMUX; flag_reg |= FLAG_DEMUX;
divider = (CLOCK_RATE * 2 / samplerate) - 1; divider = (CLOCK_RATE * 2 / samplerate) - 1;
} } else {
else {
flag_reg &= ~FLAG_DEMUX; flag_reg &= ~FLAG_DEMUX;
divider = (CLOCK_RATE / samplerate) - 1; divider = (CLOCK_RATE / samplerate) - 1;
} }
divider = htonl(divider); divider = htonl(divider);
g_message("setting samplerate to %"PRIu64" Hz (divider %u, demux %s)", samplerate, divider, g_message("setting samplerate to %" PRIu64 " Hz (divider %u, demux %s)",
flag_reg & FLAG_DEMUX ? "on" : "off"); samplerate, divider, flag_reg & FLAG_DEMUX ? "on" : "off");
if(send_longcommand(sdi->serial->fd, CMD_SET_DIVIDER, divider) != SIGROK_OK)
if (send_longcommand(sdi->serial->fd, CMD_SET_DIVIDER,
divider) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
cur_samplerate = samplerate; cur_samplerate = samplerate;
return SIGROK_OK; return SIGROK_OK;
} }
static int hw_set_configuration(int device_index, int capability, void *value) static int hw_set_configuration(int device_index, int capability, void *value)
{ {
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
int ret; int ret;
uint64_t *tmp_u64; uint64_t *tmp_u64;
if(!(sdi = get_sigrok_device_instance(device_instances, device_index))) if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return SIGROK_ERR; return SIGROK_ERR;
if(sdi->status != ST_ACTIVE) if (sdi->status != ST_ACTIVE)
return SIGROK_ERR; return SIGROK_ERR;
if(capability == HWCAP_SAMPLERATE) { if (capability == HWCAP_SAMPLERATE) {
tmp_u64 = value; tmp_u64 = value;
ret = set_configuration_samplerate(sdi, *tmp_u64); ret = set_configuration_samplerate(sdi, *tmp_u64);
} } else if (capability == HWCAP_PROBECONFIG) {
else if(capability == HWCAP_PROBECONFIG) ret = configure_probes((GSList *) value);
ret = configure_probes( (GSList *) value); } else if (capability == HWCAP_LIMIT_SAMPLES) {
else if(capability == HWCAP_LIMIT_SAMPLES) {
limit_samples = strtoull(value, NULL, 10); limit_samples = strtoull(value, NULL, 10);
ret = SIGROK_OK; ret = SIGROK_OK;
} } else if (capability == HWCAP_CAPTURE_RATIO) {
else if(capability == HWCAP_CAPTURE_RATIO) {
capture_ratio = strtol(value, NULL, 10); capture_ratio = strtol(value, NULL, 10);
if(capture_ratio < 0 || capture_ratio > 100) { if (capture_ratio < 0 || capture_ratio > 100) {
capture_ratio = 0; capture_ratio = 0;
ret = SIGROK_ERR; ret = SIGROK_ERR;
} } else
else
ret = SIGROK_OK; ret = SIGROK_OK;
} } else {
else
ret = SIGROK_ERR; ret = SIGROK_ERR;
}
return ret; return ret;
} }
static int receive_data(int fd, int revents, void *user_data) static int receive_data(int fd, int revents, void *user_data)
{ {
static unsigned int num_transfers = 0; static unsigned int num_transfers = 0;
static int num_bytes = 0; static int num_bytes = 0;
static char last_sample[4] = {0xff}; static char last_sample[4] = { 0xff, 0xff, 0xff, 0xff };
static unsigned char sample[4] = {0}, tmp_sample[4]; static unsigned char sample[4] = { 0, 0, 0, 0 };
static unsigned char tmp_sample[4];
int count, buflen, num_channels, i, j; int count, buflen, num_channels, i, j;
struct datafeed_packet packet; struct datafeed_packet packet;
unsigned char byte, *buffer; unsigned char byte, *buffer;
if(num_transfers++ == 0) { if (num_transfers++ == 0) {
/* first time round, means the device started sending data, and will not /*
* stop until done. if it stops sending for longer than it takes to send * First time round, means the device started sending data,
* a byte, that means it's finished. we'll double that to 30ms to be sure... * and will not stop until done. If it stops sending for
* longer than it takes to send a byte, that means it's
* finished. We'll double that to 30ms to be sure...
*/ */
source_remove(fd); source_remove(fd);
source_add(fd, G_IO_IN, 100, receive_data, user_data); source_add(fd, G_IO_IN, 100, receive_data, user_data);
} }
num_channels = 0; num_channels = 0;
for(i = 0x20; i > 0x02; i /= 2) for (i = 0x20; i > 0x02; i /= 2) {
if((flag_reg & i) == 0) if ((flag_reg & i) == 0)
num_channels++; num_channels++;
}
if(revents == G_IO_IN && num_transfers / num_channels <= limit_samples) { if (revents == G_IO_IN
if(read(fd, &byte, 1) != 1) && num_transfers / num_channels <= limit_samples) {
if (read(fd, &byte, 1) != 1)
return FALSE; return FALSE;
sample[num_bytes++] = byte; sample[num_bytes++] = byte;
if(num_bytes == num_channels) { if (num_bytes == num_channels) {
/* got a full sample */ /* Got a full sample. */
if(flag_reg & FLAG_RLE) { if (flag_reg & FLAG_RLE) {
/* in RLE mode -1 should never come in as a sample, because /*
* bit 31 is the "count" flag */ * In RLE mode -1 should never come in as a
/* TODO: endianness may be wrong here, could be sample[3] */ * sample, because bit 31 is the "count" flag.
if(sample[0] & 0x80 && !(last_sample[0] & 0x80)) { * TODO: Endianness may be wrong here, could be
count = (int) (*sample) & 0x7fffffff; * sample[3].
*/
if (sample[0] & 0x80
&& !(last_sample[0] & 0x80)) {
count = (int)(*sample) & 0x7fffffff;
buffer = g_malloc(count); buffer = g_malloc(count);
buflen = 0; buflen = 0;
for(i = 0; i < count; i++) for (i = 0; i < count; i++) {
{ memcpy(buffer + buflen,
memcpy(buffer + buflen , last_sample, 4); last_sample, 4);
buflen += 4; buflen += 4;
} }
} } else {
else { /*
/* just a single sample, next sample will probably be a count * Just a single sample, next sample
* referring to this -- but this one is still a part of the stream * will probably be a count referring
* to this -- but this one is still a
* part of the stream.
*/ */
buffer = sample; buffer = sample;
buflen = 4; buflen = 4;
} }
} } else {
else { /* No compression. */
/* no compression */
buffer = sample; buffer = sample;
buflen = 4; buflen = 4;
} }
if(num_channels < 4) { if (num_channels < 4) {
/* some channel groups may have been turned off, to speed up transfer /*
* between the hardware and the PC. expand that here before submitting * Some channel groups may have been turned
* it over the session bus -- whatever is listening on the bus will be * off, to speed up transfer between the
* expecting a full 32-bit sample, based on the number of probes. * hardware and the PC. Expand that here before
* submitting it over the session bus --
* whatever is listening on the bus will be
* expecting a full 32-bit sample, based on
* the number of probes.
*/ */
j = 0; j = 0;
memset(tmp_sample, 0, 4); memset(tmp_sample, 0, 4);
for(i = 0; i < 4; i++) { for (i = 0; i < 4; i++) {
if((flag_reg & (8 >> i)) == 0) { if ((flag_reg & (8 >> i)) == 0) {
/* this channel group was enabled, copy from received sample */ /*
* This channel group was
* enabled, copy from received
* sample.
*/
tmp_sample[i] = sample[j++]; tmp_sample[i] = sample[j++];
} }
} }
memcpy(sample, tmp_sample, 4); memcpy(sample, tmp_sample, 4);
} }
/* send it all to the session bus */ /* Send it all to the session bus. */
packet.type = DF_LOGIC32; packet.type = DF_LOGIC32;
packet.length = buflen; packet.length = buflen;
packet.payload = buffer; packet.payload = buffer;
session_bus(user_data, &packet); session_bus(user_data, &packet);
if(buffer == sample) if (buffer == sample)
memcpy(last_sample, buffer, num_channels); memcpy(last_sample, buffer, num_channels);
else else
g_free(buffer); g_free(buffer);
@ -535,10 +555,11 @@ static int receive_data(int fd, int revents, void *user_data)
memset(sample, 0, 4); memset(sample, 0, 4);
num_bytes = 0; num_bytes = 0;
} }
} } else {
else { /*
/* this is the main loop telling us a timeout was reached, or we've * This is the main loop telling us a timeout was reached, or
* acquired all the samples we asked for -- we're done */ * we've acquired all the samples we asked for -- we're done.
*/
tcflush(fd, TCIOFLUSH); tcflush(fd, TCIOFLUSH);
serial_close(fd); serial_close(fd);
packet.type = DF_END; packet.type = DF_END;
@ -549,69 +570,86 @@ static int receive_data(int fd, int revents, void *user_data)
return TRUE; return TRUE;
} }
static int hw_start_acquisition(int device_index, gpointer session_device_id) static int hw_start_acquisition(int device_index, gpointer session_device_id)
{ {
int i;
struct datafeed_packet *packet; struct datafeed_packet *packet;
struct datafeed_header *header; struct datafeed_header *header;
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
int i;
uint32_t data; uint32_t data;
uint16_t readcount, delaycount; uint16_t readcount, delaycount;
uint8_t changrp_mask; uint8_t changrp_mask;
if(!(sdi = get_sigrok_device_instance(device_instances, device_index))) if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return SIGROK_ERR; return SIGROK_ERR;
if(sdi->status != ST_ACTIVE) if (sdi->status != ST_ACTIVE)
return SIGROK_ERR; return SIGROK_ERR;
if(trigger_mask[0]) { if (trigger_mask[0]) {
/* trigger masks */ /* Trigger masks */
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_0, trigger_mask[0]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_0,
trigger_mask[0]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_1, trigger_mask[1]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_1,
trigger_mask[1]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_2, trigger_mask[2]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_2,
trigger_mask[2]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_3, trigger_mask[3]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_3,
trigger_mask[3]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_0, trigger_value[0]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_0,
trigger_value[0]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_1, trigger_value[1]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_1,
trigger_value[1]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_2, trigger_value[2]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_2,
trigger_value[2]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_3, trigger_value[3]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_3,
trigger_value[3]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
/* trigger configuration */ /* Trigger configuration */
/* TODO: the start flag should only be on the last used stage I think... */ /*
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_0, 0x00000008) != SIGROK_OK) * TODO: The start flag should only be on the last used
* stage I think...
*/
if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_0,
0x00000008) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_1, 0x00000000) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_1,
0x00000000) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_2, 0x00000000) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_2,
0x00000000) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_3, 0x00000000) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_3,
0x00000000) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
delaycount = limit_samples / 4 * (capture_ratio / 100); delaycount = limit_samples / 4 * (capture_ratio / 100);
} else { } else {
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_0, trigger_mask[0]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_MASK_0,
trigger_mask[0]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_0, trigger_value[0]) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_VALUE_0,
trigger_value[0]) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
if(send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_0, 0x00000008) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_TRIGGER_CONFIG_0,
0x00000008) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
delaycount = limit_samples / 4; delaycount = limit_samples / 4;
} }
set_configuration_samplerate(sdi, cur_samplerate); set_configuration_samplerate(sdi, cur_samplerate);
/* send sample limit and pre/post-trigger capture ratio */ /* Send sample limit and pre/post-trigger capture ratio. */
readcount = limit_samples / 4; readcount = limit_samples / 4;
if(flag_reg & FLAG_DEMUX) { if (flag_reg & FLAG_DEMUX) {
data = (delaycount - 8) & 0xfff8 << 13; data = (delaycount - 8) & 0xfff8 << 13;
data |= (readcount - 4) & 0xffff; data |= (readcount - 4) & 0xffff;
} else { } else {
@ -621,40 +659,43 @@ static int hw_start_acquisition(int device_index, gpointer session_device_id)
} }
/* TODO: htonl()? */ /* TODO: htonl()? */
byteswap(&data); byteswap(&data);
if(send_longcommand(sdi->serial->fd, CMD_CAPTURE_SIZE, data) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_CAPTURE_SIZE,
data) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
/* flag register */ /*
/* enable/disable channel groups in the flag register according to the * Enable/disable channel groups in the flag register according to the
* probe mask. The register stores them backwards, hence shift right from 1000. * probe mask. The register stores them backwards, hence shift right
* from 1000.
*/ */
changrp_mask = 0; changrp_mask = 0;
for(i = 0; i < 4; i++) for (i = 0; i < 4; i++) {
{ if (probe_mask & (0xff << (i * 8)))
if(probe_mask & (0xff << (i * 8)))
changrp_mask |= (8 >> i); changrp_mask |= (8 >> i);
} }
/* but the flag register wants them here, with 1 meaning "disable channel" */
/* The flag register wants them here, and 1 means "disable channel". */
flag_reg |= ~(changrp_mask << 2) & 0x3c; flag_reg |= ~(changrp_mask << 2) & 0x3c;
data = flag_reg << 24; data = flag_reg << 24;
if(send_longcommand(sdi->serial->fd, CMD_SET_FLAGS, data) != SIGROK_OK) if (send_longcommand(sdi->serial->fd, CMD_SET_FLAGS, data) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
/* start acquisition on the device */ /* Start acquisition on the device. */
if(send_shortcommand(sdi->serial->fd, CMD_RUN) != SIGROK_OK) if (send_shortcommand(sdi->serial->fd, CMD_RUN) != SIGROK_OK)
return SIGROK_ERR; return SIGROK_ERR;
source_add(sdi->serial->fd, G_IO_IN, -1, receive_data, session_device_id); source_add(sdi->serial->fd, G_IO_IN, -1, receive_data,
session_device_id);
/* send header packet to the session bus */ /* Send header packet to the session bus. */
packet = g_malloc(sizeof(struct datafeed_packet)); packet = g_malloc(sizeof(struct datafeed_packet));
header = g_malloc(sizeof(struct datafeed_header)); header = g_malloc(sizeof(struct datafeed_header));
if(!packet || !header) if (!packet || !header)
return SIGROK_ERR; return SIGROK_ERR;
packet->type = DF_HEADER; packet->type = DF_HEADER;
packet->length = sizeof(struct datafeed_header); packet->length = sizeof(struct datafeed_header);
packet->payload = (unsigned char *) header; packet->payload = (unsigned char *)header;
header->feed_version = 1; header->feed_version = 1;
gettimeofday(&header->starttime, NULL); gettimeofday(&header->starttime, NULL);
header->samplerate = cur_samplerate; header->samplerate = cur_samplerate;
@ -667,7 +708,6 @@ static int hw_start_acquisition(int device_index, gpointer session_device_id)
return SIGROK_OK; return SIGROK_OK;
} }
static void hw_stop_acquisition(int device_index, gpointer session_device_id) static void hw_stop_acquisition(int device_index, gpointer session_device_id)
{ {
struct datafeed_packet packet; struct datafeed_packet packet;
@ -678,17 +718,13 @@ static void hw_stop_acquisition(int device_index, gpointer session_device_id)
packet.type = DF_END; packet.type = DF_END;
packet.length = 0; packet.length = 0;
session_bus(session_device_id, &packet); session_bus(session_device_id, &packet);
} }
struct device_plugin ols_plugin_info = { struct device_plugin ols_plugin_info = {
"sump", "sump",
1, 1,
hw_init, hw_init,
hw_cleanup, hw_cleanup,
hw_opendev, hw_opendev,
hw_closedev, hw_closedev,
hw_get_device_info, hw_get_device_info,
@ -696,6 +732,5 @@ struct device_plugin ols_plugin_info = {
hw_get_capabilities, hw_get_capabilities,
hw_set_configuration, hw_set_configuration,
hw_start_acquisition, hw_start_acquisition,
hw_stop_acquisition hw_stop_acquisition,
}; };