sysclk-lwla: Implement support for the LWLA1034.
This commit is contained in:
parent
aeaad0b0b5
commit
5874e88d83
|
@ -142,6 +142,9 @@ ATTRS{idVendor}=="0925", ATTRS{idProduct}=="3881", MODE="664", GROUP="plugdev"
|
|||
# Saleae Logic16
|
||||
ATTRS{idVendor}=="21a9", ATTRS{idProduct}=="1001", MODE="664", GROUP="plugdev"
|
||||
|
||||
# SysClk LWLA1034
|
||||
ATTRS{idVendor}=="2961", ATTRS{idProduct}=="6689", MODE="664", GROUP="plugdev"
|
||||
|
||||
# UNI-T UT-D04 multimeter cable (for various UNI-T and rebranded DMMs)
|
||||
# http://sigrok.org/wiki/Device_cables#UNI-T_UT-D04
|
||||
# UNI-T UT325
|
||||
|
|
|
@ -19,11 +19,15 @@
|
|||
|
||||
if HW_SYSCLK_LWLA
|
||||
|
||||
AM_CPPFLAGS = -DFIRMWARE_DIR='"$(FIRMWARE_DIR)"'
|
||||
|
||||
# Local lib, this is NOT meant to be installed!
|
||||
noinst_LTLIBRARIES = libsigrok_hw_sysclk_lwla.la
|
||||
|
||||
libsigrok_hw_sysclk_lwla_la_SOURCES = \
|
||||
api.c \
|
||||
lwla.c \
|
||||
lwla.h \
|
||||
protocol.c \
|
||||
protocol.h
|
||||
|
||||
|
|
|
@ -18,59 +18,208 @@
|
|||
*/
|
||||
|
||||
#include "protocol.h"
|
||||
#include "libsigrok.h"
|
||||
#include "libsigrok-internal.h"
|
||||
#include <glib.h>
|
||||
#include <libusb.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
static const int32_t hwcaps[] = {
|
||||
SR_CONF_LOGIC_ANALYZER,
|
||||
SR_CONF_SAMPLERATE,
|
||||
SR_CONF_EXTERNAL_CLOCK,
|
||||
SR_CONF_TRIGGER_TYPE,
|
||||
SR_CONF_LIMIT_SAMPLES,
|
||||
};
|
||||
|
||||
/* The hardware supports more samplerates than these, but these are the
|
||||
* options hardcoded into the vendor's Windows GUI.
|
||||
*/
|
||||
static const uint64_t samplerates[] = {
|
||||
SR_MHZ(125), SR_MHZ(100),
|
||||
SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
|
||||
SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
|
||||
SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
|
||||
SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
|
||||
SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
|
||||
SR_HZ(500), SR_HZ(200), SR_HZ(100),
|
||||
};
|
||||
|
||||
SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info;
|
||||
static struct sr_dev_driver *di = &sysclk_lwla_driver_info;
|
||||
static struct sr_dev_driver *const di = &sysclk_lwla_driver_info;
|
||||
|
||||
static int init(struct sr_context *sr_ctx)
|
||||
{
|
||||
return std_init(sr_ctx, di, LOG_PREFIX);
|
||||
}
|
||||
|
||||
static GSList *gen_probe_list(int num_probes)
|
||||
{
|
||||
GSList *list;
|
||||
struct sr_probe *probe;
|
||||
int i;
|
||||
char name[8];
|
||||
|
||||
list = NULL;
|
||||
|
||||
for (i = num_probes; i > 0; --i) {
|
||||
/* The LWLA series simply number probes from CH1 to CHxx. */
|
||||
g_ascii_formatd(name, sizeof name, "CH%.0f", i);
|
||||
|
||||
probe = sr_probe_new(i - 1, SR_PROBE_LOGIC, TRUE, name);
|
||||
list = g_slist_prepend(list, probe);
|
||||
}
|
||||
|
||||
return list;
|
||||
}
|
||||
|
||||
static GSList *scan(GSList *options)
|
||||
{
|
||||
GSList *usb_devices, *devices, *node;
|
||||
struct drv_context *drvc;
|
||||
GSList *devices;
|
||||
struct sr_dev_inst *sdi;
|
||||
struct dev_context *devc;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
int device_index;
|
||||
|
||||
(void)options;
|
||||
|
||||
devices = NULL;
|
||||
drvc = di->priv;
|
||||
drvc->instances = NULL;
|
||||
device_index = 0;
|
||||
|
||||
/* TODO: scan for devices, either based on a SR_CONF_CONN option
|
||||
* or on a USB scan. */
|
||||
usb_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, USB_VID_PID);
|
||||
|
||||
for (node = usb_devices; node != NULL; node = node->next) {
|
||||
usb = node->data;
|
||||
|
||||
/* Allocate memory for our private driver context. */
|
||||
devc = g_try_new0(struct dev_context, 1);
|
||||
if (!devc) {
|
||||
sr_err("Device context malloc failed.");
|
||||
sr_usb_dev_inst_free(usb);
|
||||
continue;
|
||||
}
|
||||
/* Register the device with libsigrok. */
|
||||
sdi = sr_dev_inst_new(device_index, SR_ST_INACTIVE,
|
||||
VENDOR_NAME, MODEL_NAME, NULL);
|
||||
if (!sdi) {
|
||||
sr_err("Failed to instantiate device.");
|
||||
g_free(devc);
|
||||
sr_usb_dev_inst_free(usb);
|
||||
continue;
|
||||
}
|
||||
sdi->driver = di;
|
||||
sdi->priv = devc;
|
||||
sdi->inst_type = SR_INST_USB;
|
||||
sdi->conn = usb;
|
||||
sdi->probes = gen_probe_list(NUM_PROBES);
|
||||
|
||||
drvc->instances = g_slist_append(drvc->instances, sdi);
|
||||
devices = g_slist_append(devices, sdi);
|
||||
}
|
||||
|
||||
g_slist_free(usb_devices);
|
||||
|
||||
return devices;
|
||||
}
|
||||
|
||||
static GSList *dev_list(void)
|
||||
{
|
||||
return ((struct drv_context *)(di->priv))->instances;
|
||||
struct drv_context *drvc;
|
||||
|
||||
drvc = di->priv;
|
||||
|
||||
return drvc->instances;
|
||||
}
|
||||
|
||||
static void clear_dev_context(void *priv)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
|
||||
devc = priv;
|
||||
|
||||
sr_dbg("Device context cleared.");
|
||||
|
||||
lwla_free_acquisition_state(devc->acquisition);
|
||||
g_free(devc);
|
||||
}
|
||||
|
||||
static int dev_clear(void)
|
||||
{
|
||||
return std_dev_clear(di, NULL);
|
||||
return std_dev_clear(di, &clear_dev_context);
|
||||
}
|
||||
|
||||
static int dev_open(struct sr_dev_inst *sdi)
|
||||
{
|
||||
(void)sdi;
|
||||
struct drv_context *drvc;
|
||||
struct dev_context *devc;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
int ret;
|
||||
|
||||
/* TODO: get handle from sdi->conn and open it. */
|
||||
drvc = di->priv;
|
||||
|
||||
if (!drvc) {
|
||||
sr_err("Driver was not initialized.");
|
||||
return SR_ERR;
|
||||
}
|
||||
|
||||
usb = sdi->conn;
|
||||
devc = sdi->priv;
|
||||
|
||||
ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
|
||||
if (ret < 0) {
|
||||
sr_err("Failed to claim interface: %s.",
|
||||
libusb_error_name(ret));
|
||||
return SR_ERR;
|
||||
}
|
||||
|
||||
sdi->status = SR_ST_INITIALIZING;
|
||||
|
||||
if (devc->samplerate == 0)
|
||||
/* Apply default if the samplerate hasn't been set yet. */
|
||||
devc->samplerate = DEFAULT_SAMPLERATE;
|
||||
|
||||
ret = lwla_init_device(sdi);
|
||||
|
||||
if (ret == SR_OK)
|
||||
sdi->status = SR_ST_ACTIVE;
|
||||
|
||||
return SR_OK;
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int dev_close(struct sr_dev_inst *sdi)
|
||||
{
|
||||
(void)sdi;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
struct dev_context *devc;
|
||||
|
||||
/* TODO: get handle from sdi->conn and close it. */
|
||||
if (!di->priv) {
|
||||
sr_err("Driver was not initialized.");
|
||||
return SR_ERR;
|
||||
}
|
||||
|
||||
usb = sdi->conn;
|
||||
devc = sdi->priv;
|
||||
|
||||
if (!usb->devhdl)
|
||||
return SR_OK;
|
||||
|
||||
/* Trigger download of the shutdown bitstream. */
|
||||
devc->selected_clock_source = CLOCK_SOURCE_NONE;
|
||||
|
||||
if (lwla_set_clock_source(sdi) != SR_OK)
|
||||
sr_err("Unable to shut down device.");
|
||||
|
||||
libusb_release_interface(usb->devhdl, USB_INTERFACE);
|
||||
libusb_close(usb->devhdl);
|
||||
|
||||
usb->devhdl = NULL;
|
||||
sdi->status = SR_ST_INACTIVE;
|
||||
|
||||
return SR_OK;
|
||||
|
@ -78,83 +227,228 @@ static int dev_close(struct sr_dev_inst *sdi)
|
|||
|
||||
static int cleanup(void)
|
||||
{
|
||||
dev_clear();
|
||||
|
||||
/* TODO: free other driver resources, if any. */
|
||||
|
||||
return SR_OK;
|
||||
return dev_clear();
|
||||
}
|
||||
|
||||
static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi,
|
||||
const struct sr_probe_group *probe_group)
|
||||
{
|
||||
int ret;
|
||||
struct dev_context *devc;
|
||||
|
||||
(void)sdi;
|
||||
(void)data;
|
||||
(void)probe_group;
|
||||
|
||||
ret = SR_OK;
|
||||
if (!sdi)
|
||||
return SR_ERR_ARG;
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
switch (key) {
|
||||
/* TODO */
|
||||
case SR_CONF_SAMPLERATE:
|
||||
*data = g_variant_new_uint64(devc->samplerate);
|
||||
break;
|
||||
case SR_CONF_LIMIT_SAMPLES:
|
||||
*data = g_variant_new_uint64(devc->limit_samples);
|
||||
break;
|
||||
case SR_CONF_EXTERNAL_CLOCK:
|
||||
*data = g_variant_new_boolean(devc->selected_clock_source
|
||||
>= CLOCK_SOURCE_EXT_RISE);
|
||||
break;
|
||||
default:
|
||||
return SR_ERR_NA;
|
||||
}
|
||||
|
||||
return ret;
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi,
|
||||
const struct sr_probe_group *probe_group)
|
||||
{
|
||||
int ret;
|
||||
struct dev_context *devc;
|
||||
uint64_t rate;
|
||||
|
||||
(void)data;
|
||||
(void)probe_group;
|
||||
|
||||
if (sdi->status != SR_ST_ACTIVE)
|
||||
devc = sdi->priv;
|
||||
if (!devc)
|
||||
return SR_ERR_DEV_CLOSED;
|
||||
|
||||
ret = SR_OK;
|
||||
switch (key) {
|
||||
/* TODO */
|
||||
case SR_CONF_SAMPLERATE:
|
||||
rate = g_variant_get_uint64(data);
|
||||
sr_info("Setting samplerate %" G_GUINT64_FORMAT, rate);
|
||||
if (rate > samplerates[0]
|
||||
|| rate < samplerates[G_N_ELEMENTS(samplerates) - 1])
|
||||
return SR_ERR_SAMPLERATE;
|
||||
devc->samplerate = rate;
|
||||
break;
|
||||
case SR_CONF_LIMIT_SAMPLES:
|
||||
devc->limit_samples = g_variant_get_uint64(data);
|
||||
break;
|
||||
case SR_CONF_EXTERNAL_CLOCK:
|
||||
if (g_variant_get_boolean(data)) {
|
||||
sr_info("Enabling external clock.");
|
||||
/* TODO: Allow the external clock to be inverted */
|
||||
devc->selected_clock_source = CLOCK_SOURCE_EXT_RISE;
|
||||
} else {
|
||||
sr_info("Disabling external clock.");
|
||||
devc->selected_clock_source = CLOCK_SOURCE_INT;
|
||||
}
|
||||
if (sdi->status == SR_ST_ACTIVE)
|
||||
return lwla_set_clock_source(sdi);
|
||||
break;
|
||||
default:
|
||||
ret = SR_ERR_NA;
|
||||
return SR_ERR_NA;
|
||||
}
|
||||
|
||||
return ret;
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
|
||||
const struct sr_probe_group *probe_group)
|
||||
{
|
||||
int ret;
|
||||
GVariant *gvar;
|
||||
GVariantBuilder gvb;
|
||||
|
||||
(void)sdi;
|
||||
(void)data;
|
||||
(void)probe_group;
|
||||
|
||||
ret = SR_OK;
|
||||
switch (key) {
|
||||
/* TODO */
|
||||
case SR_CONF_DEVICE_OPTIONS:
|
||||
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
|
||||
hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
|
||||
break;
|
||||
case SR_CONF_SAMPLERATE:
|
||||
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
|
||||
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
|
||||
samplerates, ARRAY_SIZE(samplerates),
|
||||
sizeof(uint64_t));
|
||||
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
|
||||
*data = g_variant_builder_end(&gvb);
|
||||
break;
|
||||
case SR_CONF_TRIGGER_TYPE:
|
||||
*data = g_variant_new_string(TRIGGER_TYPES);
|
||||
break;
|
||||
default:
|
||||
return SR_ERR_NA;
|
||||
}
|
||||
|
||||
return ret;
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
static int dev_acquisition_start(const struct sr_dev_inst *sdi,
|
||||
void *cb_data)
|
||||
static int configure_probes(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
(void)sdi;
|
||||
struct dev_context *devc;
|
||||
const struct sr_probe *probe;
|
||||
const GSList *node;
|
||||
uint64_t probe_bit;
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
devc->channel_mask = 0;
|
||||
devc->trigger_mask = 0;
|
||||
devc->trigger_edge_mask = 0;
|
||||
devc->trigger_values = 0;
|
||||
|
||||
for (node = sdi->probes, probe_bit = 1;
|
||||
node != NULL;
|
||||
node = node->next, probe_bit <<= 1) {
|
||||
|
||||
if (probe_bit >= ((uint64_t)1 << NUM_PROBES)) {
|
||||
sr_err("Channels over the limit of %d.", NUM_PROBES);
|
||||
return SR_ERR;
|
||||
}
|
||||
probe = node->data;
|
||||
if (!probe || !probe->enabled)
|
||||
continue;
|
||||
|
||||
/* Enable input channel for this probe. */
|
||||
devc->channel_mask |= probe_bit;
|
||||
|
||||
if (!probe->trigger || probe->trigger[0] == '\0')
|
||||
continue;
|
||||
|
||||
if (probe->trigger[1] != '\0') {
|
||||
sr_err("Only one trigger stage is supported.");
|
||||
return SR_ERR;
|
||||
}
|
||||
/* Enable trigger for this probe. */
|
||||
devc->trigger_mask |= probe_bit;
|
||||
|
||||
/* Configure edge mask and trigger value. */
|
||||
switch (probe->trigger[0]) {
|
||||
case '1': devc->trigger_values |= probe_bit;
|
||||
case '0': break;
|
||||
|
||||
case 'r': devc->trigger_values |= probe_bit;
|
||||
case 'f': devc->trigger_edge_mask |= probe_bit;
|
||||
break;
|
||||
default:
|
||||
sr_err("Trigger type '%c' is not supported.",
|
||||
probe->trigger[0]);
|
||||
return SR_ERR;
|
||||
}
|
||||
}
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
|
||||
{
|
||||
struct drv_context *drvc;
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
int ret;
|
||||
|
||||
(void)cb_data;
|
||||
|
||||
if (sdi->status != SR_ST_ACTIVE)
|
||||
return SR_ERR_DEV_CLOSED;
|
||||
|
||||
/* TODO: configure hardware, reset acquisition state, set up
|
||||
* callbacks and send header packet. */
|
||||
devc = sdi->priv;
|
||||
drvc = di->priv;
|
||||
|
||||
if (devc->acquisition) {
|
||||
sr_err("Acquisition still in progress?");
|
||||
return SR_ERR;
|
||||
}
|
||||
acq = lwla_alloc_acquisition_state();
|
||||
if (!acq)
|
||||
return SR_ERR_MALLOC;
|
||||
|
||||
devc->stopping_in_progress = FALSE;
|
||||
devc->transfer_error = FALSE;
|
||||
|
||||
ret = configure_probes(sdi);
|
||||
if (ret != SR_OK) {
|
||||
sr_err("Failed to configure probes.");
|
||||
lwla_free_acquisition_state(acq);
|
||||
return ret;
|
||||
}
|
||||
|
||||
sr_info("Starting acquisition.");
|
||||
|
||||
devc->acquisition = acq;
|
||||
ret = lwla_setup_acquisition(sdi);
|
||||
if (ret != SR_OK) {
|
||||
sr_err("Failed to set up aquisition.");
|
||||
devc->acquisition = NULL;
|
||||
lwla_free_acquisition_state(acq);
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = lwla_start_acquisition(sdi);
|
||||
if (ret != SR_OK) {
|
||||
sr_err("Failed to start aquisition.");
|
||||
devc->acquisition = NULL;
|
||||
lwla_free_acquisition_state(acq);
|
||||
return ret;
|
||||
}
|
||||
usb_source_add(drvc->sr_ctx, 100, &lwla_receive_data,
|
||||
(struct sr_dev_inst *)sdi);
|
||||
|
||||
sr_info("Waiting for data.");
|
||||
|
||||
/* Send header packet to the session bus. */
|
||||
std_session_send_df_header(sdi, LOG_PREFIX);
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
@ -166,14 +460,16 @@ static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
|
|||
if (sdi->status != SR_ST_ACTIVE)
|
||||
return SR_ERR_DEV_CLOSED;
|
||||
|
||||
/* TODO: stop acquisition. */
|
||||
sr_dbg("Stopping acquisition.");
|
||||
|
||||
sdi->status = SR_ST_STOPPING;
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info = {
|
||||
.name = "sysclk-lwla",
|
||||
.longname = "SysClk LWLA",
|
||||
.longname = "SysClk LWLA series",
|
||||
.api_version = 1,
|
||||
.init = init,
|
||||
.cleanup = cleanup,
|
||||
|
|
|
@ -0,0 +1,186 @@
|
|||
/*
|
||||
* This file is part of the libsigrok project.
|
||||
*
|
||||
* Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "lwla.h"
|
||||
#include "protocol.h"
|
||||
#include "libsigrok-internal.h"
|
||||
|
||||
SR_PRIV int lwla_send_bitstream(const struct sr_usb_dev_inst *usb,
|
||||
const char *filename)
|
||||
{
|
||||
GMappedFile *file;
|
||||
GError *error;
|
||||
char *stream;
|
||||
size_t length;
|
||||
int ret;
|
||||
int xfer_len;
|
||||
|
||||
if (usb == NULL || filename == NULL)
|
||||
return SR_ERR_ARG;
|
||||
|
||||
sr_info("Downloading FPGA bitstream at '%s'.", filename);
|
||||
|
||||
/* Map bitstream file into memory. */
|
||||
error = NULL;
|
||||
file = g_mapped_file_new(filename, FALSE, &error);
|
||||
if (!file) {
|
||||
sr_err("Unable to open bitstream file: %s.", error->message);
|
||||
g_error_free(error);
|
||||
return SR_ERR;
|
||||
}
|
||||
stream = g_mapped_file_get_contents(file);
|
||||
length = g_mapped_file_get_length(file);
|
||||
|
||||
/* Sanity check. */
|
||||
if (!stream || length < 4 || RB32(stream) != length) {
|
||||
sr_err("Invalid FPGA bitstream.");
|
||||
g_mapped_file_unref(file);
|
||||
return SR_ERR;
|
||||
}
|
||||
|
||||
/* Transfer the entire bitstream in one URB. */
|
||||
ret = libusb_bulk_transfer(usb->devhdl, EP_BITSTREAM,
|
||||
(unsigned char *)stream, length,
|
||||
&xfer_len, USB_TIMEOUT);
|
||||
if (ret != 0) {
|
||||
sr_err("Failed to transfer bitstream: %s.",
|
||||
libusb_error_name(ret));
|
||||
g_mapped_file_unref(file);
|
||||
return SR_ERR;
|
||||
}
|
||||
if (xfer_len != (int)length) {
|
||||
sr_err("Failed to transfer bitstream: incorrect length "
|
||||
"%d != %d.", xfer_len, (int)length);
|
||||
g_mapped_file_unref(file);
|
||||
return SR_ERR;
|
||||
}
|
||||
g_mapped_file_unref(file);
|
||||
sr_info("FPGA bitstream download of %d bytes done.", xfer_len);
|
||||
|
||||
/* This delay appears to be necessary for reliable operation. */
|
||||
g_usleep(30000);
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
SR_PRIV int lwla_send_command(const struct sr_usb_dev_inst *usb,
|
||||
const uint16_t *command, int cmd_len)
|
||||
{
|
||||
int ret;
|
||||
int xfer_len = 0;
|
||||
|
||||
if (usb == NULL || command == NULL || cmd_len < 1)
|
||||
return SR_ERR_ARG;
|
||||
|
||||
ret = libusb_bulk_transfer(usb->devhdl, EP_COMMAND,
|
||||
(unsigned char *)command, cmd_len * 2,
|
||||
&xfer_len, USB_TIMEOUT);
|
||||
if (ret != 0) {
|
||||
sr_dbg("Failed to send command %u: %s.",
|
||||
LWLA_READ16(command), libusb_error_name(ret));
|
||||
return SR_ERR;
|
||||
}
|
||||
if (xfer_len != cmd_len * 2) {
|
||||
sr_dbg("Failed to send command %u: incorrect length %d != %d.",
|
||||
LWLA_READ16(command), xfer_len, cmd_len * 2);
|
||||
return SR_ERR;
|
||||
}
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
SR_PRIV int lwla_receive_reply(const struct sr_usb_dev_inst *usb,
|
||||
uint16_t *reply, int reply_len, int expect_len)
|
||||
{
|
||||
int ret;
|
||||
int xfer_len = 0;
|
||||
|
||||
if (reply_len == 0)
|
||||
return SR_OK;
|
||||
|
||||
if (usb == NULL || reply == NULL || reply_len < 0)
|
||||
return SR_ERR_ARG;
|
||||
|
||||
ret = libusb_bulk_transfer(usb->devhdl, EP_REPLY,
|
||||
(unsigned char *)reply, reply_len * 2,
|
||||
&xfer_len, USB_TIMEOUT);
|
||||
if (ret != 0) {
|
||||
sr_dbg("Failed to receive reply: %s.", libusb_error_name(ret));
|
||||
return SR_ERR;
|
||||
}
|
||||
if (xfer_len != expect_len * 2) {
|
||||
sr_dbg("Failed to receive reply: incorrect length %d != %d.",
|
||||
xfer_len, expect_len * 2);
|
||||
return SR_ERR;
|
||||
}
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
SR_PRIV int lwla_read_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint16_t reg, uint32_t *value)
|
||||
{
|
||||
int ret;
|
||||
uint16_t command[2];
|
||||
uint16_t reply[256];
|
||||
|
||||
command[0] = LWLA_WORD(CMD_READ_REG);
|
||||
command[1] = LWLA_WORD(reg);
|
||||
|
||||
ret = lwla_send_command(usb, command, G_N_ELEMENTS(command));
|
||||
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = lwla_receive_reply(usb, reply, G_N_ELEMENTS(reply), 2);
|
||||
|
||||
if (ret == SR_OK)
|
||||
*value = LWLA_READ32(reply);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint16_t reg, uint32_t value)
|
||||
{
|
||||
uint16_t command[4];
|
||||
|
||||
command[0] = LWLA_WORD(CMD_WRITE_REG);
|
||||
command[1] = LWLA_WORD(reg);
|
||||
command[2] = LWLA_WORD_0(value);
|
||||
command[3] = LWLA_WORD_1(value);
|
||||
|
||||
return lwla_send_command(usb, command, G_N_ELEMENTS(command));
|
||||
}
|
||||
|
||||
SR_PRIV int lwla_write_regs(const struct sr_usb_dev_inst *usb,
|
||||
const struct regval_pair *regvals, int count)
|
||||
{
|
||||
int i;
|
||||
int ret;
|
||||
|
||||
ret = SR_OK;
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
ret = lwla_write_reg(usb, regvals[i].reg, regvals[i].val);
|
||||
|
||||
if (ret != SR_OK)
|
||||
break;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
|
@ -0,0 +1,122 @@
|
|||
/*
|
||||
* This file is part of the libsigrok project.
|
||||
*
|
||||
* Copyright (C) 2014 Daniel Elstner <daniel.kitta@gmail.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef LIBSIGROK_HARDWARE_SYSCLK_LWLA_LWLA_H
|
||||
#define LIBSIGROK_HARDWARE_SYSCLK_LWLA_LWLA_H
|
||||
|
||||
#include "libsigrok.h"
|
||||
#include <stdint.h>
|
||||
#include <libusb.h>
|
||||
#include <glib.h>
|
||||
|
||||
struct sr_usb_dev_inst;
|
||||
|
||||
/* Read mixed endian words from a buffer of 16-bit units. */
|
||||
#define LWLA_READ16(buf) GUINT16_FROM_LE(*(buf))
|
||||
#define LWLA_READ32(buf) \
|
||||
(((uint32_t)GUINT16_FROM_LE((buf)[0]) << 16) | \
|
||||
((uint32_t)GUINT16_FROM_LE((buf)[1])))
|
||||
#define LWLA_READ64(buf) \
|
||||
(((uint64_t)LWLA_READ32((buf))) | \
|
||||
((uint64_t)LWLA_READ32((buf) + 2) << 32))
|
||||
|
||||
/* Convert 16-bit argument to little endian. */
|
||||
#define LWLA_WORD(val) GUINT16_TO_LE(val)
|
||||
|
||||
/* Extract 16-bit units from 32/64-bit value in mixed endian order. */
|
||||
#define LWLA_WORD_0(val) GUINT16_TO_LE(((val) & 0xFFFF0000u) >> 16)
|
||||
#define LWLA_WORD_1(val) GUINT16_TO_LE(((val) & 0x0000FFFFu))
|
||||
#define LWLA_WORD_2(val) \
|
||||
GUINT16_TO_LE(((val) & G_GUINT64_CONSTANT(0xFFFF000000000000)) >> 48)
|
||||
#define LWLA_WORD_3(val) \
|
||||
GUINT16_TO_LE(((val) & G_GUINT64_CONSTANT(0x0000FFFF00000000)) >> 32)
|
||||
|
||||
/** USB device end points.
|
||||
*/
|
||||
enum {
|
||||
EP_COMMAND = 2,
|
||||
EP_BITSTREAM = 4,
|
||||
EP_REPLY = 6 | LIBUSB_ENDPOINT_IN
|
||||
};
|
||||
|
||||
/** LWLA protocol command ID codes.
|
||||
*/
|
||||
enum {
|
||||
CMD_READ_REG = 1,
|
||||
CMD_WRITE_REG = 2,
|
||||
CMD_READ_MEM = 6,
|
||||
CMD_CAP_SETUP = 7,
|
||||
CMD_CAP_STATUS = 8,
|
||||
};
|
||||
|
||||
/** LWLA capture state flags.
|
||||
*/
|
||||
enum {
|
||||
STATUS_CAPTURING = 1 << 1,
|
||||
STATUS_TRIGGERED = 1 << 4,
|
||||
STATUS_MEM_AVAIL = 1 << 5,
|
||||
STATUS_FLAG_MASK = 0x3F
|
||||
};
|
||||
|
||||
/** LWLA register addresses.
|
||||
*/
|
||||
enum {
|
||||
REG_MEM_CTRL2 = 0x1074, /* capture buffer control ??? */
|
||||
REG_MEM_FILL = 0x1078, /* capture buffer fill level */
|
||||
REG_MEM_CTRL4 = 0x107C, /* capture buffer control ??? */
|
||||
|
||||
REG_DIV_BYPASS = 0x1094, /* bypass clock divider flag */
|
||||
|
||||
REG_CMD_CTRL1 = 0x10B0, /* command control ??? */
|
||||
REG_CMD_CTRL2 = 0x10B4, /* command control ??? */
|
||||
REG_CMD_CTRL3 = 0x10B8, /* command control ??? */
|
||||
REG_CMD_CTRL4 = 0x10BC, /* command control ??? */
|
||||
|
||||
REG_FREQ_CH1 = 0x10C0, /* channel 1 live frequency */
|
||||
REG_FREQ_CH2 = 0x10C4, /* channel 2 live frequency */
|
||||
REG_FREQ_CH3 = 0x10C8, /* channel 3 live frequency */
|
||||
REG_FREQ_CH4 = 0x10CC, /* channel 4 live frequency */
|
||||
};
|
||||
|
||||
/** Register/value pair.
|
||||
*/
|
||||
struct regval_pair {
|
||||
unsigned int reg;
|
||||
unsigned int val;
|
||||
};
|
||||
|
||||
SR_PRIV int lwla_send_bitstream(const struct sr_usb_dev_inst *usb,
|
||||
const char *filename);
|
||||
|
||||
SR_PRIV int lwla_send_command(const struct sr_usb_dev_inst *usb,
|
||||
const uint16_t *command, int cmd_len);
|
||||
|
||||
SR_PRIV int lwla_receive_reply(const struct sr_usb_dev_inst *usb,
|
||||
uint16_t *reply, int reply_len, int expect_len);
|
||||
|
||||
SR_PRIV int lwla_read_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint16_t reg, uint32_t *value);
|
||||
|
||||
SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint16_t reg, uint32_t value);
|
||||
|
||||
SR_PRIV int lwla_write_regs(const struct sr_usb_dev_inst *usb,
|
||||
const struct regval_pair *regvals, int count);
|
||||
|
||||
#endif /* !LIBSIGROK_HARDWARE_SYSCLK_LWLA_LWLA_H */
|
|
@ -18,23 +18,912 @@
|
|||
*/
|
||||
|
||||
#include "protocol.h"
|
||||
#include <string.h>
|
||||
|
||||
SR_PRIV int sysclk_lwla_receive_data(int fd, int revents, void *cb_data)
|
||||
/* Bit mask covering all 34 channels. */
|
||||
#define ALL_CHANNELS_MASK (((uint64_t)1 << NUM_PROBES) - 1)
|
||||
|
||||
/* Bit mask for the RLE repeat-count-follows flag. */
|
||||
#define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
|
||||
|
||||
/* Start address of capture status memory area to read. */
|
||||
#define CAP_STAT_ADDR 5
|
||||
|
||||
/* Number of 64-bit words read from the capture status memory. */
|
||||
#define CAP_STAT_LEN 5
|
||||
|
||||
/* The bitstream filenames are indexed by the clock source enumeration.
|
||||
*/
|
||||
static const char *const bitstream_map[] = {
|
||||
FIRMWARE_DIR "/sysclk-lwla1034-off.bitstream",
|
||||
FIRMWARE_DIR "/sysclk-lwla1034-int.bitstream",
|
||||
FIRMWARE_DIR "/sysclk-lwla1034-extpos.bitstream",
|
||||
FIRMWARE_DIR "/sysclk-lwla1034-extneg.bitstream",
|
||||
};
|
||||
|
||||
/* Submit an already filled-in USB transfer.
|
||||
*/
|
||||
static int submit_transfer(struct dev_context *devc,
|
||||
struct libusb_transfer *xfer)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = libusb_submit_transfer(xfer);
|
||||
|
||||
if (ret != 0) {
|
||||
sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
|
||||
devc->transfer_error = TRUE;
|
||||
return SR_ERR;
|
||||
}
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Set up the LWLA in preparation for an acquisition session.
|
||||
*/
|
||||
static int capture_setup(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
const struct sr_dev_inst *sdi;
|
||||
struct dev_context *devc;
|
||||
uint64_t divider_count;
|
||||
uint64_t memory_limit;
|
||||
uint16_t command[3 + 10*4];
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
command[0] = LWLA_WORD(CMD_CAP_SETUP);
|
||||
command[1] = LWLA_WORD(0); /* address */
|
||||
command[2] = LWLA_WORD(10); /* length */
|
||||
|
||||
command[3] = LWLA_WORD_0(devc->channel_mask);
|
||||
command[4] = LWLA_WORD_1(devc->channel_mask);
|
||||
command[5] = LWLA_WORD_2(devc->channel_mask);
|
||||
command[6] = LWLA_WORD_3(devc->channel_mask);
|
||||
|
||||
/* Set the clock divide counter maximum for samplerates of up to
|
||||
* 100 MHz. At the highest samplerate of 125 MHz the clock divider
|
||||
* is bypassed.
|
||||
*/
|
||||
if (devc->samplerate > 0 && devc->samplerate < SR_MHZ(100))
|
||||
divider_count = SR_MHZ(100) / devc->samplerate - 1;
|
||||
else
|
||||
divider_count = 0;
|
||||
|
||||
command[7] = LWLA_WORD_0(divider_count);
|
||||
command[8] = LWLA_WORD_1(divider_count);
|
||||
command[9] = LWLA_WORD_2(divider_count);
|
||||
command[10] = LWLA_WORD_3(divider_count);
|
||||
|
||||
command[11] = LWLA_WORD_0(devc->trigger_values);
|
||||
command[12] = LWLA_WORD_1(devc->trigger_values);
|
||||
command[13] = LWLA_WORD_2(devc->trigger_values);
|
||||
command[14] = LWLA_WORD_3(devc->trigger_values);
|
||||
|
||||
command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
|
||||
command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
|
||||
command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
|
||||
command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
|
||||
|
||||
command[19] = LWLA_WORD_0(devc->trigger_mask);
|
||||
command[20] = LWLA_WORD_1(devc->trigger_mask);
|
||||
command[21] = LWLA_WORD_2(devc->trigger_mask);
|
||||
command[22] = LWLA_WORD_3(devc->trigger_mask);
|
||||
|
||||
/* Set the capture memory full threshold. This is slightly less
|
||||
* than the actual maximum, most likely in order to compensate for
|
||||
* pipeline latency.
|
||||
*/
|
||||
memory_limit = MEMORY_DEPTH - 16;
|
||||
|
||||
command[23] = LWLA_WORD_0(memory_limit);
|
||||
command[24] = LWLA_WORD_1(memory_limit);
|
||||
command[25] = LWLA_WORD_2(memory_limit);
|
||||
command[26] = LWLA_WORD_3(memory_limit);
|
||||
|
||||
/* Fill remaining 64-bit words with zeroes. */
|
||||
memset(&command[27], 0, 16 * sizeof(uint16_t));
|
||||
|
||||
return lwla_send_command(sdi->conn, command, G_N_ELEMENTS(command));
|
||||
}
|
||||
|
||||
/* Issue a register write command as an asynchronous USB transfer.
|
||||
*/
|
||||
static int issue_write_reg(const struct sr_dev_inst *sdi,
|
||||
unsigned int reg, unsigned int value)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
|
||||
acq->xfer_buf_out[1] = LWLA_WORD(reg);
|
||||
acq->xfer_buf_out[2] = LWLA_WORD_0(value);
|
||||
acq->xfer_buf_out[3] = LWLA_WORD_1(value);
|
||||
|
||||
acq->xfer_out->length = 4 * sizeof(uint16_t);
|
||||
|
||||
return submit_transfer(devc, acq->xfer_out);
|
||||
}
|
||||
|
||||
/* Issue a register write command as an asynchronous USB transfer for the
|
||||
* next register/value pair of the currently active register write sequence.
|
||||
*/
|
||||
static int issue_next_write_reg(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct regval_pair *regval;
|
||||
int ret;
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
if (devc->reg_write_pos >= devc->reg_write_len) {
|
||||
sr_err("Already written all registers in sequence.");
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
regval = &devc->reg_write_seq[devc->reg_write_pos];
|
||||
|
||||
ret = issue_write_reg(sdi, regval->reg, regval->val);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
++devc->reg_write_pos;
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Issue a capture status request as an asynchronous USB transfer.
|
||||
*/
|
||||
static void request_capture_status(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
|
||||
acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
|
||||
acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
|
||||
|
||||
acq->xfer_out->length = 3 * sizeof(uint16_t);
|
||||
|
||||
if (submit_transfer(devc, acq->xfer_out) == SR_OK)
|
||||
devc->state = STATE_STATUS_REQUEST;
|
||||
}
|
||||
|
||||
/* Issue a request for the capture buffer fill level as
|
||||
* an asynchronous USB transfer.
|
||||
*/
|
||||
static void request_capture_length(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
|
||||
acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
|
||||
|
||||
acq->xfer_out->length = 2 * sizeof(uint16_t);
|
||||
|
||||
if (submit_transfer(devc, acq->xfer_out) == SR_OK)
|
||||
devc->state = STATE_LENGTH_REQUEST;
|
||||
}
|
||||
|
||||
/* Initiate the capture memory read operation: Reset the acquisition state
|
||||
* and start a sequence of register writes in order to set up the device for
|
||||
* reading from the capture buffer.
|
||||
*/
|
||||
static void issue_read_start(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
struct regval_pair *regvals;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
/* Reset RLE state. */
|
||||
acq->rle = RLE_STATE_DATA;
|
||||
acq->sample = 0;
|
||||
acq->run_len = 0;
|
||||
|
||||
acq->captured_samples = 0;
|
||||
acq->transferred_samples = 0;
|
||||
|
||||
/* For some reason, the start address is 4 rather than 0. */
|
||||
acq->mem_addr_done = 4;
|
||||
acq->mem_addr_next = 4;
|
||||
acq->mem_addr_stop = acq->mem_addr_fill;
|
||||
|
||||
/* Byte offset into the packet output buffer. */
|
||||
acq->out_offset = 0;
|
||||
|
||||
regvals = devc->reg_write_seq;
|
||||
|
||||
regvals[0].reg = REG_DIV_BYPASS;
|
||||
regvals[0].val = 1;
|
||||
|
||||
regvals[1].reg = REG_MEM_CTRL2;
|
||||
regvals[1].val = 2;
|
||||
|
||||
regvals[2].reg = REG_MEM_CTRL4;
|
||||
regvals[2].val = 4;
|
||||
|
||||
devc->reg_write_pos = 0;
|
||||
devc->reg_write_len = 3;
|
||||
|
||||
if (issue_next_write_reg(sdi) == SR_OK)
|
||||
devc->state = STATE_READ_PREPARE;
|
||||
}
|
||||
|
||||
static void issue_read_end(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
|
||||
devc->state = STATE_READ_END;
|
||||
}
|
||||
|
||||
/* Decode an incoming reponse to a buffer fill level request and act on it
|
||||
* as appropriate. Note that this function changes the device context state.
|
||||
*/
|
||||
static void process_capture_length(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
if (acq->xfer_in->actual_length != 4) {
|
||||
sr_err("Received size %d doesn't match expected size 4.",
|
||||
acq->xfer_in->actual_length);
|
||||
devc->transfer_error = TRUE;
|
||||
return;
|
||||
}
|
||||
acq->mem_addr_fill = LWLA_READ32(acq->xfer_buf_in);
|
||||
|
||||
sr_dbg("%lu words in capture buffer.",
|
||||
(unsigned long)acq->mem_addr_fill);
|
||||
|
||||
if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE)
|
||||
issue_read_start(sdi);
|
||||
else
|
||||
issue_read_end(sdi);
|
||||
}
|
||||
|
||||
/* Initiate a sequence of register write commands with the effect of
|
||||
* cancelling a running capture operation. This sets a new device state
|
||||
* if issuing the first command succeeds.
|
||||
*/
|
||||
static void issue_stop_capture(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct regval_pair *regvals;
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
if (devc->stopping_in_progress)
|
||||
return;
|
||||
|
||||
regvals = devc->reg_write_seq;
|
||||
|
||||
regvals[0].reg = REG_CMD_CTRL2;
|
||||
regvals[0].val = 10;
|
||||
|
||||
regvals[1].reg = REG_CMD_CTRL3;
|
||||
regvals[1].val = 0;
|
||||
|
||||
regvals[2].reg = REG_CMD_CTRL4;
|
||||
regvals[2].val = 0;
|
||||
|
||||
regvals[3].reg = REG_CMD_CTRL1;
|
||||
regvals[3].val = 0;
|
||||
|
||||
regvals[4].reg = REG_DIV_BYPASS;
|
||||
regvals[4].val = 0;
|
||||
|
||||
devc->reg_write_pos = 0;
|
||||
devc->reg_write_len = 5;
|
||||
|
||||
if (issue_next_write_reg(sdi) == SR_OK) {
|
||||
devc->stopping_in_progress = TRUE;
|
||||
devc->state = STATE_STOP_CAPTURE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Decode an incoming capture status reponse and act on it as appropriate.
|
||||
* Note that this function changes the device state.
|
||||
*/
|
||||
static void process_capture_status(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
|
||||
sr_err("Received size %d doesn't match expected size %d.",
|
||||
acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
|
||||
devc->transfer_error = TRUE;
|
||||
return;
|
||||
}
|
||||
|
||||
/* TODO: Find out the actual bit width of these fields as stored
|
||||
* in the FPGA. These fields are definitely less than 64 bit wide
|
||||
* internally, and the unused bits occasionally even contain garbage.
|
||||
*/
|
||||
acq->mem_addr_fill = LWLA_READ32(&acq->xfer_buf_in[0]);
|
||||
acq->captured_samples = LWLA_READ32(&acq->xfer_buf_in[8])
|
||||
* (uint64_t)100000;
|
||||
acq->capture_flags = LWLA_READ32(&acq->xfer_buf_in[16])
|
||||
& STATUS_FLAG_MASK;
|
||||
|
||||
sr_spew("Captured %lu words, %" PRIu64 " samples, flags 0x%02X",
|
||||
(unsigned long)acq->mem_addr_fill,
|
||||
acq->captured_samples, acq->capture_flags);
|
||||
|
||||
if (acq->captured_samples >= devc->limit_samples) {
|
||||
issue_stop_capture(sdi);
|
||||
return;
|
||||
}
|
||||
devc->state = STATE_STATUS_WAIT;
|
||||
|
||||
if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
|
||||
sr_spew("Waiting for trigger.");
|
||||
} else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
|
||||
sr_dbg("Capture memory filled.");
|
||||
request_capture_length(sdi);
|
||||
} else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
|
||||
sr_spew("Sampling in progress.");
|
||||
}
|
||||
}
|
||||
|
||||
/* Issue a capture buffer read request as an asynchronous USB transfer.
|
||||
* The address and size of the memory area to read are derived from the
|
||||
* current acquisition state.
|
||||
*/
|
||||
static void request_read_mem(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
size_t count;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
if (acq->mem_addr_next >= acq->mem_addr_stop)
|
||||
return;
|
||||
|
||||
/* Always read a multiple of 8 device words. */
|
||||
count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
|
||||
count = MIN(count, READ_CHUNK_LEN);
|
||||
|
||||
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
|
||||
acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
|
||||
acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
|
||||
acq->xfer_buf_out[3] = LWLA_WORD_0(count);
|
||||
acq->xfer_buf_out[4] = LWLA_WORD_1(count);
|
||||
|
||||
acq->xfer_out->length = 5 * sizeof(uint16_t);
|
||||
|
||||
if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
|
||||
acq->mem_addr_next += count;
|
||||
devc->state = STATE_READ_REQUEST;
|
||||
}
|
||||
}
|
||||
|
||||
/* Send a packet of logic samples to the session bus. The payload is taken
|
||||
* from the acquisition state. The return value indicates whether to stop
|
||||
* reading more samples.
|
||||
*/
|
||||
static gboolean send_logic_packet(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
uint64_t samples;
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
struct sr_datafeed_packet packet;
|
||||
struct sr_datafeed_logic logic;
|
||||
int last;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
if (acq->transferred_samples >= devc->limit_samples)
|
||||
return TRUE;
|
||||
|
||||
packet.type = SR_DF_LOGIC;
|
||||
packet.payload = &logic;
|
||||
logic.unitsize = UNIT_SIZE;
|
||||
logic.data = acq->out_packet;
|
||||
logic.length = acq->out_offset;
|
||||
|
||||
samples = acq->out_offset / UNIT_SIZE;
|
||||
last = FALSE;
|
||||
|
||||
/* Cut the packet short if necessary. */
|
||||
if (acq->transferred_samples + samples >= devc->limit_samples) {
|
||||
samples = devc->limit_samples - acq->transferred_samples;
|
||||
logic.length = samples * UNIT_SIZE;
|
||||
last = TRUE;
|
||||
}
|
||||
acq->transferred_samples += samples;
|
||||
acq->out_offset = 0;
|
||||
|
||||
/* Send off logic datafeed packet. */
|
||||
sr_session_send(sdi, &packet);
|
||||
|
||||
return last;
|
||||
}
|
||||
|
||||
/* Demangle and decompress incoming sample data from the capture buffer.
|
||||
* The data chunk is taken from the acquisition state, and is expected to
|
||||
* contain a multiple of 8 device words.
|
||||
* All data currently in the acquisition buffer will be processed. Packets
|
||||
* of decoded samples are sent off to the session bus whenever the output
|
||||
* buffer becomes full while decoding.
|
||||
*/
|
||||
static int process_sample_data(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
uint64_t sample;
|
||||
uint64_t run_len;
|
||||
uint64_t high_nibbles;
|
||||
uint64_t word;
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
uint8_t *out_p;
|
||||
uint16_t *slice;
|
||||
size_t expect_len;
|
||||
size_t actual_len;
|
||||
size_t in_words_left;
|
||||
size_t si;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
if (acq->mem_addr_done >= acq->mem_addr_stop
|
||||
|| acq->transferred_samples >= devc->limit_samples)
|
||||
return SR_OK;
|
||||
|
||||
in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
|
||||
READ_CHUNK_LEN);
|
||||
expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint16_t);
|
||||
actual_len = acq->xfer_in->actual_length;
|
||||
|
||||
if (actual_len != expect_len) {
|
||||
sr_err("Received size %lu does not match expected size %lu.",
|
||||
(unsigned long)actual_len, (unsigned long)expect_len);
|
||||
devc->transfer_error = TRUE;
|
||||
return SR_ERR;
|
||||
}
|
||||
acq->mem_addr_done += in_words_left;
|
||||
slice = acq->xfer_buf_in;
|
||||
si = 0; /* word index within slice */
|
||||
|
||||
for (;;) {
|
||||
sample = acq->sample;
|
||||
/* Expand run-length samples into session packet. */
|
||||
for (run_len = acq->run_len; run_len > 0; --run_len) {
|
||||
out_p = &acq->out_packet[acq->out_offset];
|
||||
out_p[0] = sample & 0xFF;
|
||||
out_p[1] = (sample >> 8) & 0xFF;
|
||||
out_p[2] = (sample >> 16) & 0xFF;
|
||||
out_p[3] = (sample >> 24) & 0xFF;
|
||||
out_p[4] = (sample >> 32) & 0xFF;
|
||||
acq->out_offset += UNIT_SIZE;
|
||||
|
||||
/* Send out packet if it is full. */
|
||||
if (acq->out_offset > PACKET_SIZE - UNIT_SIZE)
|
||||
if (send_logic_packet(sdi))
|
||||
return SR_OK; /* sample limit reached */
|
||||
}
|
||||
acq->run_len = 0;
|
||||
|
||||
if (in_words_left == 0)
|
||||
break; /* done with current chunk */
|
||||
|
||||
/* Now work on the current slice. */
|
||||
high_nibbles = LWLA_READ32(&slice[8 * 2]);
|
||||
word = LWLA_READ32(&slice[si * 2]);
|
||||
word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
|
||||
|
||||
if (acq->rle == RLE_STATE_DATA) {
|
||||
acq->sample = word & ALL_CHANNELS_MASK;
|
||||
acq->run_len = ((word >> NUM_PROBES) & 1) + 1;
|
||||
if (word & RLE_FLAG_LEN_FOLLOWS)
|
||||
acq->rle = RLE_STATE_LEN;
|
||||
} else {
|
||||
acq->run_len += word << 1;
|
||||
acq->rle = RLE_STATE_DATA;
|
||||
}
|
||||
|
||||
/* Move to next word. */
|
||||
if (++si >= 8) {
|
||||
si = 0;
|
||||
slice += 9 * 2;
|
||||
}
|
||||
--in_words_left;
|
||||
}
|
||||
|
||||
/* Send out partially filled packet if it is the last one. */
|
||||
if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_offset > 0)
|
||||
send_logic_packet(sdi);
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Finish an acquisition session. This sends the end packet to the session
|
||||
* bus and removes the listener for asynchronous USB transfers.
|
||||
*/
|
||||
static void end_acquisition(struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct drv_context *drvc;
|
||||
struct dev_context *devc;
|
||||
struct sr_datafeed_packet packet;
|
||||
|
||||
drvc = sdi->driver->priv;
|
||||
devc = sdi->priv;
|
||||
|
||||
if (devc->state == STATE_IDLE)
|
||||
return;
|
||||
|
||||
devc->state = STATE_IDLE;
|
||||
|
||||
/* Remove USB file descriptors from polling. */
|
||||
usb_source_remove(drvc->sr_ctx);
|
||||
|
||||
packet.type = SR_DF_END;
|
||||
sr_session_send(sdi, &packet);
|
||||
|
||||
lwla_free_acquisition_state(devc->acquisition);
|
||||
devc->acquisition = NULL;
|
||||
|
||||
sdi->status = SR_ST_ACTIVE;
|
||||
}
|
||||
|
||||
/* USB output transfer completion callback.
|
||||
*/
|
||||
static void receive_transfer_out(struct libusb_transfer *transfer)
|
||||
{
|
||||
struct sr_dev_inst *sdi;
|
||||
struct dev_context *devc;
|
||||
|
||||
sdi = transfer->user_data;
|
||||
devc = sdi->priv;
|
||||
|
||||
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
|
||||
sr_err("Transfer to device failed: %d.", transfer->status);
|
||||
devc->transfer_error = TRUE;
|
||||
return;
|
||||
}
|
||||
|
||||
if (devc->reg_write_pos < devc->reg_write_len) {
|
||||
issue_next_write_reg(sdi);
|
||||
} else {
|
||||
switch (devc->state) {
|
||||
case STATE_START_CAPTURE:
|
||||
devc->state = STATE_STATUS_WAIT;
|
||||
break;
|
||||
case STATE_STATUS_REQUEST:
|
||||
devc->state = STATE_STATUS_RESPONSE;
|
||||
submit_transfer(devc, devc->acquisition->xfer_in);
|
||||
break;
|
||||
case STATE_STOP_CAPTURE:
|
||||
if (sdi->status == SR_ST_ACTIVE)
|
||||
request_capture_length(sdi);
|
||||
else
|
||||
end_acquisition(sdi);
|
||||
break;
|
||||
case STATE_LENGTH_REQUEST:
|
||||
devc->state = STATE_LENGTH_RESPONSE;
|
||||
submit_transfer(devc, devc->acquisition->xfer_in);
|
||||
break;
|
||||
case STATE_READ_PREPARE:
|
||||
request_read_mem(sdi);
|
||||
break;
|
||||
case STATE_READ_REQUEST:
|
||||
devc->state = STATE_READ_RESPONSE;
|
||||
submit_transfer(devc, devc->acquisition->xfer_in);
|
||||
break;
|
||||
case STATE_READ_END:
|
||||
end_acquisition(sdi);
|
||||
break;
|
||||
default:
|
||||
sr_err("Unexpected device state %d.", devc->state);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* USB input transfer completion callback.
|
||||
*/
|
||||
static void receive_transfer_in(struct libusb_transfer *transfer)
|
||||
{
|
||||
struct sr_dev_inst *sdi;
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
|
||||
sdi = transfer->user_data;
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
|
||||
sr_err("Transfer from device failed: %d.", transfer->status);
|
||||
devc->transfer_error = TRUE;
|
||||
return;
|
||||
}
|
||||
|
||||
switch (devc->state) {
|
||||
case STATE_STATUS_RESPONSE:
|
||||
process_capture_status(sdi);
|
||||
break;
|
||||
case STATE_LENGTH_RESPONSE:
|
||||
process_capture_length(sdi);
|
||||
break;
|
||||
case STATE_READ_RESPONSE:
|
||||
if (process_sample_data(sdi) == SR_OK
|
||||
&& acq->mem_addr_next < acq->mem_addr_stop
|
||||
&& acq->transferred_samples < devc->limit_samples)
|
||||
request_read_mem(sdi);
|
||||
else
|
||||
issue_read_end(sdi);
|
||||
break;
|
||||
default:
|
||||
sr_err("Unexpected device state %d.", devc->state);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* Initialize the LWLA. This downloads a bitstream into the FPGA
|
||||
* and executes a simple device test sequence.
|
||||
*/
|
||||
SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
int ret;
|
||||
uint32_t value;
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
/* Select internal clock if it hasn't been set yet */
|
||||
if (devc->selected_clock_source == CLOCK_SOURCE_NONE)
|
||||
devc->selected_clock_source = CLOCK_SOURCE_INT;
|
||||
|
||||
/* Force reload of bitstream */
|
||||
devc->cur_clock_source = CLOCK_SOURCE_NONE;
|
||||
|
||||
ret = lwla_set_clock_source(sdi);
|
||||
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
sr_info("Received test word 0x%08X back.", value);
|
||||
if (value != 0x12345678)
|
||||
return SR_ERR;
|
||||
|
||||
ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
sr_info("Received test word 0x%08X back.", value);
|
||||
if (value != 0x12345678)
|
||||
return SR_ERR;
|
||||
|
||||
ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
sr_info("Received test word 0x%08X back.", value);
|
||||
if (value != 0x87654321)
|
||||
return SR_ERR;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Select the LWLA clock source. If the clock source changed from the
|
||||
* previous setting, this will download a new bitstream to the FPGA.
|
||||
*/
|
||||
SR_PRIV int lwla_set_clock_source(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
int ret;
|
||||
enum clock_source selected;
|
||||
|
||||
devc = sdi->priv;
|
||||
selected = devc->selected_clock_source;
|
||||
|
||||
if (devc->cur_clock_source != selected) {
|
||||
devc->cur_clock_source = CLOCK_SOURCE_NONE;
|
||||
|
||||
if (selected >= 0 && selected < G_N_ELEMENTS(bitstream_map)) {
|
||||
ret = lwla_send_bitstream(sdi->conn,
|
||||
bitstream_map[selected]);
|
||||
if (ret == SR_OK)
|
||||
devc->cur_clock_source = selected;
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Configure the LWLA in preparation for an acquisition session.
|
||||
*/
|
||||
SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
struct regval_pair regvals[7];
|
||||
int ret;
|
||||
|
||||
devc = sdi->priv;
|
||||
usb = sdi->conn;
|
||||
|
||||
regvals[0].reg = REG_MEM_CTRL2;
|
||||
regvals[0].val = 2;
|
||||
|
||||
regvals[1].reg = REG_MEM_CTRL2;
|
||||
regvals[1].val = 1;
|
||||
|
||||
regvals[2].reg = REG_CMD_CTRL2;
|
||||
regvals[2].val = 10;
|
||||
|
||||
regvals[3].reg = REG_CMD_CTRL3;
|
||||
regvals[3].val = 0x74;
|
||||
|
||||
regvals[4].reg = REG_CMD_CTRL4;
|
||||
regvals[4].val = 0;
|
||||
|
||||
regvals[5].reg = REG_CMD_CTRL1;
|
||||
regvals[5].val = 0;
|
||||
|
||||
regvals[6].reg = REG_DIV_BYPASS;
|
||||
regvals[6].val = (devc->samplerate > SR_MHZ(100)) ? 1 : 0;
|
||||
|
||||
ret = lwla_write_regs(usb, regvals, G_N_ELEMENTS(regvals));
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
return capture_setup(sdi);
|
||||
}
|
||||
|
||||
/* Start the capture operation on the LWLA device. Beginning with this
|
||||
* function, all USB transfers will be asynchronous until the end of the
|
||||
* acquisition session.
|
||||
*/
|
||||
SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
struct acquisition_state *acq;
|
||||
struct regval_pair *regvals;
|
||||
|
||||
devc = sdi->priv;
|
||||
usb = sdi->conn;
|
||||
acq = devc->acquisition;
|
||||
|
||||
libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
|
||||
(unsigned char *)acq->xfer_buf_out, 0,
|
||||
&receive_transfer_out,
|
||||
(struct sr_dev_inst *)sdi, USB_TIMEOUT);
|
||||
|
||||
libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
|
||||
(unsigned char *)acq->xfer_buf_in,
|
||||
sizeof acq->xfer_buf_in,
|
||||
&receive_transfer_in,
|
||||
(struct sr_dev_inst *)sdi, USB_TIMEOUT);
|
||||
|
||||
regvals = devc->reg_write_seq;
|
||||
|
||||
regvals[0].reg = REG_CMD_CTRL2;
|
||||
regvals[0].val = 10;
|
||||
|
||||
regvals[1].reg = REG_CMD_CTRL3;
|
||||
regvals[1].val = 1;
|
||||
|
||||
regvals[2].reg = REG_CMD_CTRL4;
|
||||
regvals[2].val = 0;
|
||||
|
||||
regvals[3].reg = REG_CMD_CTRL1;
|
||||
regvals[3].val = 0;
|
||||
|
||||
devc->reg_write_pos = 0;
|
||||
devc->reg_write_len = 4;
|
||||
|
||||
devc->state = STATE_START_CAPTURE;
|
||||
|
||||
return issue_next_write_reg(sdi);
|
||||
}
|
||||
|
||||
/* Allocate an acquisition state object.
|
||||
*/
|
||||
SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
|
||||
{
|
||||
struct acquisition_state *acq;
|
||||
|
||||
acq = g_try_new0(struct acquisition_state, 1);
|
||||
if (!acq) {
|
||||
sr_err("Acquisition state malloc failed.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
acq->xfer_in = libusb_alloc_transfer(0);
|
||||
if (!acq->xfer_in) {
|
||||
sr_err("Transfer malloc failed.");
|
||||
g_free(acq);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
acq->xfer_out = libusb_alloc_transfer(0);
|
||||
if (!acq->xfer_out) {
|
||||
sr_err("Transfer malloc failed.");
|
||||
libusb_free_transfer(acq->xfer_in);
|
||||
g_free(acq);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return acq;
|
||||
}
|
||||
|
||||
/* Deallocate an acquisition state object.
|
||||
*/
|
||||
SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
|
||||
{
|
||||
if (acq) {
|
||||
libusb_free_transfer(acq->xfer_out);
|
||||
libusb_free_transfer(acq->xfer_in);
|
||||
g_free(acq);
|
||||
}
|
||||
}
|
||||
|
||||
/* USB I/O source callback.
|
||||
*/
|
||||
SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
|
||||
{
|
||||
struct sr_dev_inst *sdi;
|
||||
struct dev_context *devc;
|
||||
struct drv_context *drvc;
|
||||
struct timeval tv;
|
||||
int ret;
|
||||
|
||||
(void)fd;
|
||||
|
||||
if (!(sdi = cb_data))
|
||||
return TRUE;
|
||||
sdi = cb_data;
|
||||
devc = sdi->priv;
|
||||
drvc = sdi->driver->priv;
|
||||
|
||||
if (!(devc = sdi->priv))
|
||||
return TRUE;
|
||||
if (!devc || !drvc)
|
||||
return FALSE;
|
||||
|
||||
if (revents == G_IO_IN) {
|
||||
/* TODO */
|
||||
/* No timeout: return immediately. */
|
||||
tv.tv_sec = 0;
|
||||
tv.tv_usec = 0;
|
||||
|
||||
ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
|
||||
&tv, NULL);
|
||||
if (ret != 0)
|
||||
sr_err("Event handling failed: %s.", libusb_error_name(ret));
|
||||
|
||||
/* If no event flags are set the timeout must have expired. */
|
||||
if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
|
||||
if (sdi->status == SR_ST_STOPPING)
|
||||
issue_stop_capture(sdi);
|
||||
else
|
||||
request_capture_status(sdi);
|
||||
}
|
||||
|
||||
/* Check if an error occurred on a transfer. */
|
||||
if (devc->transfer_error)
|
||||
end_acquisition(sdi);
|
||||
|
||||
return TRUE;
|
||||
}
|
||||
|
|
|
@ -20,26 +20,194 @@
|
|||
#ifndef LIBSIGROK_HARDWARE_SYSCLK_LWLA_PROTOCOL_H
|
||||
#define LIBSIGROK_HARDWARE_SYSCLK_LWLA_PROTOCOL_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <glib.h>
|
||||
#include "libsigrok.h"
|
||||
#include "libsigrok-internal.h"
|
||||
|
||||
/* Message logging helpers with subsystem-specific prefix string. */
|
||||
#define LOG_PREFIX "sysclk-lwla"
|
||||
|
||||
/** Private, per-device-instance driver context. */
|
||||
struct dev_context {
|
||||
/* Model-specific information */
|
||||
#include "lwla.h"
|
||||
#include "libsigrok.h"
|
||||
#include "libsigrok-internal.h"
|
||||
#include <stdint.h>
|
||||
#include <glib.h>
|
||||
|
||||
/* Acquisition settings */
|
||||
/* For now, only the LWLA1034 is supported.
|
||||
*/
|
||||
#define VENDOR_NAME "SysClk"
|
||||
#define MODEL_NAME "LWLA1034"
|
||||
|
||||
/* Operational state */
|
||||
#define USB_VID_PID "2961.6689"
|
||||
#define USB_INTERFACE 0
|
||||
#define USB_TIMEOUT 3000 /* ms */
|
||||
|
||||
/* Temporary state across callbacks */
|
||||
#define NUM_PROBES 34
|
||||
#define TRIGGER_TYPES "01fr"
|
||||
|
||||
/** Unit and packet size for the sigrok logic datafeed.
|
||||
*/
|
||||
#define UNIT_SIZE ((NUM_PROBES + 7) / 8)
|
||||
#define PACKET_SIZE (10000 * UNIT_SIZE) /* bytes */
|
||||
|
||||
/** Size of the acquisition buffer in device memory units.
|
||||
*/
|
||||
#define MEMORY_DEPTH (256 * 1024) /* 256k x 36 bit */
|
||||
|
||||
/** Number of device memory units (36 bit) to read at a time. Slices of 8
|
||||
* consecutive 36-bit words are mapped to 9 32-bit words each, so the chunk
|
||||
* length should be a multiple of 8 to ensure alignment to slice boundaries.
|
||||
*
|
||||
* Experimentation has shown that reading chunks larger than about 1024 bytes
|
||||
* is unreliable. The threshold seems to relate to the buffer size on the FX2
|
||||
* USB chip: The configured endpoint buffer size is 512, and with double or
|
||||
* triple buffering enabled a multiple of 512 bytes can be kept in fly.
|
||||
*
|
||||
* The vendor software limits reads to 120 words (15 slices, 540 bytes) at
|
||||
* a time. So far, it appears safe to increase this to 224 words (28 slices,
|
||||
* 1008 bytes), thus making the most of two 512 byte buffers.
|
||||
*/
|
||||
#define READ_CHUNK_LEN (28 * 8)
|
||||
|
||||
/** Calculate the required buffer size in 16-bit units for reading a given
|
||||
* number of device memory words. Rounded to a multiple of 8 device words.
|
||||
*/
|
||||
#define LWLA1034_MEMBUF_LEN(count) (((count) + 7) / 8 * 18)
|
||||
|
||||
/** Maximum number of 16-bit words sent at a time during acquisition.
|
||||
* Used for allocating the libusb transfer buffer.
|
||||
*/
|
||||
#define MAX_ACQ_SEND_WORDS 8 /* 5 for memory read request plus stuffing */
|
||||
|
||||
/** Maximum number of 16-bit words received at a time during acquisition.
|
||||
* Round to the next multiple of the endpoint buffer size to avoid nasty
|
||||
* transfer overflow conditions on hiccups.
|
||||
*/
|
||||
#define MAX_ACQ_RECV_WORDS ((READ_CHUNK_LEN / 4 * 9 + 255) / 256 * 256)
|
||||
|
||||
/** Maximum length of a register write sequence.
|
||||
*/
|
||||
#define MAX_REG_WRITE_SEQ_LEN 5
|
||||
|
||||
/** Default configured samplerate.
|
||||
*/
|
||||
#define DEFAULT_SAMPLERATE SR_MHZ(125)
|
||||
|
||||
/** LWLA clock sources.
|
||||
*/
|
||||
enum clock_source {
|
||||
CLOCK_SOURCE_NONE,
|
||||
CLOCK_SOURCE_INT,
|
||||
CLOCK_SOURCE_EXT_RISE,
|
||||
CLOCK_SOURCE_EXT_FALL,
|
||||
};
|
||||
|
||||
SR_PRIV int sysclk_lwla_receive_data(int fd, int revents, void *cb_data);
|
||||
/** LWLA device states.
|
||||
*/
|
||||
enum device_state {
|
||||
STATE_IDLE = 0,
|
||||
|
||||
#endif
|
||||
STATE_START_CAPTURE,
|
||||
|
||||
STATE_STATUS_WAIT,
|
||||
STATE_STATUS_REQUEST,
|
||||
STATE_STATUS_RESPONSE,
|
||||
|
||||
STATE_STOP_CAPTURE,
|
||||
|
||||
STATE_LENGTH_REQUEST,
|
||||
STATE_LENGTH_RESPONSE,
|
||||
|
||||
STATE_READ_PREPARE,
|
||||
STATE_READ_REQUEST,
|
||||
STATE_READ_RESPONSE,
|
||||
STATE_READ_END,
|
||||
};
|
||||
|
||||
/** LWLA run-length encoding states.
|
||||
*/
|
||||
enum rle_state {
|
||||
RLE_STATE_DATA,
|
||||
RLE_STATE_LEN
|
||||
};
|
||||
|
||||
/** LWLA sample acquisition and decompression state.
|
||||
*/
|
||||
struct acquisition_state {
|
||||
uint64_t sample;
|
||||
uint64_t run_len;
|
||||
|
||||
/** Number of samples acquired so far. */
|
||||
uint64_t captured_samples;
|
||||
/** Number of samples sent to the session bus. */
|
||||
uint64_t transferred_samples;
|
||||
|
||||
/** Capture memory fill level. */
|
||||
size_t mem_addr_fill;
|
||||
|
||||
size_t mem_addr_done;
|
||||
size_t mem_addr_next;
|
||||
size_t mem_addr_stop;
|
||||
|
||||
size_t out_offset;
|
||||
|
||||
struct libusb_transfer *xfer_in;
|
||||
struct libusb_transfer *xfer_out;
|
||||
|
||||
unsigned int capture_flags;
|
||||
|
||||
enum rle_state rle;
|
||||
|
||||
/* Payload data buffers for outgoing and incoming transfers. */
|
||||
uint16_t xfer_buf_out[MAX_ACQ_SEND_WORDS];
|
||||
uint16_t xfer_buf_in[MAX_ACQ_RECV_WORDS];
|
||||
|
||||
/* Payload buffer for sigrok logic packets. */
|
||||
uint8_t out_packet[PACKET_SIZE];
|
||||
};
|
||||
|
||||
/** Private, per-device-instance driver context.
|
||||
*/
|
||||
struct dev_context {
|
||||
/** The samplerate selected by the user. */
|
||||
uint64_t samplerate;
|
||||
|
||||
/** The maximimum number of samples to acquire. */
|
||||
uint64_t limit_samples;
|
||||
|
||||
/** Channels to use. */
|
||||
uint64_t channel_mask;
|
||||
|
||||
uint64_t trigger_mask;
|
||||
uint64_t trigger_edge_mask;
|
||||
uint64_t trigger_values;
|
||||
|
||||
struct acquisition_state *acquisition;
|
||||
|
||||
struct regval_pair reg_write_seq[MAX_REG_WRITE_SEQ_LEN];
|
||||
int reg_write_pos;
|
||||
int reg_write_len;
|
||||
|
||||
enum device_state state;
|
||||
enum device_state next_state;
|
||||
|
||||
/** The currently configured clock source of the device. */
|
||||
enum clock_source cur_clock_source;
|
||||
/** The clock source selected by the user. */
|
||||
enum clock_source selected_clock_source;
|
||||
|
||||
/* Indicates that stopping the acquisition is currently in progress. */
|
||||
gboolean stopping_in_progress;
|
||||
|
||||
/* Indicates whether a transfer failed. */
|
||||
gboolean transfer_error;
|
||||
};
|
||||
|
||||
SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void);
|
||||
SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq);
|
||||
|
||||
SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi);
|
||||
SR_PRIV int lwla_set_clock_source(const struct sr_dev_inst *sdi);
|
||||
SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi);
|
||||
SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi);
|
||||
SR_PRIV int lwla_abort_acquisition(const struct sr_dev_inst *sdi);
|
||||
|
||||
SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data);
|
||||
|
||||
#endif /* !LIBSIGROK_HARDWARE_SYSCLK_LWLA_PROTOCOL_H */
|
||||
|
|
Loading…
Reference in New Issue