yokogawa-dlm: Flesh out driver with current state of development

This commit is contained in:
Soeren Apel 2014-08-26 16:09:28 +02:00
parent 107639373d
commit 8ab929d614
5 changed files with 2150 additions and 12 deletions

View File

@ -21,22 +21,703 @@
#include <stdlib.h>
#include "protocol.h"
SR_PRIV struct sr_dev_driver yokogawa_dlm_driver_info;
static struct sr_dev_driver *di = &yokogawa_dlm_driver_info;
static char *MANUFACTURER_ID = "YOKOGAWA";
static char *MANUFACTURER_NAME = "Yokogawa";
enum {
CG_INVALID = -1,
CG_NONE,
CG_ANALOG,
CG_DIGITAL,
};
static int init(struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static struct sr_dev_inst *probe_usbtmc_device(struct sr_scpi_dev_inst *scpi)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
struct sr_scpi_hw_info *hw_info;
char *model_name;
int model_index;
sdi = NULL;
devc = NULL;
hw_info = NULL;
if (sr_scpi_get_hw_id(scpi, &hw_info) != SR_OK) {
sr_info("Couldn't get IDN response.");
goto fail;
}
if (strcmp(hw_info->manufacturer, MANUFACTURER_ID) != 0)
goto fail;
if (dlm_model_get(hw_info->model, &model_name, &model_index) != SR_OK)
goto fail;
if (!(sdi = sr_dev_inst_new(0, SR_ST_ACTIVE, MANUFACTURER_NAME,
model_name, NULL)))
goto fail;
sr_scpi_hw_info_free(hw_info);
hw_info = NULL;
if (!(devc = g_try_malloc0(sizeof(struct dev_context))))
goto fail;
sdi->driver = di;
sdi->priv = devc;
sdi->inst_type = SR_INST_SCPI;
sdi->conn = scpi;
if (dlm_device_init(sdi, model_index) != SR_OK)
goto fail;
sr_scpi_close(sdi->conn);
sdi->status = SR_ST_INACTIVE;
return sdi;
fail:
if (hw_info)
sr_scpi_hw_info_free(hw_info);
if (sdi)
sr_dev_inst_free(sdi);
if (devc)
g_free(devc);
return NULL;
}
static GSList *scan(GSList *options)
{
return sr_scpi_scan(di->priv, options, probe_usbtmc_device);
}
static GSList *dev_list(void)
{
return ((struct drv_context *)(di->priv))->instances;
}
static void clear_helper(void *priv)
{
struct dev_context *devc;
devc = priv;
dlm_scope_state_destroy(devc->model_state);
g_free(devc->analog_groups);
g_free(devc->digital_groups);
g_free(devc);
}
static int dev_clear(void)
{
return std_dev_clear(di, clear_helper);
}
static int dev_open(struct sr_dev_inst *sdi)
{
if (sdi->status != SR_ST_ACTIVE && sr_scpi_open(sdi->conn) != SR_OK)
return SR_ERR;
if (dlm_scope_state_query(sdi) != SR_OK)
return SR_ERR;
sdi->status = SR_ST_ACTIVE;
return SR_OK;
}
static int dev_close(struct sr_dev_inst *sdi)
{
if (sdi->status == SR_ST_INACTIVE)
return SR_OK;
sr_scpi_close(sdi->conn);
sdi->status = SR_ST_INACTIVE;
return SR_OK;
}
static int cleanup(void)
{
dev_clear();
return SR_OK;
}
/**
* Check which category a given channel group belongs to.
*
* @param devc Our internal device context.
* @param cg The channel group to check.
*
* @retval CG_NONE cg is NULL
* @retval CG_ANALOG cg is an analog group
* @retval CG_DIGITAL cg is a digital group
* @retval CG_INVALID cg is something else
*/
static int check_channel_group(struct dev_context *devc,
const struct sr_channel_group *cg)
{
unsigned int i;
struct scope_config *model;
model = devc->model_config;
if (!cg)
return CG_NONE;
for (i = 0; i < model->analog_channels; ++i)
if (cg == devc->analog_groups[i])
return CG_ANALOG;
for (i = 0; i < model->pods; ++i)
if (cg == devc->digital_groups[i])
return CG_DIGITAL;
sr_err("Invalid channel group specified.");
return CG_INVALID;
}
static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
int ret, cg_type;
unsigned int i;
struct dev_context *devc;
struct scope_config *model;
struct scope_state *state;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if ((cg_type = check_channel_group(devc, cg)) == CG_INVALID)
return SR_ERR;
ret = SR_ERR_NA;
model = devc->model_config;
state = devc->model_state;
switch (key) {
case SR_CONF_NUM_TIMEBASE:
*data = g_variant_new_int32(model->num_xdivs);
ret = SR_OK;
break;
case SR_CONF_TIMEBASE:
*data = g_variant_new("(tt)",
(*model->timebases)[state->timebase][0],
(*model->timebases)[state->timebase][1]);
ret = SR_OK;
break;
case SR_CONF_NUM_VDIV:
if (cg_type == CG_NONE) {
sr_err("No channel group specified.");
return SR_ERR_CHANNEL_GROUP;
} else if (cg_type == CG_ANALOG) {
*data = g_variant_new_int32(model->num_ydivs);
ret = SR_OK;
break;
} else {
ret = SR_ERR_NA;
}
break;
case SR_CONF_VDIV:
ret = SR_ERR_NA;
if (cg_type == CG_NONE) {
sr_err("No channel group specified.");
return SR_ERR_CHANNEL_GROUP;
} else if (cg_type != CG_ANALOG)
break;
for (i = 0; i < model->analog_channels; ++i) {
if (cg != devc->analog_groups[i])
continue;
*data = g_variant_new("(tt)",
(*model->vdivs)[state->analog_states[i].vdiv][0],
(*model->vdivs)[state->analog_states[i].vdiv][1]);
ret = SR_OK;
break;
}
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_string((*model->trigger_sources)[state->trigger_source]);
ret = SR_OK;
break;
case SR_CONF_TRIGGER_SLOPE:
*data = g_variant_new_string((*model->trigger_slopes)[state->trigger_slope]);
ret = SR_OK;
break;
case SR_CONF_HORIZ_TRIGGERPOS:
*data = g_variant_new_double(state->horiz_triggerpos);
ret = SR_OK;
break;
case SR_CONF_COUPLING:
ret = SR_ERR_NA;
if (cg_type == CG_NONE) {
sr_err("No channel group specified.");
return SR_ERR_CHANNEL_GROUP;
} else if (cg_type != CG_ANALOG)
break;
for (i = 0; i < model->analog_channels; ++i) {
if (cg != devc->analog_groups[i])
continue;
*data = g_variant_new_string((*model->coupling_options)[state->analog_states[i].coupling]);
ret = SR_OK;
break;
}
break;
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(state->sample_rate);
ret = SR_OK;
break;
default:
ret = SR_ERR_NA;
}
return ret;
}
static GVariant *build_tuples(const uint64_t (*array)[][2], unsigned int n)
{
unsigned int i;
GVariant *rational[2];
GVariantBuilder gvb;
g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
for (i = 0; i < n; i++) {
rational[0] = g_variant_new_uint64((*array)[i][0]);
rational[1] = g_variant_new_uint64((*array)[i][1]);
/* FIXME: Valgrind reports a memory leak here. */
g_variant_builder_add_value(&gvb, g_variant_new_tuple(rational, 2));
}
return g_variant_builder_end(&gvb);
}
static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
int ret, cg_type;
unsigned int i, j;
char float_str[30];
struct dev_context *devc;
struct scope_config *model;
struct scope_state *state;
const char *tmp;
uint64_t p, q;
double tmp_d;
gboolean update_sample_rate;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if ((cg_type = check_channel_group(devc, cg)) == CG_INVALID)
return SR_ERR;
model = devc->model_config;
state = devc->model_state;
update_sample_rate = FALSE;
ret = SR_ERR_NA;
switch (key) {
case SR_CONF_LIMIT_FRAMES:
devc->frame_limit = g_variant_get_uint64(data);
ret = SR_OK;
break;
case SR_CONF_TRIGGER_SOURCE:
tmp = g_variant_get_string(data, NULL);
for (i = 0; (*model->trigger_sources)[i]; i++) {
if (g_strcmp0(tmp, (*model->trigger_sources)[i]) != 0)
continue;
state->trigger_source = i;
/* TODO: A and B trigger support possible? */
ret = dlm_trigger_source_set(sdi->conn, (*model->trigger_sources)[i]);
break;
}
break;
case SR_CONF_VDIV:
if (cg_type == CG_NONE) {
sr_err("No channel group specified.");
return SR_ERR_CHANNEL_GROUP;
}
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < model->num_vdivs; i++) {
if (p != (*model->vdivs)[i][0] ||
q != (*model->vdivs)[i][1])
continue;
for (j = 1; j <= model->analog_channels; ++j) {
if (cg != devc->analog_groups[j - 1])
continue;
state->analog_states[j - 1].vdiv = i;
g_ascii_formatd(float_str, sizeof(float_str),
"%E", (float) p / q);
if (dlm_analog_chan_vdiv_set(sdi->conn, j, float_str) != SR_OK ||
sr_scpi_get_opc(sdi->conn) != SR_OK)
return SR_ERR;
break;
}
ret = SR_OK;
break;
}
break;
case SR_CONF_TIMEBASE:
g_variant_get(data, "(tt)", &p, &q);
for (i = 0; i < model->num_timebases; i++) {
if (p != (*model->timebases)[i][0] ||
q != (*model->timebases)[i][1])
continue;
state->timebase = i;
g_ascii_formatd(float_str, sizeof(float_str),
"%E", (float) p / q);
ret = dlm_timebase_set(sdi->conn, float_str);
update_sample_rate = TRUE;
break;
}
break;
case SR_CONF_HORIZ_TRIGGERPOS:
tmp_d = g_variant_get_double(data);
/* TODO: Check if the calculation makes sense for the DLM. */
if (tmp_d < 0.0 || tmp_d > 1.0)
return SR_ERR;
state->horiz_triggerpos = tmp_d;
tmp_d = -(tmp_d - 0.5) *
((double) (*model->timebases)[state->timebase][0] /
(*model->timebases)[state->timebase][1])
* model->num_xdivs;
g_ascii_formatd(float_str, sizeof(float_str), "%E", tmp_d);
ret = dlm_horiz_trigger_pos_set(sdi->conn, float_str);
break;
case SR_CONF_TRIGGER_SLOPE:
tmp = g_variant_get_string(data, NULL);
if (!tmp || !(tmp[0] == 'f' || tmp[0] == 'r'))
return SR_ERR_ARG;
/* Note: See dlm_trigger_slopes[] in protocol.c. */
state->trigger_slope = (tmp[0] == 'r') ?
SLOPE_POSITIVE : SLOPE_NEGATIVE;
ret = dlm_trigger_slope_set(sdi->conn, state->trigger_slope);
break;
case SR_CONF_COUPLING:
if (cg_type == CG_NONE) {
sr_err("No channel group specified.");
return SR_ERR_CHANNEL_GROUP;
}
tmp = g_variant_get_string(data, NULL);
for (i = 0; (*model->coupling_options)[i]; i++) {
if (strcmp(tmp, (*model->coupling_options)[i]) != 0)
continue;
for (j = 1; j <= model->analog_channels; ++j) {
if (cg != devc->analog_groups[j - 1])
continue;
state->analog_states[j-1].coupling = i;
if (dlm_analog_chan_coupl_set(sdi->conn, j, tmp) != SR_OK ||
sr_scpi_get_opc(sdi->conn) != SR_OK)
return SR_ERR;
break;
}
ret = SR_OK;
break;
}
break;
default:
ret = SR_ERR_NA;
break;
}
if (ret == SR_OK)
ret = sr_scpi_get_opc(sdi->conn);
if (ret == SR_OK && update_sample_rate)
ret = dlm_sample_rate_query(sdi);
return ret;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
int cg_type;
struct dev_context *devc;
struct scope_config *model;
if (!sdi || !(devc = sdi->priv))
return SR_ERR_ARG;
if ((cg_type = check_channel_group(devc, cg)) == CG_INVALID)
return SR_ERR;
model = devc->model_config;
switch (key) {
case SR_CONF_SCAN_OPTIONS:
*data = NULL;
break;
case SR_CONF_DEVICE_OPTIONS:
if (cg_type == CG_NONE) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
model->hw_caps, model->num_hwcaps, sizeof(int32_t));
} else if (cg_type == CG_ANALOG) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
model->analog_hwcaps, model->num_analog_hwcaps, sizeof(int32_t));
} else {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
NULL, 0, sizeof(int32_t));
}
break;
case SR_CONF_COUPLING:
if (cg_type == CG_NONE)
return SR_ERR_CHANNEL_GROUP;
*data = g_variant_new_strv(*model->coupling_options,
g_strv_length((char **)*model->coupling_options));
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_strv(*model->trigger_sources,
g_strv_length((char **)*model->trigger_sources));
break;
case SR_CONF_TRIGGER_SLOPE:
*data = g_variant_new_strv(*model->trigger_slopes,
g_strv_length((char **)*model->trigger_slopes));
break;
case SR_CONF_TIMEBASE:
*data = build_tuples(model->timebases, model->num_timebases);
break;
case SR_CONF_VDIV:
if (cg_type == CG_NONE)
return SR_ERR_CHANNEL_GROUP;
*data = build_tuples(model->vdivs, model->num_vdivs);
break;
default:
return SR_ERR_NA;
}
return SR_OK;
}
static int dlm_check_channels(GSList *channels)
{
GSList *l;
struct sr_channel *ch;
gboolean enabled_pod1, enabled_chan4;
enabled_pod1 = enabled_chan4 = FALSE;
/* Note: On the DLM2000, CH4 and Logic are shared. */
/* TODO Handle non-DLM2000 models. */
for (l = channels; l; l = l->next) {
ch = l->data;
switch (ch->type) {
case SR_CHANNEL_ANALOG:
if (ch->index == 3)
enabled_chan4 = TRUE;
break;
case SR_CHANNEL_LOGIC:
enabled_pod1 = TRUE;
break;
default:
return SR_ERR;
}
}
if (enabled_pod1 && enabled_chan4)
return SR_ERR;
return SR_OK;
}
static int dlm_setup_channels(const struct sr_dev_inst *sdi)
{
GSList *l;
unsigned int i;
gboolean *pod_enabled, setup_changed;
struct scope_state *state;
struct scope_config *model;
struct sr_channel *ch;
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
devc = sdi->priv;
scpi = sdi->conn;
state = devc->model_state;
model = devc->model_config;
setup_changed = FALSE;
pod_enabled = g_try_malloc0(sizeof(gboolean) * model->pods);
for (l = sdi->channels; l; l = l->next) {
ch = l->data;
switch (ch->type) {
case SR_CHANNEL_ANALOG:
if (ch->enabled == state->analog_states[ch->index].state)
break;
if (dlm_analog_chan_state_set(scpi, ch->index + 1,
ch->enabled) != SR_OK)
return SR_ERR;
state->analog_states[ch->index].state = ch->enabled;
setup_changed = TRUE;
break;
case SR_CHANNEL_LOGIC:
if (ch->enabled)
pod_enabled[ch->index / 8] = TRUE;
if (ch->enabled == state->digital_states[ch->index])
break;
if (dlm_digital_chan_state_set(scpi, ch->index + 1,
ch->enabled) != SR_OK)
return SR_ERR;
state->digital_states[ch->index] = ch->enabled;
setup_changed = TRUE;
break;
default:
return SR_ERR;
}
}
for (i = 1; i <= model->pods; ++i) {
if (state->pod_states[i - 1] == pod_enabled[i - 1])
continue;
if (dlm_digital_pod_state_set(scpi, i,
pod_enabled[i - 1]) != SR_OK)
return SR_ERR;
state->pod_states[i - 1] = pod_enabled[i - 1];
setup_changed = TRUE;
}
g_free(pod_enabled);
if (setup_changed && dlm_sample_rate_query(sdi) != SR_OK)
return SR_ERR;
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
GSList *l;
gboolean digital_added;
struct sr_channel *ch;
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE) return SR_ERR_DEV_CLOSED;
scpi = sdi->conn;
devc = sdi->priv;
digital_added = FALSE;
g_slist_free(devc->enabled_channels);
devc->enabled_channels = NULL;
for (l = sdi->channels; l; l = l->next) {
ch = l->data;
if (!ch->enabled)
continue;
/* Only add a single digital channel. */
if (ch->type != SR_CHANNEL_LOGIC || !digital_added) {
devc->enabled_channels = g_slist_append(
devc->enabled_channels, ch);
if (ch->type == SR_CHANNEL_LOGIC)
digital_added = TRUE;
}
}
if (!devc->enabled_channels)
return SR_ERR;
if (dlm_check_channels(devc->enabled_channels) != SR_OK) {
sr_err("Invalid channel configuration specified!");
return SR_ERR_NA;
}
if (dlm_setup_channels(sdi) != SR_OK) {
sr_err("Failed to setup channel configuration!");
return SR_ERR;
}
/* Call our callback when data comes in or after 50ms. */
sr_scpi_source_add(sdi->session, scpi, G_IO_IN, 50,
dlm_data_receive, (void *)sdi);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
struct sr_scpi_dev_inst *scpi;
struct sr_datafeed_packet packet;
(void)cb_data;
packet.type = SR_DF_END;
packet.payload = NULL;
sr_session_send(sdi, &packet);
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
devc->num_frames = 0;
g_slist_free(devc->enabled_channels);
devc->enabled_channels = NULL;
scpi = sdi->conn;
sr_scpi_source_remove(sdi->session, scpi);
return SR_OK;
}
SR_PRIV struct sr_dev_driver yokogawa_dlm_driver_info = {
.name = "yokogawa-dlm",
.longname = "Yokogawa DL/DLM driver",
.api_version = 1,
.init = NULL,
.cleanup = NULL,
.scan = NULL,
.dev_list = NULL,
.dev_clear = NULL,
.config_get = NULL,
.config_set = NULL,
.config_list = NULL,
.dev_open = NULL,
.dev_close = NULL,
.dev_acquisition_start = NULL,
.dev_acquisition_stop = NULL,
.init = init,
.cleanup = cleanup,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,
.config_get = config_get,
.config_set = config_set,
.config_list = config_list,
.dev_open = dev_open,
.dev_close = dev_close,
.dev_acquisition_start = dev_acquisition_start,
.dev_acquisition_stop = dev_acquisition_stop,
.priv = NULL,
};

View File

@ -18,5 +18,978 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file
* <em>Yokogawa DL/DLM series</em> oscilloscope driver
* @internal
*/
#include "protocol.h"
static const int32_t dlm_hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_OSCILLOSCOPE,
SR_CONF_TRIGGER_SLOPE,
SR_CONF_TRIGGER_SOURCE,
SR_CONF_TIMEBASE,
SR_CONF_NUM_TIMEBASE,
SR_CONF_HORIZ_TRIGGERPOS,
};
static const int32_t dlm_analog_caps[] = {
SR_CONF_VDIV,
SR_CONF_COUPLING,
SR_CONF_NUM_VDIV,
};
static const char *dlm_coupling_options[] = {
"AC",
"DC",
"DC50",
"GND",
NULL,
};
/* Note: Values must correlate to the trigger_slopes values */
static const char *dlm_trigger_slopes[] = {
"r",
"f",
NULL,
};
static const char *dlm_2ch_trigger_sources[] = {
"1",
"2",
"LINE",
"EXT",
NULL,
};
/* TODO: Is BITx handled correctly or is Dx required? */
static const char *dlm_4ch_trigger_sources[] = {
"1",
"2",
"3",
"4",
"LINE",
"EXT",
"BIT1",
"BIT2",
"BIT3",
"BIT4",
"BIT5",
"BIT6",
"BIT7",
"BIT8",
NULL,
};
static const uint64_t dlm_timebases[][2] = {
/* nanoseconds */
{ 1, 1000000000 },
{ 2, 1000000000 },
{ 5, 1000000000 },
{ 10, 1000000000 },
{ 20, 1000000000 },
{ 50, 1000000000 },
{ 100, 1000000000 },
{ 200, 1000000000 },
{ 500, 1000000000 },
/* microseconds */
{ 1, 1000000 },
{ 2, 1000000 },
{ 5, 1000000 },
{ 10, 1000000 },
{ 20, 1000000 },
{ 50, 1000000 },
{ 100, 1000000 },
{ 200, 1000000 },
{ 500, 1000000 },
/* milliseconds */
{ 1, 1000 },
{ 2, 1000 },
{ 5, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* seconds */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
{ 10, 1 },
{ 20, 1 },
{ 50, 1 },
{ 100, 1 },
{ 200, 1 },
{ 500, 1 },
};
static const uint64_t dlm_vdivs[][2] = {
/* millivolts */
{ 2, 1000 },
{ 5, 1000 },
{ 10, 1000 },
{ 20, 1000 },
{ 50, 1000 },
{ 100, 1000 },
{ 200, 1000 },
{ 500, 1000 },
/* volts */
{ 1, 1 },
{ 2, 1 },
{ 5, 1 },
{ 10, 1 },
{ 20, 1 },
{ 50, 1 },
{ 100, 1 },
{ 200, 1 },
{ 500, 1 },
};
static const char *scope_analog_channel_names[] = {
"1",
"2",
"3",
"4"
};
static const char *scope_digital_channel_names[] = {
"D0",
"D1",
"D2",
"D3",
"D4",
"D5",
"D6",
"D7"
};
static struct scope_config scope_models[] = {
{
.model_id = {"710105", "710115", "710125", NULL},
.model_name = {"DLM2022", "DLM2032", "DLM2052", NULL},
.analog_channels = 2,
.digital_channels = 0,
.pods = 0,
.analog_names = &scope_analog_channel_names,
.digital_names = &scope_digital_channel_names,
.hw_caps = &dlm_hwcaps,
.num_hwcaps = ARRAY_SIZE(dlm_hwcaps),
.analog_hwcaps = &dlm_analog_caps,
.num_analog_hwcaps = ARRAY_SIZE(dlm_analog_caps),
.coupling_options = &dlm_coupling_options,
.trigger_sources = &dlm_2ch_trigger_sources,
.trigger_slopes = &dlm_trigger_slopes,
.timebases = &dlm_timebases,
.num_timebases = ARRAY_SIZE(dlm_timebases),
.vdivs = &dlm_vdivs,
.num_vdivs = ARRAY_SIZE(dlm_vdivs),
.num_xdivs = 10,
.num_ydivs = 8,
},
{
.model_id = {"710110", "710120", "710130", NULL},
.model_name = {"DLM2024", "DLM2034", "DLM2054", NULL},
.analog_channels = 4,
.digital_channels = 8,
.pods = 1,
.analog_names = &scope_analog_channel_names,
.digital_names = &scope_digital_channel_names,
.hw_caps = &dlm_hwcaps,
.num_hwcaps = ARRAY_SIZE(dlm_hwcaps),
.analog_hwcaps = &dlm_analog_caps,
.num_analog_hwcaps = ARRAY_SIZE(dlm_analog_caps),
.coupling_options = &dlm_coupling_options,
.trigger_sources = &dlm_4ch_trigger_sources,
.trigger_slopes = &dlm_trigger_slopes,
.timebases = &dlm_timebases,
.num_timebases = ARRAY_SIZE(dlm_timebases),
.vdivs = &dlm_vdivs,
.num_vdivs = ARRAY_SIZE(dlm_vdivs),
.num_xdivs = 10,
.num_ydivs = 8,
},
};
/**
* Prints out the state of the device as we currently know it.
*
* @param config This is the scope configuration.
* @param state The current scope state to print.
*/
static void scope_state_dump(struct scope_config *config,
struct scope_state *state)
{
unsigned int i;
char *tmp;
for (i = 0; i < config->analog_channels; ++i) {
tmp = sr_voltage_string((*config->vdivs)[state->analog_states[i].vdiv][0],
(*config->vdivs)[state->analog_states[i].vdiv][1]);
sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
i + 1, state->analog_states[i].state ? "On" : "Off",
(*config->coupling_options)[state->analog_states[i].coupling],
tmp, state->analog_states[i].vertical_offset);
}
for (i = 0; i < config->digital_channels; ++i) {
sr_info("State of digital channel %d -> %s", i,
state->digital_states[i] ? "On" : "Off");
}
for (i = 0; i < config->pods; ++i) {
sr_info("State of digital POD %d -> %s", i,
state->pod_states[i] ? "On" : "Off");
}
tmp = sr_period_string((*config->timebases)[state->timebase][0] *
(*config->timebases)[state->timebase][1]);
sr_info("Current timebase: %s", tmp);
g_free(tmp);
tmp = sr_samplerate_string(state->sample_rate);
sr_info("Current samplerate: %s", tmp);
g_free(tmp);
sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)",
(*config->trigger_sources)[state->trigger_source],
(*config->trigger_slopes)[state->trigger_slope],
state->horiz_triggerpos);
}
/**
* Searches through an array of strings and returns the index to the
* array where a given string is located.
*
* @param value The string to search for.
* @param array The array of strings.
* @param result The index at which value is located in array. -1 on error.
*
* @return SR_ERR when value couldn't be found, SR_OK otherwise.
*/
static int array_option_get(char *value, const char *(*array)[],
int *result)
{
unsigned int i;
*result = -1;
for (i = 0; (*array)[i]; ++i)
if (!g_strcmp0(value, (*array)[i])) {
*result = i;
break;
}
if (*result == -1)
return SR_ERR;
return SR_OK;
}
/**
* This function takes a value of the form "2.000E-03", converts it to a
* significand / factor pair and returns the index of an array where
* a matching pair was found.
*
* It's a bit convoluted because of floating-point issues. The value "10.00E-09"
* is parsed by g_ascii_strtod() as 0.000000009999999939, for example.
* Therefore it's easier to break the number up into two strings and handle
* them separately.
*
* @param value The string to be parsed.
* @param array The array of s/f pairs.
* @param array_len The number of pairs in the array.
* @param result The index at which a matching pair was found.
*
* @return SR_ERR on any parsing error, SR_OK otherwise.
*/
static int array_float_get(gchar *value, const uint64_t array[][2],
int array_len, int *result)
{
int i;
uint64_t f;
float s;
gchar ss[10], es[10];
memset(ss, 0, sizeof(ss));
memset(es, 0, sizeof(es));
strncpy(ss, value, 5);
strncpy(es, &(value[6]), 3);
if (sr_atof_ascii(ss, &s) != SR_OK)
return SR_ERR;
if (sr_atoi(es, &i) != SR_OK)
return SR_ERR;
/* Transform e.g. 10^-03 to 1000 as the array stores the inverse. */
f = pow(10, abs(i));
/* Adjust the significand/factor pair to make sure
* that f is a multiple of 1000.
*/
while ((int)fmod(log10(f), 3) > 0) { s *= 10; f *= 10; }
/* Truncate s to circumvent rounding errors. */
s = (int)s;
for (i = 0; i < array_len; i++) {
if ( (s == array[i][0]) && (f == array[i][1]) ) {
*result = i;
return SR_OK;
}
}
return SR_ERR;
}
/**
* Obtains information about all analog channels from the oscilloscope.
* The internal state information is updated accordingly.
*
* @param scpi An open SCPI connection.
* @param config The device's device configuration.
* @param state The device's state information.
*
* @return SR_ERR on error, SR_OK otherwise.
*/
static int analog_channel_state_get(struct sr_scpi_dev_inst *scpi,
struct scope_config *config,
struct scope_state *state)
{
int i, j;
gchar *response;
for (i = 0; i < config->analog_channels; ++i) {
if (dlm_analog_chan_state_get(scpi, i + 1,
&state->analog_states[i].state) != SR_OK)
return SR_ERR;
if (dlm_analog_chan_vdiv_get(scpi, i + 1, &response) != SR_OK)
return SR_ERR;
if (array_float_get(response, *config->vdivs, config->num_vdivs,
&j) != SR_OK) {
g_free(response);
return SR_ERR;
}
g_free(response);
state->analog_states[i].vdiv = j;
if (dlm_analog_chan_voffs_get(scpi, i + 1,
&state->analog_states[i].vertical_offset) != SR_OK)
return SR_ERR;
if (dlm_analog_chan_wrange_get(scpi, i + 1,
&state->analog_states[i].waveform_range) != SR_OK)
return SR_ERR;
if (dlm_analog_chan_woffs_get(scpi, i + 1,
&state->analog_states[i].waveform_offset) != SR_OK)
return SR_ERR;
if (dlm_analog_chan_coupl_get(scpi, i + 1, &response) != SR_OK) {
g_free(response);
return SR_ERR;
}
if (array_option_get(response, config->coupling_options,
&state->analog_states[i].coupling) != SR_OK) {
g_free(response);
return SR_ERR;
}
g_free(response);
}
return SR_OK;
}
/**
* Obtains information about all digital channels from the oscilloscope.
* The internal state information is updated accordingly.
*
* @param scpi An open SCPI connection.
* @param config The device's device configuration.
* @param state The device's state information.
*
* @return SR_ERR on error, SR_OK otherwise.
*/
static int digital_channel_state_get(struct sr_scpi_dev_inst *scpi,
struct scope_config *config,
struct scope_state *state)
{
unsigned int i;
if (!config->digital_channels)
{
sr_warn("Tried obtaining digital channel states on a " \
"model without digital inputs.");
return SR_OK;
}
for (i = 0; i < config->digital_channels; ++i) {
if (dlm_digital_chan_state_get(scpi, i + 1,
&state->digital_states[i]) != SR_OK) {
return SR_ERR;
}
}
if (!config->pods)
{
sr_warn("Tried obtaining pod states on a model without pods.");
return SR_OK;
}
for (i = 0; i < config->pods; ++i) {
if (dlm_digital_pod_state_get(scpi, i + 'A',
&state->pod_states[i]) != SR_OK)
return SR_ERR;
}
return SR_OK;
}
/**
* Obtains information about the sample rate from the oscilloscope.
* The internal state information is updated accordingly.
*
* @param sdi The device instance.
*
* @return SR_ERR on error, SR_OK otherwise.
*/
SR_PRIV int dlm_sample_rate_query(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct scope_state *state;
float tmp_float;
devc = sdi->priv;
state = devc->model_state;
/* No need to find an active channel to query the sample rate:
* querying any channel will do, so we use channel 1 all the time.
*/
if (dlm_analog_chan_srate_get(sdi->conn, 1, &tmp_float) != SR_OK)
return SR_ERR;
state->sample_rate = tmp_float;
return SR_OK;
}
/**
* Obtains information about the current device state from the oscilloscope,
* including all analog and digital channel configurations.
* The internal state information is updated accordingly.
*
* @param sdi The device instance.
*
* @return SR_ERR on error, SR_OK otherwise.
*/
SR_PRIV int dlm_scope_state_query(struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct scope_state *state;
struct scope_config *config;
float tmp_float;
gchar *response;
int i;
devc = sdi->priv;
config = devc->model_config;
state = devc->model_state;
if (analog_channel_state_get(sdi->conn, config, state) != SR_OK)
return SR_ERR;
if (digital_channel_state_get(sdi->conn, config, state) != SR_OK)
return SR_ERR;
if (dlm_timebase_get(sdi->conn, &response) != SR_OK)
return SR_ERR;
if (array_float_get(response, *config->timebases,
config->num_timebases, &i) != SR_OK) {
g_free(response);
return SR_ERR;
}
g_free(response);
state->timebase = i;
if (dlm_horiz_trigger_pos_get(sdi->conn, &tmp_float) != SR_OK)
return SR_ERR;
/* TODO: Check if the calculation makes sense for the DLM. */
state->horiz_triggerpos = tmp_float /
(((double)(*config->timebases)[state->timebase][0] /
(*config->timebases)[state->timebase][1]) * config->num_xdivs);
state->horiz_triggerpos -= 0.5;
state->horiz_triggerpos *= -1;
if (dlm_trigger_source_get(sdi->conn, &response) != SR_OK) {
g_free(response);
return SR_ERR;
}
if (array_option_get(response, config->trigger_sources,
&state->trigger_source) != SR_OK) {
g_free(response);
return SR_ERR;
}
g_free(response);
if (dlm_trigger_slope_get(sdi->conn, &i) != SR_OK)
return SR_ERR;
state->trigger_slope = i;
dlm_sample_rate_query(sdi);
scope_state_dump(config, state);
return SR_OK;
}
/**
* Creates a new device state structure.
*
* @param config The device configuration to use.
*
* @return The newly allocated scope_state struct or NULL on error.
*/
static struct scope_state *dlm_scope_state_new(struct scope_config *config)
{
struct scope_state *state;
if (!(state = g_try_malloc0(sizeof(struct scope_state))))
return NULL;
state->analog_states = g_malloc0(config->analog_channels *
sizeof(struct analog_channel_state));
state->digital_states = g_malloc0(config->digital_channels *
sizeof(gboolean));
state->pod_states = g_malloc0(config->pods * sizeof(gboolean));
return state;
}
/**
* Frees the memory that was allocated by a call to dlm_scope_state_new().
*
* @param state The device state structure whose memory is to be freed.
*/
SR_PRIV void dlm_scope_state_destroy(struct scope_state *state)
{
g_free(state->analog_states);
g_free(state->digital_states);
g_free(state->pod_states);
g_free(state);
}
SR_PRIV int dlm_model_get(char *model_id, char **model_name, int *model_index)
{
unsigned int i, j;
*model_index = -1;
*model_name = NULL;
for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
for (j = 0; scope_models[i].model_id[j]; j++) {
if (!strcmp(model_id, scope_models[i].model_id[j])) {
*model_index = i;
*model_name = (char *)scope_models[i].model_name[j];
break;
}
}
if (*model_index != -1)
break;
}
if (*model_index == -1) {
sr_err("Found unsupported DLM device with model identifier %s.",
model_id);
return SR_ERR_NA;
}
return SR_OK;
}
/**
* Attempts to initialize a DL/DLM device and prepares internal structures
* if a suitable device was found.
*
* @param sdi The device instance.
*/
SR_PRIV int dlm_device_init(struct sr_dev_inst *sdi, int model_index)
{
char tmp[25];
int i;
struct sr_channel *ch;
struct dev_context *devc;
devc = sdi->priv;
devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) *
scope_models[model_index].analog_channels);
devc->digital_groups = g_malloc0(sizeof(struct sr_channel_group*) *
scope_models[model_index].digital_channels);
/* Add analog channels. */
for (i = 0; i < scope_models[model_index].analog_channels; i++) {
if (!(ch = sr_channel_new(i, SR_CHANNEL_ANALOG, TRUE,
(*scope_models[model_index].analog_names)[i])))
return SR_ERR_MALLOC;
sdi->channels = g_slist_append(sdi->channels, ch);
devc->analog_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
devc->analog_groups[i]->name = g_strdup(
(char *)(*scope_models[model_index].analog_names)[i]);
devc->analog_groups[i]->channels = g_slist_append(NULL, ch);
sdi->channel_groups = g_slist_append(sdi->channel_groups,
devc->analog_groups[i]);
}
/* Add digital channel groups. */
for (i = 0; i < scope_models[model_index].pods; ++i) {
g_snprintf(tmp, sizeof(tmp), "POD%d", i);
devc->digital_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
if (!devc->digital_groups[i])
return SR_ERR_MALLOC;
devc->digital_groups[i]->name = g_strdup(tmp);
sdi->channel_groups = g_slist_append(sdi->channel_groups,
devc->digital_groups[i]);
}
/* Add digital channels. */
for (i = 0; i < scope_models[model_index].digital_channels; i++) {
if (!(ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
(*scope_models[model_index].digital_names)[i])))
return SR_ERR_MALLOC;
sdi->channels = g_slist_append(sdi->channels, ch);
devc->digital_groups[i / 8]->channels = g_slist_append(
devc->digital_groups[i / 8]->channels, ch);
}
devc->model_config = &scope_models[model_index];
devc->frame_limit = 0;
if (!(devc->model_state = dlm_scope_state_new(devc->model_config)))
return SR_ERR_MALLOC;
/* Disable non-standard response behavior. */
if (dlm_response_headers_set(sdi->conn, FALSE) != SR_OK)
return SR_ERR;
return SR_OK;
}
/**
* Send an SCPI command, read the reply and store the result in scpi_response
* without performing any processing on it.
*
* @param scpi Previously initialised SCPI device structure.
* @param command The SCPI command to send to the device (can be NULL).
* @param scpi_response Pointer where to store the parsed result.
*
* @return SR_OK on success, SR_ERR on failure.
*/
static int dlm_scpi_get_raw(struct sr_scpi_dev_inst *scpi,
const char *command, GArray **scpi_response)
{
char buf[256];
int len;
if (command)
if (sr_scpi_send(scpi, command) != SR_OK)
return SR_ERR;
if (sr_scpi_read_begin(scpi) != SR_OK)
return SR_ERR;
*scpi_response = g_array_new(FALSE, FALSE, sizeof(uint8_t));
while (!sr_scpi_read_complete(scpi)) {
len = sr_scpi_read_data(scpi, buf, sizeof(buf));
if (len < 0) {
g_array_free(*scpi_response, TRUE);
*scpi_response = NULL;
return SR_ERR;
}
g_array_append_vals(*scpi_response, buf, len);
}
return SR_OK;
}
/**
* Reads and removes the block data header from a given data input.
* Format is #ndddd... with n being the number of decimal digits d.
* The string dddd... contains the decimal-encoded length of the data.
* Example: #9000000013 would yield a length of 13 bytes.
*
* @param data The input data.
* @param len The determined input data length.
*/
static int dlm_block_data_header_process(GArray *data, int *len)
{
int i, n;
gchar s[20];
if (g_array_index(data, gchar, 0) != '#')
return SR_ERR;
n = (uint8_t)(g_array_index(data, gchar, 1) - '0');
for (i = 0; i < n; i++)
s[i] = g_array_index(data, gchar, 2 + i);
s[i] = 0;
if (sr_atoi(s, len) != SR_OK)
return SR_ERR;
g_array_remove_range(data, 0, 2 + n);
return SR_OK;
}
/**
* Turns raw sample data into voltages and sends them off to the session bus.
*
* @param data The raw sample data.
* @samples Number of samples that were acquired.
* @ch_state Pointer to the state of the channel whose data we're processing.
* @sdi The device instance.
*
* @return SR_ERR when data is trucated, SR_OK otherwise.
*/
static int dlm_analog_samples_send(GArray *data, int samples,
struct analog_channel_state *ch_state,
struct sr_dev_inst *sdi)
{
int i;
float voltage, range, offset;
GArray *float_data;
struct dev_context *devc;
struct sr_channel *ch;
struct sr_datafeed_analog analog;
struct sr_datafeed_packet packet;
if (data->len < samples * sizeof(uint8_t)) {
sr_err("Truncated waveform data packet received.");
return SR_ERR;
}
devc = sdi->priv;
ch = devc->current_channel->data;
range = ch_state->waveform_range;
offset = ch_state->waveform_offset;
/* Convert byte sample to voltage according to
* page 269 of the Communication Interface User's Manual.
*/
float_data = g_array_new(FALSE, FALSE, sizeof(float));
for (i = 0; i < samples; i++) {
voltage = (float)g_array_index(data, int8_t, i);
voltage = (range * voltage /
DLM_DIVISION_FOR_BYTE_FORMAT) + offset;
g_array_append_val(float_data, voltage);
}
analog.channels = g_slist_append(NULL, ch);
analog.num_samples = float_data->len;
analog.data = (float*)float_data->data;
analog.mq = SR_MQ_VOLTAGE;
analog.unit = SR_UNIT_VOLT;
analog.mqflags = 0;
packet.type = SR_DF_ANALOG;
packet.payload = &analog;
sr_session_send(sdi, &packet);
g_slist_free(analog.channels);
g_array_free(float_data, TRUE);
g_array_remove_range(data, 0, samples * sizeof(uint8_t));
return SR_OK;
}
/**
* Sends logic sample data off to the session bus.
*
* @param data The raw sample data.
* @samples Number of samples that were acquired.
* @ch_state Pointer to the state of the channel whose data we're processing.
* @sdi The device instance.
*
* @return SR_ERR when data is trucated, SR_OK otherwise.
*/
static int dlm_digital_samples_send(GArray *data, int samples,
struct sr_dev_inst *sdi)
{
struct sr_datafeed_logic logic;
struct sr_datafeed_packet packet;
if (data->len < samples * sizeof(uint8_t)) {
sr_err("Truncated waveform data packet received.");
return SR_ERR;
}
logic.length = samples;
logic.unitsize = 1;
logic.data = data->data;
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
sr_session_send(sdi, &packet);
g_array_remove_range(data, 0, samples * sizeof(uint8_t));
return SR_OK;
}
/**
* Attempts to query sample data from the oscilloscope in order to send it
* to the session bus for further processing.
*
* @param fd The file descriptor used as the event source.
* @param revents The received events.
* @param cb_data Callback data, in this case our device instance.
*
* @return TRUE in case of success or a recoverable error,
* FALSE when a fatal error was encountered.
*/
SR_PRIV int dlm_data_receive(int fd, int revents, void *cb_data)
{
struct sr_channel *ch;
struct sr_dev_inst *sdi;
struct scope_state *model_state;
struct dev_context *devc;
struct sr_datafeed_packet packet;
GArray *data;
int result, num_bytes, samples;
(void)fd;
(void)revents;
if (!(sdi = cb_data))
return FALSE;
if (!(devc = sdi->priv))
return FALSE;
if (!(model_state = (struct scope_state*)devc->model_state))
return FALSE;
if (dlm_acq_length_get(sdi->conn, &samples) != SR_OK) {
sr_err("Failed to query acquisition length.");
return TRUE;
}
packet.type = SR_DF_FRAME_BEGIN;
sr_session_send(sdi, &packet);
/* Request data for all active channels. */
for (devc->current_channel = devc->enabled_channels;
devc->current_channel;
devc->current_channel = devc->current_channel->next) {
ch = devc->current_channel->data;
switch (ch->type) {
case SR_CHANNEL_ANALOG:
result = dlm_analog_data_get(sdi->conn, ch->index + 1);
break;
case SR_CHANNEL_LOGIC:
result = dlm_digital_data_get(sdi->conn);
break;
default:
sr_err("Invalid channel type encountered (%d).",
ch->type);
continue;
}
if (result != SR_OK) {
sr_err("Failed to query aquisition data.");
goto fail;
}
data = NULL;
if (dlm_scpi_get_raw(sdi->conn, NULL, &data) != SR_OK) {
sr_err("Failed to receive waveform data from device.");
goto fail;
}
if (dlm_block_data_header_process(data, &num_bytes) != SR_OK) {
sr_err("Encountered malformed block data header.");
goto fail;
}
if (num_bytes == 0) {
sr_warn("Zero-length waveform data packet received. " \
"Live mode not supported yet, stopping " \
"acquisition and retrying.");
/* Don't care about return value here. */
dlm_acquisition_stop(sdi->conn);
goto fail;
}
switch (ch->type) {
case SR_CHANNEL_ANALOG:
if (dlm_analog_samples_send(data, samples,
&model_state->analog_states[ch->index],
sdi) != SR_OK)
goto fail;
break;
case SR_CHANNEL_LOGIC:
if (dlm_digital_samples_send(data, samples,
sdi) != SR_OK)
goto fail;
break;
default:
sr_err("Invalid channel type encountered.");
break;
}
g_array_free(data, TRUE);
}
packet.type = SR_DF_FRAME_END;
sr_session_send(sdi, &packet);
sdi->driver->dev_acquisition_stop(sdi, cb_data);
return TRUE;
fail:
if (data)
g_array_free(data, TRUE);
return TRUE;
}

View File

@ -23,8 +23,111 @@
#include <glib.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "protocol_wrappers.h"
#define LOG_PREFIX "yokogawa-dlm"
#define MAX_INSTRUMENT_VERSIONS 4
/* See Communication Interface User's Manual on p. 268 (:WAVeform:ALL:SEND?). */
#define DLM_MAX_FRAME_LENGTH (12500)
/* See Communication Interface User's Manual on p. 269 (:WAVeform:SEND?). */
#define DLM_DIVISION_FOR_WORD_FORMAT (3200)
#define DLM_DIVISION_FOR_BYTE_FORMAT (12.5)
enum trigger_slopes {
SLOPE_POSITIVE,
SLOPE_NEGATIVE
};
struct scope_config {
const char *model_id[MAX_INSTRUMENT_VERSIONS];
const char *model_name[MAX_INSTRUMENT_VERSIONS];
const uint8_t analog_channels;
const uint8_t digital_channels;
const uint8_t pods;
const char *(*analog_names)[];
const char *(*digital_names)[];
const int32_t (*hw_caps)[];
const uint8_t num_hwcaps;
const int32_t (*analog_hwcaps)[];
const uint8_t num_analog_hwcaps;
const char *(*coupling_options)[];
const uint8_t num_coupling_options;
const char *(*trigger_sources)[];
const uint8_t num_trigger_sources;
const char *(*trigger_slopes)[];
const uint64_t (*timebases)[][2];
const uint8_t num_timebases;
const uint64_t (*vdivs)[][2];
const uint8_t num_vdivs;
const uint8_t num_xdivs;
const uint8_t num_ydivs;
const char *(*scpi_dialect)[];
};
struct analog_channel_state {
int coupling;
int vdiv;
float vertical_offset, waveform_range, waveform_offset;
gboolean state;
};
struct scope_state {
struct analog_channel_state *analog_states;
gboolean *digital_states;
gboolean *pod_states;
int timebase;
float horiz_triggerpos;
int trigger_source;
int trigger_slope;
uint64_t sample_rate;
};
/** Private, per-device-instance driver context. */
struct dev_context {
void *model_config;
void *model_state;
struct sr_channel_group **analog_groups;
struct sr_channel_group **digital_groups;
GSList *enabled_channels;
GSList *current_channel;
uint64_t num_frames;
uint64_t frame_limit;
};
/*--- api.c -----------------------------------------------------------------*/
SR_PRIV int dlm_data_request(const struct sr_dev_inst *sdi);
/*--- protocol.c ------------------------------------------------------------*/
SR_PRIV int dlm_model_get(char *model_id, char **model_name, int *model_index);
SR_PRIV int dlm_device_init(struct sr_dev_inst *sdi, int model_index);
SR_PRIV int dlm_data_receive(int fd, int revents, void *cb_data);
SR_PRIV void dlm_scope_state_destroy(struct scope_state *state);
SR_PRIV int dlm_scope_state_query(struct sr_dev_inst *sdi);
SR_PRIV int dlm_sample_rate_query(const struct sr_dev_inst *sdi);
#endif

View File

@ -19,3 +19,324 @@
#include "protocol_wrappers.h"
#define MAX_COMMAND_SIZE 64
/*
* DLM2000 comm spec:
* https://www.yokogawa.com/pdf/provide/E/GW/IM/0000022842/0/IM710105-17E.pdf
*/
int dlm_timebase_get(struct sr_scpi_dev_inst *scpi,
gchar **response)
{
return sr_scpi_get_string(scpi, ":TIMEBASE:TDIV?", response);
}
int dlm_timebase_set(struct sr_scpi_dev_inst *scpi,
const gchar *value)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":TIMEBASE:TDIV %s", value);
return sr_scpi_send(scpi, cmd);
}
int dlm_horiz_trigger_pos_get(struct sr_scpi_dev_inst *scpi,
float *response)
{
return sr_scpi_get_float(scpi, ":TRIGGER:DELAY:TIME?", response);
}
int dlm_horiz_trigger_pos_set(struct sr_scpi_dev_inst *scpi,
const gchar *value)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":TRIGGER:DELAY:TIME %s", value);
return sr_scpi_send(scpi, cmd);
}
int dlm_trigger_source_get(struct sr_scpi_dev_inst *scpi,
gchar **response)
{
return sr_scpi_get_string(scpi, ":TRIGGER:ATRIGGER:SIMPLE:SOURCE?", response);
}
int dlm_trigger_source_set(struct sr_scpi_dev_inst *scpi,
const gchar *value)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":TRIGGER:ATRIGGER:SIMPLE:SOURCE %s", value);
return sr_scpi_send(scpi, cmd);
}
int dlm_trigger_slope_get(struct sr_scpi_dev_inst *scpi,
int *response)
{
gchar *resp;
int result;
result = SR_ERR;
if (sr_scpi_get_string(scpi, ":TRIGGER:ATRIGGER:SIMPLE:SLOPE?", &resp) != SR_OK) {
g_free(resp);
return SR_ERR;
}
if (strcmp("RISE", resp) == 0) {
*response = SLOPE_POSITIVE;
result = SR_OK;
}
if (strcmp("FALL", resp) == 0) {
*response = SLOPE_NEGATIVE;
result = SR_OK;
}
g_free(resp);
return result;
}
int dlm_trigger_slope_set(struct sr_scpi_dev_inst *scpi,
const int value)
{
if (value == SLOPE_POSITIVE)
return sr_scpi_send(scpi, ":TRIGGER:ATRIGGER:SIMPLE:SLOPE RISE");
if (value == SLOPE_NEGATIVE)
return sr_scpi_send(scpi, ":TRIGGER:ATRIGGER:SIMPLE:SLOPE FALL");
return SR_ERR_ARG;
}
int dlm_analog_chan_state_get(struct sr_scpi_dev_inst *scpi, int channel,
gboolean *response)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":CHANNEL%d:DISPLAY?", channel);
return sr_scpi_get_bool(scpi, cmd, response);
}
int dlm_analog_chan_state_set(struct sr_scpi_dev_inst *scpi, int channel,
const gboolean value)
{
gchar cmd[MAX_COMMAND_SIZE];
if (value)
g_snprintf(cmd, sizeof(cmd), ":CHANNEL%d:DISPLAY ON", channel);
else
g_snprintf(cmd, sizeof(cmd), ":CHANNEL%d:DISPLAY OFF", channel);
return sr_scpi_send(scpi, cmd);
}
int dlm_analog_chan_vdiv_get(struct sr_scpi_dev_inst *scpi, int channel,
gchar **response)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":CHANNEL%d:VDIV?", channel);
return sr_scpi_get_string(scpi, cmd, response);
}
int dlm_analog_chan_vdiv_set(struct sr_scpi_dev_inst *scpi, int channel,
const gchar *value)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":CHANNEL%d:VDIV %s", channel, value);
return sr_scpi_send(scpi, cmd);
}
int dlm_analog_chan_voffs_get(struct sr_scpi_dev_inst *scpi, int channel,
float *response)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":CHANNEL%d:POSITION?", channel);
return sr_scpi_get_float(scpi, cmd, response);
}
int dlm_analog_chan_srate_get(struct sr_scpi_dev_inst *scpi, int channel,
float *response)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":WAVEFORM:TRACE %d", channel);
if (sr_scpi_send(scpi, cmd) != SR_OK)
return SR_ERR;
g_snprintf(cmd, sizeof(cmd), ":WAVEFORM:RECORD 0");
if (sr_scpi_send(scpi, cmd) != SR_OK)
return SR_ERR;
return sr_scpi_get_float(scpi, ":WAVEFORM:SRATE?", response);
}
int dlm_analog_chan_coupl_get(struct sr_scpi_dev_inst *scpi, int channel,
gchar **response)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":CHANNEL%d:COUPLING?", channel);
return sr_scpi_get_string(scpi, cmd, response);
}
int dlm_analog_chan_coupl_set(struct sr_scpi_dev_inst *scpi, int channel,
const gchar *value)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":CHANNEL%d:COUPLING %s", channel, value);
return sr_scpi_send(scpi, cmd);
}
int dlm_analog_chan_wrange_get(struct sr_scpi_dev_inst *scpi, int channel,
float *response)
{
gchar cmd[MAX_COMMAND_SIZE];
int result;
g_snprintf(cmd, sizeof(cmd), ":WAVEFORM:TRACE %d", channel);
result = sr_scpi_send(scpi, cmd);
result &= sr_scpi_get_float(scpi, ":WAVEFORM:RANGE?", response);
return result;
}
int dlm_analog_chan_woffs_get(struct sr_scpi_dev_inst *scpi, int channel,
float *response)
{
gchar cmd[MAX_COMMAND_SIZE];
int result;
g_snprintf(cmd, sizeof(cmd), ":WAVEFORM:TRACE %d", channel);
result = sr_scpi_send(scpi, cmd);
result &= sr_scpi_get_float(scpi, ":WAVEFORM:OFFSET?", response);
return result;
}
int dlm_digital_chan_state_get(struct sr_scpi_dev_inst *scpi, int channel,
gboolean *response)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":LOGIC:PODA:BIT%d:DISPLAY?", channel);
return sr_scpi_get_bool(scpi, cmd, response);
}
int dlm_digital_chan_state_set(struct sr_scpi_dev_inst *scpi, int channel,
const gboolean value)
{
gchar cmd[MAX_COMMAND_SIZE];
if (value)
g_snprintf(cmd, sizeof(cmd), ":LOGIC:PODA:BIT%d:DISPLAY ON", channel);
else
g_snprintf(cmd, sizeof(cmd), ":LOGIC:PODA:BIT%d:DISPLAY OFF", channel);
return sr_scpi_send(scpi, cmd);
}
int dlm_digital_pod_state_get(struct sr_scpi_dev_inst *scpi, int pod,
gboolean *response)
{
gchar cmd[MAX_COMMAND_SIZE];
/* TODO: pod currently ignored as DLM2000 only has pod A. */
(void)pod;
g_snprintf(cmd, sizeof(cmd), ":LOGIC:MODE?");
return sr_scpi_get_bool(scpi, cmd, response);
}
int dlm_digital_pod_state_set(struct sr_scpi_dev_inst *scpi, int pod,
const gboolean value)
{
/* TODO: pod currently ignored as DLM2000 only has pod A. */
(void)pod;
if (value)
return sr_scpi_send(scpi, ":LOGIC:MODE ON");
else
return sr_scpi_send(scpi, ":LOGIC:MODE OFF");
}
int dlm_response_headers_set(struct sr_scpi_dev_inst *scpi,
const gboolean value)
{
if (value)
return sr_scpi_send(scpi, ":COMMUNICATE:HEADER ON");
else
return sr_scpi_send(scpi, ":COMMUNICATE:HEADER OFF");
}
int dlm_acquisition_stop(struct sr_scpi_dev_inst *scpi)
{
return sr_scpi_send(scpi, ":STOP");
}
int dlm_acq_length_get(struct sr_scpi_dev_inst *scpi,
int *response)
{
return sr_scpi_get_int(scpi, ":WAVEFORM:LENGTH?", response);
}
int dlm_chunks_per_acq_get(struct sr_scpi_dev_inst *scpi, int *response)
{
int result, acq_len;
/* Data retrieval queries such as :WAVEFORM:SEND? will only return
* up to 12500 samples at a time. If the oscilloscope operates in a
* mode where more than 12500 samples fit on screen (i.e. in one
* acquisition), data needs to be retrieved multiple times.
*/
result = sr_scpi_get_int(scpi, ":WAVEFORM:LENGTH?", &acq_len);
*response = MAX(acq_len / DLM_MAX_FRAME_LENGTH, 1);
return result;
}
int dlm_start_frame_set(struct sr_scpi_dev_inst *scpi, int value)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":WAVEFORM:START %d",
value * DLM_MAX_FRAME_LENGTH);
return sr_scpi_send(scpi, cmd);
}
int dlm_data_get(struct sr_scpi_dev_inst *scpi, int acquisition_num)
{
gchar cmd[MAX_COMMAND_SIZE];
g_snprintf(cmd, sizeof(cmd), ":WAVEFORM:ALL:SEND? %d", acquisition_num);
return sr_scpi_send(scpi, cmd);
}
int dlm_analog_data_get(struct sr_scpi_dev_inst *scpi, int channel)
{
gchar cmd[MAX_COMMAND_SIZE];
int result;
result = sr_scpi_send(scpi, ":WAVEFORM:FORMAT BYTE");
if (result == SR_OK) result = sr_scpi_send(scpi, ":WAVEFORM:RECORD 0");
if (result == SR_OK) result = sr_scpi_send(scpi, ":WAVEFORM:START 0");
if (result == SR_OK) result = sr_scpi_send(scpi, ":WAVEFORM:END 124999999");
g_snprintf(cmd, sizeof(cmd), ":WAVEFORM:TRACE %d", channel);
if (result == SR_OK) result = sr_scpi_send(scpi, cmd);
if (result == SR_OK) result = sr_scpi_send(scpi, ":WAVEFORM:SEND? 1");
return result;
}
int dlm_digital_data_get(struct sr_scpi_dev_inst *scpi)
{
int result;
result = sr_scpi_send(scpi, ":WAVEFORM:FORMAT BYTE");
if (result == SR_OK) result = sr_scpi_send(scpi, ":WAVEFORM:RECORD 0");
if (result == SR_OK) result = sr_scpi_send(scpi, ":WAVEFORM:START 0");
if (result == SR_OK) result = sr_scpi_send(scpi, ":WAVEFORM:END 124999999");
if (result == SR_OK) result = sr_scpi_send(scpi, ":WAVEFORM:TRACE LOGIC");
if (result == SR_OK) result = sr_scpi_send(scpi, ":WAVEFORM:SEND? 1");
return result;
}

View File

@ -27,4 +27,64 @@
#include "libsigrok-internal.h"
#include "protocol.h"
extern int dlm_timebase_get(struct sr_scpi_dev_inst *scpi,
gchar **response);
extern int dlm_timebase_set(struct sr_scpi_dev_inst *scpi,
const gchar *value);
extern int dlm_horiz_trigger_pos_get(struct sr_scpi_dev_inst *scpi,
float *response);
extern int dlm_horiz_trigger_pos_set(struct sr_scpi_dev_inst *scpi,
const gchar *value);
extern int dlm_trigger_source_get(struct sr_scpi_dev_inst *scpi,
gchar **response);
extern int dlm_trigger_source_set(struct sr_scpi_dev_inst *scpi,
const gchar *value);
extern int dlm_trigger_slope_get(struct sr_scpi_dev_inst *scpi,
int *value);
extern int dlm_trigger_slope_set(struct sr_scpi_dev_inst *scpi,
const int value);
extern int dlm_analog_chan_state_get(struct sr_scpi_dev_inst *scpi, int channel,
gboolean *response);
extern int dlm_analog_chan_state_set(struct sr_scpi_dev_inst *scpi, int channel,
const gboolean value);
extern int dlm_analog_chan_vdiv_get(struct sr_scpi_dev_inst *scpi, int channel,
gchar **response);
extern int dlm_analog_chan_vdiv_set(struct sr_scpi_dev_inst *scpi, int channel,
const gchar *value);
extern int dlm_analog_chan_voffs_get(struct sr_scpi_dev_inst *scpi, int channel,
float *response);
extern int dlm_analog_chan_srate_get(struct sr_scpi_dev_inst *scpi, int channel,
float *response);
extern int dlm_analog_chan_coupl_get(struct sr_scpi_dev_inst *scpi, int channel,
gchar **response);
extern int dlm_analog_chan_coupl_set(struct sr_scpi_dev_inst *scpi, int channel,
const gchar *value);
extern int dlm_analog_chan_wrange_get(struct sr_scpi_dev_inst *scpi, int channel,
float *response);
extern int dlm_analog_chan_woffs_get(struct sr_scpi_dev_inst *scpi, int channel,
float *response);
extern int dlm_digital_chan_state_get(struct sr_scpi_dev_inst *scpi, int channel,
gboolean *response);
extern int dlm_digital_chan_state_set(struct sr_scpi_dev_inst *scpi, int channel,
const gboolean value);
extern int dlm_digital_pod_state_get(struct sr_scpi_dev_inst *scpi, int pod,
gboolean *response);
extern int dlm_digital_pod_state_set(struct sr_scpi_dev_inst *scpi, int pod,
const gboolean value);
extern int dlm_response_headers_set(struct sr_scpi_dev_inst *scpi,
const gboolean value);
extern int dlm_acquisition_stop(struct sr_scpi_dev_inst *scpi);
extern int dlm_acq_length_get(struct sr_scpi_dev_inst *scpi,
int *response);
extern int dlm_chunks_per_acq_get(struct sr_scpi_dev_inst *scpi,
int *response);
extern int dlm_start_frame_set(struct sr_scpi_dev_inst *scpi, int value);
extern int dlm_data_get(struct sr_scpi_dev_inst *scpi, int acquisition_num);
extern int dlm_analog_data_get(struct sr_scpi_dev_inst *scpi, int channel);
extern int dlm_digital_data_get(struct sr_scpi_dev_inst *scpi);
#endif