fs9922: Use common DMM API.

Use the same functions and structs as the other DMM protocol parsers
in hardware/common/dmm. Among other things, this allows the functions
to be used from drivers in a generic way, e.g. in serial-dmm, uni-t-dmm,
and possibly other drivers.
This commit is contained in:
Uwe Hermann 2012-12-19 22:47:26 +01:00
parent 6d0369591b
commit 913abe8321
2 changed files with 167 additions and 112 deletions

View File

@ -38,16 +38,54 @@
#define sr_warn(s, args...) sr_warn(DRIVER_LOG_DOMAIN s, ## args) #define sr_warn(s, args...) sr_warn(DRIVER_LOG_DOMAIN s, ## args)
#define sr_err(s, args...) sr_err(DRIVER_LOG_DOMAIN s, ## args) #define sr_err(s, args...) sr_err(DRIVER_LOG_DOMAIN s, ## args)
/** static gboolean flags_valid(const struct fs9922_info *info)
* Parse the numerical value from a protocol packet. {
* int count;
* @param buf Buffer containing the 14-byte protocol packet.
* @param result Pointer to a float variable. That variable will contain the /* Does the packet have more than one multiplier? */
* result value upon parsing success. count = 0;
* count += (info->is_nano) ? 1 : 0;
* @return SR_OK upon success, SR_ERR upon failure. Upon errors, the result count += (info->is_micro) ? 1 : 0;
* variable contents are undefined and should not be used. count += (info->is_milli) ? 1 : 0;
*/ count += (info->is_kilo) ? 1 : 0;
count += (info->is_mega) ? 1 : 0;
if (count > 1) {
sr_err("More than one multiplier detected in packet.");
return FALSE;
}
/* Does the packet "measure" more than one type of value? */
count = 0;
count += (info->is_diode) ? 1 : 0;
count += (info->is_percent) ? 1 : 0;
count += (info->is_volt) ? 1 : 0;
count += (info->is_ampere) ? 1 : 0;
count += (info->is_ohm) ? 1 : 0;
count += (info->is_hfe) ? 1 : 0;
count += (info->is_hertz) ? 1 : 0;
count += (info->is_farad) ? 1 : 0;
count += (info->is_celsius) ? 1 : 0;
count += (info->is_fahrenheit) ? 1 : 0;
if (count > 1) {
sr_err("More than one measurement type detected in packet.");
return FALSE;
}
/* Both AC and DC set? */
if (info->is_ac && info->is_dc) {
sr_err("Both AC and DC flags detected in packet.");
return FALSE;
}
/* Both Celsius and Fahrenheit set? */
if (info->is_celsius && info->is_fahrenheit) {
sr_err("Both Celsius and Fahrenheit flags detected in packet.");
return FALSE;
}
return TRUE;
}
static int parse_value(const uint8_t *buf, float *result) static int parse_value(const uint8_t *buf, float *result)
{ {
int sign, intval; int sign, intval;
@ -118,71 +156,49 @@ static int parse_value(const uint8_t *buf, float *result)
return SR_OK; return SR_OK;
} }
/** static void parse_flags(const uint8_t *buf, struct fs9922_info *info)
* Parse various flags in a protocol packet.
*
* @param buf Buffer containing the 14-byte protocol packet.
* @param floatval Pointer to a float variable which should contain the value
* parsed using parse_value(). That variable will be modified
* in-place depending on the flags in the protocol packet.
* @param analog Pointer to a struct sr_datafeed_analog. The struct will be
* filled with the relevant data according to the flags in the
* protocol packet.
*
* @return SR_OK upon success, SR_ERR upon failure. Upon errors, the 'floatval'
* and 'analog' variable contents are undefined and should not be used.
*/
static int parse_flags(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog)
{ {
gboolean is_auto, is_dc, is_ac, is_rel, is_hold, is_bpn, is_z1, is_z2;
gboolean is_max, is_min, is_apo, is_bat, is_nano, is_z3, is_micro;
gboolean is_milli, is_kilo, is_mega, is_beep, is_diode, is_percent;
gboolean is_z4, is_volt, is_ampere, is_ohm, is_hfe, is_hertz, is_farad;
gboolean is_celsius, is_fahrenheit;
int bargraph_sign, bargraph_value;
/* Z1/Z2/Z3/Z4 are bits for user-defined LCD symbols (on/off). */ /* Z1/Z2/Z3/Z4 are bits for user-defined LCD symbols (on/off). */
/* Byte 7 */ /* Byte 7 */
/* Bit 7: Always 0 */ /* Bit 7: Always 0 */
/* Bit 6: Always 0 */ /* Bit 6: Always 0 */
is_auto = (buf[7] & (1 << 5)) != 0; info->is_auto = (buf[7] & (1 << 5)) != 0;
is_dc = (buf[7] & (1 << 4)) != 0; info->is_dc = (buf[7] & (1 << 4)) != 0;
is_ac = (buf[7] & (1 << 3)) != 0; info->is_ac = (buf[7] & (1 << 3)) != 0;
is_rel = (buf[7] & (1 << 2)) != 0; info->is_rel = (buf[7] & (1 << 2)) != 0;
is_hold = (buf[7] & (1 << 1)) != 0; info->is_hold = (buf[7] & (1 << 1)) != 0;
is_bpn = (buf[7] & (1 << 0)) != 0; /* Bargraph shown */ info->is_bpn = (buf[7] & (1 << 0)) != 0; /* Bargraph shown */
/* Byte 8 */ /* Byte 8 */
is_z1 = (buf[8] & (1 << 7)) != 0; /* User-defined symbol 1 */ info->is_z1 = (buf[8] & (1 << 7)) != 0; /* User symbol 1 */
is_z2 = (buf[8] & (1 << 6)) != 0; /* User-defined symbol 2 */ info->is_z2 = (buf[8] & (1 << 6)) != 0; /* User symbol 2 */
is_max = (buf[8] & (1 << 5)) != 0; info->is_max = (buf[8] & (1 << 5)) != 0;
is_min = (buf[8] & (1 << 4)) != 0; info->is_min = (buf[8] & (1 << 4)) != 0;
is_apo = (buf[8] & (1 << 3)) != 0; /* Auto-poweroff active */ info->is_apo = (buf[8] & (1 << 3)) != 0; /* Auto-poweroff on */
is_bat = (buf[8] & (1 << 2)) != 0; /* Battery low */ info->is_bat = (buf[8] & (1 << 2)) != 0; /* Battery low */
is_nano = (buf[8] & (1 << 1)) != 0; info->is_nano = (buf[8] & (1 << 1)) != 0;
is_z3 = (buf[8] & (1 << 0)) != 0; /* User-defined symbol 3 */ info->is_z3 = (buf[8] & (1 << 0)) != 0; /* User symbol 3 */
/* Byte 9 */ /* Byte 9 */
is_micro = (buf[9] & (1 << 7)) != 0; info->is_micro = (buf[9] & (1 << 7)) != 0;
is_milli = (buf[9] & (1 << 6)) != 0; info->is_milli = (buf[9] & (1 << 6)) != 0;
is_kilo = (buf[9] & (1 << 5)) != 0; info->is_kilo = (buf[9] & (1 << 5)) != 0;
is_mega = (buf[9] & (1 << 4)) != 0; info->is_mega = (buf[9] & (1 << 4)) != 0;
is_beep = (buf[9] & (1 << 3)) != 0; info->is_beep = (buf[9] & (1 << 3)) != 0;
is_diode = (buf[9] & (1 << 2)) != 0; info->is_diode = (buf[9] & (1 << 2)) != 0;
is_percent = (buf[9] & (1 << 1)) != 0; info->is_percent = (buf[9] & (1 << 1)) != 0;
is_z4 = (buf[8] & (1 << 0)) != 0; /* User-defined symbol 4 */ info->is_z4 = (buf[8] & (1 << 0)) != 0; /* User symbol 4 */
/* Byte 10 */ /* Byte 10 */
is_volt = (buf[10] & (1 << 7)) != 0; info->is_volt = (buf[10] & (1 << 7)) != 0;
is_ampere = (buf[10] & (1 << 6)) != 0; info->is_ampere = (buf[10] & (1 << 6)) != 0;
is_ohm = (buf[10] & (1 << 5)) != 0; info->is_ohm = (buf[10] & (1 << 5)) != 0;
is_hfe = (buf[10] & (1 << 4)) != 0; info->is_hfe = (buf[10] & (1 << 4)) != 0;
is_hertz = (buf[10] & (1 << 3)) != 0; info->is_hertz = (buf[10] & (1 << 3)) != 0;
is_farad = (buf[10] & (1 << 2)) != 0; info->is_farad = (buf[10] & (1 << 2)) != 0;
is_celsius = (buf[10] & (1 << 1)) != 0; /* Only FS9922-DMM4 */ info->is_celsius = (buf[10] & (1 << 1)) != 0; /* Only FS9922-DMM4 */
is_fahrenheit = (buf[10] & (1 << 0)) != 0; /* Only FS9922-DMM4 */ info->is_fahrenheit = (buf[10] & (1 << 0)) != 0; /* Only FS9922-DMM4 */
/* /*
* Byte 11: Bar graph * Byte 11: Bar graph
@ -194,137 +210,163 @@ static int parse_flags(const uint8_t *buf, float *floatval,
* Upon "over limit" the bargraph value is 1 count above the highest * Upon "over limit" the bargraph value is 1 count above the highest
* valid number (i.e. 41 or 61, depending on chip). * valid number (i.e. 41 or 61, depending on chip).
*/ */
if (is_bpn) { if (info->is_bpn) {
bargraph_sign = ((buf[11] & (1 << 7)) != 0) ? -1 : 1; info->bargraph_sign = ((buf[11] & (1 << 7)) != 0) ? -1 : 1;
bargraph_value = (buf[11] & 0x7f); info->bargraph_value = (buf[11] & 0x7f);
bargraph_value *= bargraph_sign; info->bargraph_value *= info->bargraph_sign;
sr_spew("The bargraph value is %d.", bargraph_value);
} else {
sr_spew("The bargraph is not active.");
} }
/* Byte 12: Always '\r' (carriage return, 0x0d, 13) */ /* Byte 12: Always '\r' (carriage return, 0x0d, 13) */
/* Byte 13: Always '\n' (newline, 0x0a, 10) */ /* Byte 13: Always '\n' (newline, 0x0a, 10) */
}
static void handle_flags(struct sr_datafeed_analog *analog, float *floatval,
const struct fs9922_info *info)
{
/* Factors */ /* Factors */
if (is_nano) if (info->is_nano)
*floatval /= 1000000000; *floatval /= 1000000000;
if (is_micro) if (info->is_micro)
*floatval /= 1000000; *floatval /= 1000000;
if (is_milli) if (info->is_milli)
*floatval /= 1000; *floatval /= 1000;
if (is_kilo) if (info->is_kilo)
*floatval *= 1000; *floatval *= 1000;
if (is_mega) if (info->is_mega)
*floatval *= 1000000; *floatval *= 1000000;
/* Measurement modes */ /* Measurement modes */
if (is_volt) { if (info->is_volt) {
analog->mq = SR_MQ_VOLTAGE; analog->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->unit = SR_UNIT_VOLT;
} }
if (is_ampere) { if (info->is_ampere) {
analog->mq = SR_MQ_CURRENT; analog->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->unit = SR_UNIT_AMPERE;
} }
if (is_ohm) { if (info->is_ohm) {
analog->mq = SR_MQ_RESISTANCE; analog->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->unit = SR_UNIT_OHM;
} }
if (is_hfe) { if (info->is_hfe) {
analog->mq = SR_MQ_GAIN; analog->mq = SR_MQ_GAIN;
analog->unit = SR_UNIT_UNITLESS; analog->unit = SR_UNIT_UNITLESS;
} }
if (is_hertz) { if (info->is_hertz) {
analog->mq = SR_MQ_FREQUENCY; analog->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->unit = SR_UNIT_HERTZ;
} }
if (is_farad) { if (info->is_farad) {
analog->mq = SR_MQ_CAPACITANCE; analog->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->unit = SR_UNIT_FARAD;
} }
if (is_celsius) { if (info->is_celsius) {
analog->mq = SR_MQ_TEMPERATURE; analog->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->unit = SR_UNIT_CELSIUS;
} }
if (is_fahrenheit) { if (info->is_fahrenheit) {
analog->mq = SR_MQ_TEMPERATURE; analog->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_FAHRENHEIT; analog->unit = SR_UNIT_FAHRENHEIT;
} }
if (is_beep) { if (info->is_beep) {
analog->mq = SR_MQ_CONTINUITY; analog->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN; analog->unit = SR_UNIT_BOOLEAN;
*floatval = (*floatval < 0.0) ? 0.0 : 1.0; *floatval = (*floatval < 0.0) ? 0.0 : 1.0;
} }
if (is_diode) { if (info->is_diode) {
analog->mq = SR_MQ_VOLTAGE; analog->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->unit = SR_UNIT_VOLT;
} }
if (is_percent) { if (info->is_percent) {
analog->mq = SR_MQ_DUTY_CYCLE; analog->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE; analog->unit = SR_UNIT_PERCENTAGE;
} }
/* Measurement related flags */ /* Measurement related flags */
if (is_ac) if (info->is_ac)
analog->mqflags |= SR_MQFLAG_AC; analog->mqflags |= SR_MQFLAG_AC;
if (is_dc) if (info->is_dc)
analog->mqflags |= SR_MQFLAG_DC; analog->mqflags |= SR_MQFLAG_DC;
if (is_auto) if (info->is_auto)
analog->mqflags |= SR_MQFLAG_AUTORANGE; analog->mqflags |= SR_MQFLAG_AUTORANGE;
if (is_hold) if (info->is_hold)
analog->mqflags |= SR_MQFLAG_HOLD; analog->mqflags |= SR_MQFLAG_HOLD;
if (is_max) if (info->is_max)
analog->mqflags |= SR_MQFLAG_MAX; analog->mqflags |= SR_MQFLAG_MAX;
if (is_min) if (info->is_min)
analog->mqflags |= SR_MQFLAG_MIN; analog->mqflags |= SR_MQFLAG_MIN;
if (is_rel) if (info->is_rel)
analog->mqflags |= SR_MQFLAG_RELATIVE; analog->mqflags |= SR_MQFLAG_RELATIVE;
/* Other flags */ /* Other flags */
if (is_apo) if (info->is_apo)
sr_spew("Automatic power-off function is active."); sr_spew("Automatic power-off function is active.");
if (is_bat) if (info->is_bat)
sr_spew("Battery is low."); sr_spew("Battery is low.");
if (is_z1) if (info->is_z1)
sr_spew("User-defined LCD symbol 1 is active."); sr_spew("User-defined LCD symbol 1 is active.");
if (is_z2) if (info->is_z2)
sr_spew("User-defined LCD symbol 2 is active."); sr_spew("User-defined LCD symbol 2 is active.");
if (is_z3) if (info->is_z3)
sr_spew("User-defined LCD symbol 3 is active."); sr_spew("User-defined LCD symbol 3 is active.");
if (is_z4) if (info->is_z4)
sr_spew("User-defined LCD symbol 4 is active."); sr_spew("User-defined LCD symbol 4 is active.");
if (info->is_bpn)
sr_spew("The bargraph value is %d.", info->bargraph_value);
else
sr_spew("The bargraph is not active.");
return SR_OK; }
SR_PRIV gboolean sr_fs9922_packet_valid(const uint8_t *buf)
{
struct fs9922_info info;
/* Byte 0: Sign (must be '+' or '-') */
if (buf[0] != '+' && buf[0] != '-')
return FALSE;
/* Byte 12: Always '\r' (carriage return, 0x0d, 13) */
/* Byte 13: Always '\n' (newline, 0x0a, 10) */
if (buf[12] != '\r' || buf[13] != '\n')
return FALSE;
parse_flags(buf, &info);
return flags_valid(&info);
} }
/** /**
* Parse a Fortune Semiconductor FS9922-DMM3/4 protocol packet. * Parse a protocol packet.
* *
* @param buf Buffer containing the 14-byte protocol packet. * @param buf Buffer containing the protocol packet. Must not be NULL.
* @param floatval Pointer to a float variable. That variable will be modified * @param floatval Pointer to a float variable. That variable will contain the
* in-place depending on the protocol packet. * result value upon parsing success. Must not be NULL.
* @param analog Pointer to a struct sr_datafeed_analog. The struct will be * @param analog Pointer to a struct sr_datafeed_analog. The struct will be
* filled with data according to the protocol packet. * filled with data according to the protocol packet.
* Must not be NULL.
* @param info Pointer to a struct fs9922_info. The struct will be filled
* with data according to the protocol packet. Must not be NULL.
* *
* @return SR_OK upon success, SR_ERR upon failure. Upon errors, the * @return SR_OK upon success, SR_ERR upon failure. Upon errors, the
* 'analog' variable contents are undefined and should not be used. * 'analog' variable contents are undefined and should not be used.
*/ */
SR_PRIV int sr_dmm_parse_fs9922(const uint8_t *buf, float *floatval, SR_PRIV int sr_fs9922_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog) struct sr_datafeed_analog *analog, void *info)
{ {
int ret; int ret;
struct fs9922_info *info_local;
info_local = (struct fs9922_info *)info;
if ((ret = parse_value(buf, floatval)) != SR_OK) { if ((ret = parse_value(buf, floatval)) != SR_OK) {
sr_err("Error parsing value: %d.", ret); sr_err("Error parsing value: %d.", ret);
return ret; return ret;
} }
if ((ret = parse_flags(buf, floatval, analog)) != SR_OK) { parse_flags(buf, info_local);
sr_err("Error parsing flags: %d.", ret); handle_flags(analog, floatval, info_local);
return ret;
}
return SR_OK; return SR_OK;
} }

View File

@ -199,8 +199,21 @@ SR_PRIV int sr_es51922_parse(const uint8_t *buf, float *floatval,
/*--- hardware/common/dmm/fs9922.c ------------------------------------------*/ /*--- hardware/common/dmm/fs9922.c ------------------------------------------*/
SR_PRIV int sr_dmm_parse_fs9922(const uint8_t *buf, float *floatval, #define FS9922_PACKET_SIZE 14
struct sr_datafeed_analog *analog);
struct fs9922_info {
gboolean is_auto, is_dc, is_ac, is_rel, is_hold, is_bpn, is_z1, is_z2;
gboolean is_max, is_min, is_apo, is_bat, is_nano, is_z3, is_micro;
gboolean is_milli, is_kilo, is_mega, is_beep, is_diode, is_percent;
gboolean is_z4, is_volt, is_ampere, is_ohm, is_hfe, is_hertz, is_farad;
gboolean is_celsius, is_fahrenheit;
int bargraph_sign, bargraph_value;
};
SR_PRIV gboolean sr_fs9922_is_packet_start(uint8_t b);
SR_PRIV gboolean sr_fs9922_packet_valid(const uint8_t *buf);
SR_PRIV int sr_fs9922_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog *analog, void *info);
/*--- hardware/common/dmm/fs9721.c ------------------------------------------*/ /*--- hardware/common/dmm/fs9721.c ------------------------------------------*/