hameg-hmo: simplify code by using new sr_rational_parse/_eq API functions
This commit is contained in:
parent
17d5a11c69
commit
a53acd7d46
|
@ -343,14 +343,8 @@ static int scope_state_get_array_option(struct sr_scpi_dev_inst *scpi,
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This function takes a value of the form "2.000E-03", converts it to a
|
* This function takes a value of the form "2.000E-03" and returns the index
|
||||||
* significand / factor pair and returns the index of an array where
|
* of an array where a matching pair was found.
|
||||||
* a matching pair was found.
|
|
||||||
*
|
|
||||||
* It's a bit convoluted because of floating-point issues. The value "10.00E-09"
|
|
||||||
* is parsed by g_ascii_strtod() as 0.000000009999999939, for example.
|
|
||||||
* Therefore it's easier to break the number up into two strings and handle
|
|
||||||
* them separately.
|
|
||||||
*
|
*
|
||||||
* @param value The string to be parsed.
|
* @param value The string to be parsed.
|
||||||
* @param array The array of s/f pairs.
|
* @param array The array of s/f pairs.
|
||||||
|
@ -362,48 +356,15 @@ static int scope_state_get_array_option(struct sr_scpi_dev_inst *scpi,
|
||||||
static int array_float_get(gchar *value, const uint64_t array[][2],
|
static int array_float_get(gchar *value, const uint64_t array[][2],
|
||||||
int array_len, unsigned int *result)
|
int array_len, unsigned int *result)
|
||||||
{
|
{
|
||||||
int i, e;
|
struct sr_rational rval;
|
||||||
size_t pos;
|
struct sr_rational aval;
|
||||||
uint64_t f;
|
|
||||||
float s;
|
|
||||||
unsigned int s_int;
|
|
||||||
gchar ss[10], es[10];
|
|
||||||
|
|
||||||
memset(ss, 0, sizeof(ss));
|
if (sr_parse_rational(value, &rval) != SR_OK)
|
||||||
memset(es, 0, sizeof(es));
|
|
||||||
|
|
||||||
/* Get index of the separating 'E' character and break up the string. */
|
|
||||||
pos = strcspn(value, "E");
|
|
||||||
|
|
||||||
strncpy(ss, value, pos);
|
|
||||||
strncpy(es, &(value[pos+1]), 3);
|
|
||||||
|
|
||||||
if (sr_atof_ascii(ss, &s) != SR_OK)
|
|
||||||
return SR_ERR;
|
|
||||||
if (sr_atoi(es, &e) != SR_OK)
|
|
||||||
return SR_ERR;
|
return SR_ERR;
|
||||||
|
|
||||||
/* Transform e.g. 10^-03 to 1000 as the array stores the inverse. */
|
for (int i = 0; i < array_len; i++) {
|
||||||
f = pow(10, abs(e));
|
sr_rational_set(&aval, array[i][0], array[i][1]);
|
||||||
|
if (sr_rational_eq(&rval, &aval)) {
|
||||||
/*
|
|
||||||
* Adjust the significand/factor pair to make sure
|
|
||||||
* that f is a multiple of 1000.
|
|
||||||
*/
|
|
||||||
while ((int)fmod(log10(f), 3) > 0) {
|
|
||||||
s *= 10;
|
|
||||||
|
|
||||||
if (e < 0)
|
|
||||||
f *= 10;
|
|
||||||
else
|
|
||||||
f /= 10;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Truncate s to circumvent rounding errors. */
|
|
||||||
s_int = (unsigned int)s;
|
|
||||||
|
|
||||||
for (i = 0; i < array_len; i++) {
|
|
||||||
if ((s_int == array[i][0]) && (f == array[i][1])) {
|
|
||||||
*result = i;
|
*result = i;
|
||||||
return SR_OK;
|
return SR_OK;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue