ikalogic-scanaplus: Initial driver implementation.

This commit is contained in:
Uwe Hermann 2013-06-04 15:32:20 +02:00
parent fdf4a1f5a0
commit ab4bb6eb7c
3 changed files with 663 additions and 42 deletions

View File

@ -20,26 +20,146 @@
#include "protocol.h"
#define USB_VENDOR_ID 0x0403
#define USB_DEVICE_ID 0x6014
#define USB_VENDOR_NAME "Ikalogic"
#define USB_MODEL_NAME "ScanaPLUS"
#define USB_IPRODUCT "SCANAPLUS"
#define SAMPLE_BUF_SIZE (8 * 1024 * 1024)
static const int32_t hwcaps[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_MSEC,
SR_CONF_LIMIT_SAMPLES,
SR_CONF_CONTINUOUS, // TODO?
};
/* Probes are numbered 1-9. */
static const char *probe_names[] = {
"1", "2", "3", "4", "5", "6", "7", "8", "9",
NULL,
};
/* Note: The Ikalogic ScanaPLUS always samples at 100MHz. */
static uint64_t samplerates[1] = { SR_MHZ(100) };
SR_PRIV struct sr_dev_driver ikalogic_scanaplus_driver_info;
static struct sr_dev_driver *di = &ikalogic_scanaplus_driver_info;
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
static void clear_helper(void *priv)
{
struct dev_context *devc;
devc = priv;
ftdi_free(devc->ftdic);
g_free(devc->compressed_buf);
g_free(devc->sample_buf);
}
static int dev_clear(void)
{
return std_dev_clear(di, clear_helper);
}
static int init(struct sr_context *sr_ctx)
{
return std_hw_init(sr_ctx, di, LOG_PREFIX);
return std_init(sr_ctx, di, LOG_PREFIX);
}
static GSList *scan(GSList *options)
{
struct sr_dev_inst *sdi;
struct sr_probe *probe;
struct drv_context *drvc;
struct dev_context *devc;
GSList *devices;
unsigned int i;
int ret;
(void)options;
devices = NULL;
drvc = di->priv;
drvc->instances = NULL;
devices = NULL;
/* Allocate memory for our private device context. */
if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
sr_err("Device context malloc failed.");
goto err_free_nothing;
}
/* Allocate memory for the incoming compressed samples. */
if (!(devc->compressed_buf = g_try_malloc0(COMPRESSED_BUF_SIZE))) {
sr_err("compressed_buf malloc failed.");
goto err_free_devc;
}
/* Allocate memory for the uncompressed samples. */
if (!(devc->sample_buf = g_try_malloc0(SAMPLE_BUF_SIZE))) {
sr_err("sample_buf malloc failed.");
goto err_free_compressed_buf;
}
/* Allocate memory for the FTDI context (ftdic) and initialize it. */
if (!(devc->ftdic = ftdi_new())) {
sr_err("Failed to initialize libftdi.");
goto err_free_sample_buf;
}
/* Check for the device and temporarily open it. */
ret = ftdi_usb_open_desc(devc->ftdic, USB_VENDOR_ID, USB_DEVICE_ID,
USB_IPRODUCT, NULL);
if (ret < 0) {
/* Log errors, except for -3 ("device not found"). */
if (ret != -3)
sr_err("Failed to open device (%d): %s", ret,
ftdi_get_error_string(devc->ftdic));
goto err_free_ftdic;
}
/* Register the device with libsigrok. */
sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING,
USB_VENDOR_NAME, USB_MODEL_NAME, NULL);
if (!sdi) {
sr_err("Failed to create device instance.");
goto err_close_ftdic;
}
sdi->driver = di;
sdi->priv = devc;
for (i = 0; probe_names[i]; i++) {
if (!(probe = sr_probe_new(i, SR_PROBE_LOGIC, TRUE,
probe_names[i])))
return NULL;
sdi->probes = g_slist_append(sdi->probes, probe);
}
devices = g_slist_append(devices, sdi);
drvc->instances = g_slist_append(drvc->instances, sdi);
/* Close device. We'll reopen it again when we need it. */
scanaplus_close(devc);
return devices;
err_close_ftdic:
scanaplus_close(devc);
err_free_ftdic:
ftdi_free(devc->ftdic); /* NOT free() or g_free()! */
err_free_sample_buf:
g_free(devc->sample_buf);
err_free_compressed_buf:
g_free(devc->compressed_buf);
err_free_devc:
g_free(devc);
err_free_nothing:
return NULL;
}
static GSList *dev_list(void)
@ -47,27 +167,111 @@ static GSList *dev_list(void)
return ((struct drv_context *)(di->priv))->instances;
}
static int dev_clear(void)
{
return std_dev_clear(di, NULL);
}
static int dev_open(struct sr_dev_inst *sdi)
{
(void)sdi;
struct dev_context *devc;
int ret;
devc = sdi->priv;
/* Select interface A, otherwise communication will fail. */
ret = ftdi_set_interface(devc->ftdic, INTERFACE_A);
if (ret < 0) {
sr_err("Failed to set FTDI interface A (%d): %s", ret,
ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
sr_dbg("FTDI chip interface A set successfully.");
/* Open the device. */
ret = ftdi_usb_open_desc(devc->ftdic, USB_VENDOR_ID, USB_DEVICE_ID,
USB_IPRODUCT, NULL);
if (ret < 0) {
sr_err("Failed to open device (%d): %s", ret,
ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
sr_dbg("FTDI device opened successfully.");
/* Purge RX/TX buffers in the FTDI chip. */
if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0) {
sr_err("Failed to purge FTDI RX/TX buffers (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_dev_open_close_ftdic;
}
sr_dbg("FTDI chip buffers purged successfully.");
/* Reset the FTDI bitmode. */
ret = ftdi_set_bitmode(devc->ftdic, 0xff, BITMODE_RESET);
if (ret < 0) {
sr_err("Failed to reset the FTDI chip bitmode (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_dev_open_close_ftdic;
}
sr_dbg("FTDI chip bitmode reset successfully.");
/* Set FTDI bitmode to "sync FIFO". */
ret = ftdi_set_bitmode(devc->ftdic, 0xff, BITMODE_SYNCFF);
if (ret < 0) {
sr_err("Failed to put FTDI chip into sync FIFO mode (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_dev_open_close_ftdic;
}
sr_dbg("FTDI chip sync FIFO mode entered successfully.");
/* Set the FTDI latency timer to 2. */
ret = ftdi_set_latency_timer(devc->ftdic, 2);
if (ret < 0) {
sr_err("Failed to set FTDI latency timer (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_dev_open_close_ftdic;
}
sr_dbg("FTDI chip latency timer set successfully.");
/* Set the FTDI read data chunk size to 64kB. */
ret = ftdi_read_data_set_chunksize(devc->ftdic, 64 * 1024);
if (ret < 0) {
sr_err("Failed to set FTDI read data chunk size (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
goto err_dev_open_close_ftdic;
}
sr_dbg("FTDI chip read data chunk size set successfully.");
/* Get the ScanaPLUS device ID from the FTDI EEPROM. */
if ((ret = scanaplus_get_device_id(devc)) < 0) {
sr_err("Failed to get ScanaPLUS device ID: %d.", ret);
goto err_dev_open_close_ftdic;
}
sr_dbg("Received ScanaPLUS device ID successfully: %02x %02x %02x.",
devc->devid[0], devc->devid[1], devc->devid[2]);
sdi->status = SR_ST_ACTIVE;
return SR_OK;
err_dev_open_close_ftdic:
scanaplus_close(devc);
return SR_ERR;
}
static int dev_close(struct sr_dev_inst *sdi)
{
(void)sdi;
int ret;
struct dev_context *devc;
ret = SR_OK;
devc = sdi->priv;
if (sdi->status == SR_ST_ACTIVE) {
sr_dbg("Status ACTIVE, closing device.");
ret = scanaplus_close(devc);
} else {
sr_spew("Status not ACTIVE, nothing to do.");
}
sdi->status = SR_ST_INACTIVE;
return SR_OK;
return ret;
}
static int cleanup(void)
@ -75,73 +279,134 @@ static int cleanup(void)
return dev_clear();
}
static int config_get(int key, GVariant **data, const struct sr_dev_inst *sdi)
static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi)
{
int ret;
(void)sdi;
(void)data;
ret = SR_OK;
switch (key) {
switch (id) {
case SR_CONF_SAMPLERATE:
/* The ScanaPLUS samplerate is 100MHz and can't be changed. */
*data = g_variant_new_uint64(SR_MHZ(100));
break;
default:
return SR_ERR_NA;
}
return ret;
return SR_OK;
}
static int config_set(int key, GVariant *data, const struct sr_dev_inst *sdi)
static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi)
{
int ret;
(void)data;
struct dev_context *devc;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
ret = SR_OK;
switch (key) {
devc = sdi->priv;
switch (id) {
case SR_CONF_SAMPLERATE:
if (g_variant_get_uint64(data) != SR_MHZ(100)) {
sr_err("ScanaPLUS only supports samplerate = 100MHz.");
return SR_ERR_ARG;
}
/* Nothing to do, the ScanaPLUS samplerate is always 100MHz. */
break;
case SR_CONF_LIMIT_MSEC:
if (g_variant_get_uint64(data) == 0)
return SR_ERR_ARG;
devc->limit_msec = g_variant_get_uint64(data);
break;
case SR_CONF_LIMIT_SAMPLES:
if (g_variant_get_uint64(data) == 0)
return SR_ERR_ARG;
devc->limit_samples = g_variant_get_uint64(data);
break;
default:
ret = SR_ERR_NA;
return SR_ERR_NA;
}
return ret;
return SR_OK;
}
static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi)
{
int ret;
GVariant *gvar;
GVariantBuilder gvb;
(void)sdi;
(void)data;
ret = SR_OK;
switch (key) {
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
samplerates, ARRAY_SIZE(samplerates),
sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
default:
return SR_ERR_NA;
}
return ret;
return SR_OK;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
(void)sdi;
(void)cb_data;
int ret;
struct dev_context *devc;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv))
return SR_ERR_BUG;
if (!devc->ftdic)
return SR_ERR_BUG;
/* TODO: Configure probes later (thresholds etc.). */
devc->cb_data = cb_data;
/* Properly reset internal variables before every new acquisition. */
devc->compressed_bytes_ignored = 0;
devc->samples_sent = 0;
devc->bytes_received = 0;
if ((ret = scanaplus_init(devc)) < 0)
return ret;
if ((ret = scanaplus_start_acquisition(devc)) < 0)
return ret;
/* Send header packet to the session bus. */
std_session_send_df_header(cb_data, LOG_PREFIX);
/* Hook up a dummy handler to receive data from the device. */
sr_source_add(-1, G_IO_IN, 0, scanaplus_receive_data, (void *)sdi);
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
(void)cb_data;
struct sr_datafeed_packet packet;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
(void)sdi;
sr_dbg("Stopping acquisition.");
sr_source_remove(-1);
/* Send end packet to the session bus. */
sr_dbg("Sending SR_DF_END.");
packet.type = SR_DF_END;
sr_session_send(cb_data, &packet);
return SR_OK;
}

View File

@ -20,12 +20,286 @@
#include "protocol.h"
SR_PRIV int ikalogic_scanaplus_receive_data(int fd, int revents, void *cb_data)
/*
* Logic level thresholds.
*
* For each of the two channel groups (1-4 and 5-9), the logic level
* threshold can be set independently.
*
* The threshold can be set to values that are usable for systems with
* different voltage levels, e.g. for 1.8V or 3.3V systems.
*
* The actual threshold value is always the middle of the values below.
* E.g. for a system voltage level of 1.8V, the threshold is at 0.9V. That
* means that values <= 0.9V are considered to be a logic 0/low, and
* values > 0.9V are considered to be a logic 1/high.
*
* - 1.2V system: threshold = 0.6V
* - 1.5V system: threshold = 0.75V
* - 1.8V system: threshold = 0.9V
* - 2.8V system: threshold = 1.4V
* - 3.3V system: threshold = 1.65V
*/
#define THRESHOLD_1_2V_SYSTEM 0x2e
#define THRESHOLD_1_5V_SYSTEM 0x39
#define THRESHOLD_1_8V_SYSTEM 0x45
#define THRESHOLD_2_8V_SYSTEM 0x6c
#define THRESHOLD_3_3V_SYSTEM 0x7f
static int scanaplus_write(struct dev_context *devc, uint8_t *buf, int size)
{
const struct sr_dev_inst *sdi;
int i, bytes_written;
GString *s;
/* Note: Caller checks devc, devc->ftdic, buf, size. */
s = g_string_sized_new(100);
g_string_printf(s, "Writing %d bytes: ", size);
for (i = 0; i < size; i++)
g_string_append_printf(s, "0x%02x ", buf[i]);
sr_spew("%s", s->str);
g_string_free(s, TRUE);
bytes_written = ftdi_write_data(devc->ftdic, buf, size);
if (bytes_written < 0) {
sr_err("Failed to write FTDI data (%d): %s.",
bytes_written, ftdi_get_error_string(devc->ftdic));
} else if (bytes_written != size) {
sr_err("FTDI write error, only %d/%d bytes written: %s.",
bytes_written, size, ftdi_get_error_string(devc->ftdic));
}
return bytes_written;
}
SR_PRIV int scanaplus_close(struct dev_context *devc)
{
int ret;
/* Note: Caller checks devc and devc->ftdic. */
if ((ret = ftdi_usb_close(devc->ftdic)) < 0) {
sr_err("Failed to close FTDI device (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
return SR_OK;
}
static void scanaplus_uncompress_block(struct dev_context *devc,
uint64_t num_bytes)
{
uint64_t i, j;
uint8_t num_samples, low, high;
for (i = 0; i < num_bytes; i += 2) {
num_samples = devc->compressed_buf[i + 0] >> 1;
low = devc->compressed_buf[i + 0] & (1 << 0);
high = devc->compressed_buf[i + 1];
for (j = 0; j < num_samples; j++) {
devc->sample_buf[devc->bytes_received++] = high;
devc->sample_buf[devc->bytes_received++] = low;
}
}
}
static void send_samples(struct dev_context *devc, uint64_t samples_to_send)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
sr_spew("Sending %" PRIu64 " samples.", samples_to_send);
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = samples_to_send * 2;
logic.unitsize = 2; /* We need 2 bytes for 9 probes. */
logic.data = devc->sample_buf;
sr_session_send(devc->cb_data, &packet);
devc->samples_sent += samples_to_send;
devc->bytes_received -= samples_to_send * 2;
}
SR_PRIV int scanaplus_get_device_id(struct dev_context *devc)
{
int ret;
uint16_t val1, val2;
/* FTDI EEPROM indices 16+17 contain the 3 device ID bytes. */
if ((ret = ftdi_read_eeprom_location(devc->ftdic, 16, &val1)) < 0) {
sr_err("Failed to read EEPROM index 16 (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
if ((ret = ftdi_read_eeprom_location(devc->ftdic, 17, &val2)) < 0) {
sr_err("Failed to read EEPROM index 17 (%d): %s.",
ret, ftdi_get_error_string(devc->ftdic));
return SR_ERR;
}
/*
* Note: Bit 7 of the three bytes must not be used, apparently.
*
* Even though the three bits can be either 0 or 1 (we've seen both
* in actual ScanaPLUS devices), the device ID as sent to the FPGA
* has bit 7 of each byte zero'd out.
*
* It is unknown whether bit 7 of these bytes has any meaning,
* whether it's used somewhere, or whether it can be simply ignored.
*/
devc->devid[0] = ((val1 >> 0) & 0xff) & ~(1 << 7);
devc->devid[1] = ((val1 >> 8) & 0xff) & ~(1 << 7);
devc->devid[2] = ((val2 >> 0) & 0xff) & ~(1 << 7);
return SR_OK;
}
static int scanaplus_clear_device_id(struct dev_context *devc)
{
uint8_t buf[2];
buf[0] = 0x8c;
buf[1] = 0x00;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8e;
buf[1] = 0x00;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8f;
buf[1] = 0x00;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
return SR_OK;
}
static int scanaplus_send_device_id(struct dev_context *devc)
{
uint8_t buf[2];
buf[0] = 0x8c;
buf[1] = devc->devid[0];
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8e;
buf[1] = devc->devid[1];
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8f;
buf[1] = devc->devid[2];
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
return SR_OK;
}
SR_PRIV int scanaplus_init(struct dev_context *devc)
{
int i;
uint8_t buf[8];
buf[0] = 0x88;
buf[1] = 0x41;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x89;
buf[1] = 0x64;
buf[2] = 0x8a;
buf[3] = 0x64;
if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0)
return SR_ERR;
buf[0] = 0x88;
buf[1] = 0x41;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x88;
buf[1] = 0x40;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8d;
buf[1] = 0x01;
buf[2] = 0x8d;
buf[3] = 0x05;
buf[4] = 0x8d;
buf[5] = 0x01;
buf[6] = 0x8d;
buf[7] = 0x02;
if (scanaplus_write(devc, (uint8_t *)&buf, 8) < 0)
return SR_ERR;
for (i = 0; i < 57; i++) {
buf[0] = 0x8d;
buf[1] = 0x06;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
buf[0] = 0x8d;
buf[1] = 0x02;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
}
if (scanaplus_send_device_id(devc) < 0)
return SR_ERR;
buf[0] = 0x88;
buf[1] = 0x40;
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
return SR_OK;
}
SR_PRIV int scanaplus_start_acquisition(struct dev_context *devc)
{
uint8_t buf[4];
/* Threshold and differential probe settings not yet implemented. */
buf[0] = 0x89;
buf[1] = 0x7f; /* Logic level threshold for probes 1-4. */
buf[2] = 0x8a;
buf[3] = 0x7f; /* Logic level threshold for probes 5-9. */
if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0)
return SR_ERR;
buf[0] = 0x88;
buf[1] = 0x40; /* Special config of probes 5/6 and 7/8. */
/* 0x40: normal, 0x50: ch56 diff, 0x48: ch78 diff, 0x58: ch5678 diff */
if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
return SR_ERR;
if (scanaplus_clear_device_id(devc) < 0)
return SR_ERR;
if (scanaplus_send_device_id(devc) < 0)
return SR_ERR;
return SR_OK;
}
SR_PRIV int scanaplus_receive_data(int fd, int revents, void *cb_data)
{
int bytes_read;
struct sr_dev_inst *sdi;
struct dev_context *devc;
uint64_t max, n;
(void)fd;
(void)revents;
if (!(sdi = cb_data))
return TRUE;
@ -33,8 +307,63 @@ SR_PRIV int ikalogic_scanaplus_receive_data(int fd, int revents, void *cb_data)
if (!(devc = sdi->priv))
return TRUE;
if (revents == G_IO_IN) {
/* TODO */
if (!devc->ftdic)
return TRUE;
/* Get a block of data. */
bytes_read = ftdi_read_data(devc->ftdic, devc->compressed_buf,
COMPRESSED_BUF_SIZE);
if (bytes_read < 0) {
sr_err("Failed to read FTDI data (%d): %s.",
bytes_read, ftdi_get_error_string(devc->ftdic));
sdi->driver->dev_acquisition_stop(sdi, sdi);
return FALSE;
}
if (bytes_read == 0) {
sr_spew("Received 0 bytes, nothing to do.");
return TRUE;
}
/*
* After a ScanaPLUS acquisition starts, a bunch of samples will be
* returned as all-zero, no matter which signals are actually present
* on the probes. This is probably due to the FPGA reconfiguring some
* of its internal state/config during this time.
*
* As far as we know there is apparently no way for the PC-side to
* know when this "reconfiguration" starts or ends. The FTDI chip
* will return all-zero "dummy" samples during this time, which is
* indistinguishable from actual all-zero samples.
*
* We currently simply ignore the first 64kB of data after an
* acquisition starts. Empirical tests have shown that the
* "reconfigure" time is a lot less than that usually.
*/
if (devc->compressed_bytes_ignored < COMPRESSED_BUF_SIZE) {
/* Ignore the first 64kB of data of every acquisition. */
sr_spew("Ignoring first 64kB chunk of data.");
devc->compressed_bytes_ignored += COMPRESSED_BUF_SIZE;
return TRUE;
}
/* TODO: Handle bytes_read which is not a multiple of 2? */
scanaplus_uncompress_block(devc, bytes_read);
n = devc->samples_sent + (devc->bytes_received / 2);
max = (SR_MHZ(100) / 1000) * devc->limit_msec;
if (devc->limit_samples && (n >= devc->limit_samples)) {
send_samples(devc, devc->limit_samples - devc->samples_sent);
sr_info("Requested number of samples reached.");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
return TRUE;
} else if (devc->limit_msec && (n >= max)) {
send_samples(devc, max - devc->samples_sent);
sr_info("Requested time limit reached.");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
return TRUE;
} else {
send_samples(devc, devc->bytes_received / 2);
}
return TRUE;

View File

@ -22,12 +22,14 @@
#define LIBSIGROK_HARDWARE_IKALOGIC_SCANAPLUS_PROTOCOL_H
#include <stdint.h>
#include <string.h>
#include <glib.h>
#include <ftdi.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
/* Message logging helpers with subsystem-specific prefix string. */
#define LOG_PREFIX "ikalogic-scanaplus: "
#define LOG_PREFIX "scanaplus: "
#define sr_log(l, s, args...) sr_log(l, LOG_PREFIX s, ## args)
#define sr_spew(s, args...) sr_spew(LOG_PREFIX s, ## args)
#define sr_dbg(s, args...) sr_dbg(LOG_PREFIX s, ## args)
@ -35,10 +37,35 @@
#define sr_warn(s, args...) sr_warn(LOG_PREFIX s, ## args)
#define sr_err(s, args...) sr_err(LOG_PREFIX s, ## args)
/** Private, per-device-instance driver context. */
#define COMPRESSED_BUF_SIZE (64 * 1024)
/* Private, per-device-instance driver context. */
struct dev_context {
/** FTDI device context (used by libftdi). */
struct ftdi_context *ftdic;
/** The current sampling limit (in ms). */
uint64_t limit_msec;
/** The current sampling limit (in number of samples). */
uint64_t limit_samples;
void *cb_data;
uint8_t *compressed_buf;
uint64_t compressed_bytes_ignored;
uint8_t *sample_buf;
uint64_t bytes_received;
uint64_t samples_sent;
/** ScanaPLUS unique device ID (3 bytes). */
uint8_t devid[3];
};
SR_PRIV int ikalogic_scanaplus_receive_data(int fd, int revents, void *cb_data);
SR_PRIV int scanaplus_close(struct dev_context *devc);
SR_PRIV int scanaplus_get_device_id(struct dev_context *devc);
SR_PRIV int scanaplus_init(struct dev_context *devc);
SR_PRIV int scanaplus_start_acquisition(struct dev_context *devc);
SR_PRIV int scanaplus_receive_data(int fd, int revents, void *cb_data);
#endif