dmm: Convert to SR_DF_ANALOG.

This commit is contained in:
Uwe Hermann 2016-05-28 17:33:30 +02:00
parent 7ffcf58736
commit b02bb45f4c
11 changed files with 332 additions and 332 deletions

View File

@ -147,61 +147,61 @@ special:
} }
SR_PRIV int sr_brymen_bm25x_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_brymen_bm25x_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
float val; float val;
(void)info; (void)info;
analog->mq = SR_MQ_GAIN; analog->meaning->mq = SR_MQ_GAIN;
analog->unit = SR_UNIT_UNITLESS; analog->meaning->unit = SR_UNIT_UNITLESS;
analog->mqflags = 0; analog->meaning->mqflags = 0;
if (buf[1] & 8) if (buf[1] & 8)
analog->mqflags |= SR_MQFLAG_AUTORANGE; analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
if (buf[1] & 4) if (buf[1] & 4)
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
if (buf[1] & 2) if (buf[1] & 2)
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
if (buf[1] & 1) if (buf[1] & 1)
analog->mqflags |= SR_MQFLAG_RELATIVE; analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
if (buf[11] & 8) if (buf[11] & 8)
analog->mqflags |= SR_MQFLAG_HOLD; analog->meaning->mqflags |= SR_MQFLAG_HOLD;
if (buf[13] & 8) if (buf[13] & 8)
analog->mqflags |= SR_MQFLAG_MAX; analog->meaning->mqflags |= SR_MQFLAG_MAX;
if (buf[14] & 8) if (buf[14] & 8)
analog->mqflags |= SR_MQFLAG_MIN; analog->meaning->mqflags |= SR_MQFLAG_MIN;
if (buf[14] & 4) { if (buf[14] & 4) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
if ((analog->mqflags & (SR_MQFLAG_DC | SR_MQFLAG_AC)) == 0) if ((analog->meaning->mqflags & (SR_MQFLAG_DC | SR_MQFLAG_AC)) == 0)
analog->mqflags |= SR_MQFLAG_DIODE; analog->meaning->mqflags |= SR_MQFLAG_DIODE;
} }
if (buf[14] & 2) { if (buf[14] & 2) {
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
} }
if (buf[12] & 4) { if (buf[12] & 4) {
analog->mq = SR_MQ_RESISTANCE; analog->meaning->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->meaning->unit = SR_UNIT_OHM;
} }
if (buf[13] & 4) { if (buf[13] & 4) {
analog->mq = SR_MQ_CAPACITANCE; analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->meaning->unit = SR_UNIT_FARAD;
} }
if (buf[12] & 2) { if (buf[12] & 2) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->meaning->unit = SR_UNIT_HERTZ;
} }
if (decode_digit(3, buf) == 'C') { if (decode_digit(3, buf) == 'C') {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
if (decode_digit(3, buf) == 'F') { if (decode_digit(3, buf) == 'F') {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_FAHRENHEIT; analog->meaning->unit = SR_UNIT_FAHRENHEIT;
} }
val = decode_value(buf) * decode_prefix(buf); val = decode_value(buf) * decode_prefix(buf);

View File

@ -248,7 +248,7 @@ static void parse_flags(const uint8_t *buf, struct dtm0660_info *info)
info->is_max = (buf[14] & (1 << 3)) != 0; info->is_max = (buf[14] & (1 << 3)) != 0;
} }
static void handle_flags(struct sr_datafeed_analog_old *analog, float *floatval, static void handle_flags(struct sr_datafeed_analog *analog, float *floatval,
const struct dtm0660_info *info) const struct dtm0660_info *info)
{ {
/* Factors */ /* Factors */
@ -265,64 +265,64 @@ static void handle_flags(struct sr_datafeed_analog_old *analog, float *floatval,
/* Measurement modes */ /* Measurement modes */
if (info->is_volt) { if (info->is_volt) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_ampere) { if (info->is_ampere) {
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
} }
if (info->is_ohm) { if (info->is_ohm) {
analog->mq = SR_MQ_RESISTANCE; analog->meaning->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->meaning->unit = SR_UNIT_OHM;
} }
if (info->is_hz) { if (info->is_hz) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->meaning->unit = SR_UNIT_HERTZ;
} }
if (info->is_farad) { if (info->is_farad) {
analog->mq = SR_MQ_CAPACITANCE; analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->meaning->unit = SR_UNIT_FARAD;
} }
if (info->is_beep) { if (info->is_beep) {
analog->mq = SR_MQ_CONTINUITY; analog->meaning->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN; analog->meaning->unit = SR_UNIT_BOOLEAN;
*floatval = (*floatval == INFINITY) ? 0.0 : 1.0; *floatval = (*floatval == INFINITY) ? 0.0 : 1.0;
} }
if (info->is_diode) { if (info->is_diode) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_percent) { if (info->is_percent) {
analog->mq = SR_MQ_DUTY_CYCLE; analog->meaning->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE; analog->meaning->unit = SR_UNIT_PERCENTAGE;
} }
if (info->is_degc) { if (info->is_degc) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
if (info->is_degf) { if (info->is_degf) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_FAHRENHEIT; analog->meaning->unit = SR_UNIT_FAHRENHEIT;
} }
/* Measurement related flags */ /* Measurement related flags */
if (info->is_ac) if (info->is_ac)
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
if (info->is_dc) if (info->is_dc)
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
if (info->is_auto) if (info->is_auto)
analog->mqflags |= SR_MQFLAG_AUTORANGE; analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
if (info->is_diode) if (info->is_diode)
analog->mqflags |= SR_MQFLAG_DIODE; analog->meaning->mqflags |= SR_MQFLAG_DIODE;
if (info->is_hold) if (info->is_hold)
analog->mqflags |= SR_MQFLAG_HOLD; analog->meaning->mqflags |= SR_MQFLAG_HOLD;
if (info->is_rel) if (info->is_rel)
analog->mqflags |= SR_MQFLAG_RELATIVE; analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
if (info->is_min) if (info->is_min)
analog->mqflags |= SR_MQFLAG_MIN; analog->meaning->mqflags |= SR_MQFLAG_MIN;
if (info->is_max) if (info->is_max)
analog->mqflags |= SR_MQFLAG_MAX; analog->meaning->mqflags |= SR_MQFLAG_MAX;
/* Other flags */ /* Other flags */
if (info->is_rs232) if (info->is_rs232)
@ -354,7 +354,7 @@ SR_PRIV gboolean sr_dtm0660_packet_valid(const uint8_t *buf)
* @param buf Buffer containing the 15-byte protocol packet. Must not be NULL. * @param buf Buffer containing the 15-byte protocol packet. Must not be NULL.
* @param floatval Pointer to a float variable. That variable will contain the * @param floatval Pointer to a float variable. That variable will contain the
* result value upon parsing success. Must not be NULL. * result value upon parsing success. Must not be NULL.
* @param analog Pointer to a struct sr_datafeed_analog_old. The struct will be * @param analog Pointer to a struct sr_datafeed_analog. The struct will be
* filled with data according to the protocol packet. * filled with data according to the protocol packet.
* Must not be NULL. * Must not be NULL.
* @param info Pointer to a struct dtm0660_info. The struct will be filled * @param info Pointer to a struct dtm0660_info. The struct will be filled
@ -364,7 +364,7 @@ SR_PRIV gboolean sr_dtm0660_packet_valid(const uint8_t *buf)
* 'analog' variable contents are undefined and should not be used. * 'analog' variable contents are undefined and should not be used.
*/ */
SR_PRIV int sr_dtm0660_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_dtm0660_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
int ret; int ret;
struct dtm0660_info *info_local; struct dtm0660_info *info_local;

View File

@ -444,7 +444,7 @@ static void parse_flags(const uint8_t *buf, struct es519xx_info *info)
} }
} }
static void handle_flags(struct sr_datafeed_analog_old *analog, static void handle_flags(struct sr_datafeed_analog *analog,
float *floatval, const struct es519xx_info *info) float *floatval, const struct es519xx_info *info)
{ {
/* /*
@ -454,73 +454,73 @@ static void handle_flags(struct sr_datafeed_analog_old *analog,
/* Measurement modes */ /* Measurement modes */
if (info->is_voltage) { if (info->is_voltage) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_current) { if (info->is_current) {
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
} }
if (info->is_resistance) { if (info->is_resistance) {
analog->mq = SR_MQ_RESISTANCE; analog->meaning->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->meaning->unit = SR_UNIT_OHM;
} }
if (info->is_frequency) { if (info->is_frequency) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->meaning->unit = SR_UNIT_HERTZ;
} }
if (info->is_capacitance) { if (info->is_capacitance) {
analog->mq = SR_MQ_CAPACITANCE; analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->meaning->unit = SR_UNIT_FARAD;
} }
if (info->is_temperature && info->is_celsius) { if (info->is_temperature && info->is_celsius) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
if (info->is_temperature && info->is_fahrenheit) { if (info->is_temperature && info->is_fahrenheit) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_FAHRENHEIT; analog->meaning->unit = SR_UNIT_FAHRENHEIT;
} }
if (info->is_continuity) { if (info->is_continuity) {
analog->mq = SR_MQ_CONTINUITY; analog->meaning->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN; analog->meaning->unit = SR_UNIT_BOOLEAN;
*floatval = (*floatval < 0.0 || *floatval > 25.0) ? 0.0 : 1.0; *floatval = (*floatval < 0.0 || *floatval > 25.0) ? 0.0 : 1.0;
} }
if (info->is_diode) { if (info->is_diode) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_rpm) { if (info->is_rpm) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_REVOLUTIONS_PER_MINUTE; analog->meaning->unit = SR_UNIT_REVOLUTIONS_PER_MINUTE;
} }
if (info->is_duty_cycle) { if (info->is_duty_cycle) {
analog->mq = SR_MQ_DUTY_CYCLE; analog->meaning->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE; analog->meaning->unit = SR_UNIT_PERCENTAGE;
} }
/* Measurement related flags */ /* Measurement related flags */
if (info->is_ac) if (info->is_ac)
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
if (info->is_dc) if (info->is_dc)
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
if (info->is_auto) if (info->is_auto)
analog->mqflags |= SR_MQFLAG_AUTORANGE; analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
if (info->is_diode) if (info->is_diode)
analog->mqflags |= SR_MQFLAG_DIODE; analog->meaning->mqflags |= SR_MQFLAG_DIODE;
if (info->is_hold) if (info->is_hold)
/* /*
* Note: HOLD only affects the number displayed on the LCD, * Note: HOLD only affects the number displayed on the LCD,
* but not the value sent via the protocol! It also does not * but not the value sent via the protocol! It also does not
* affect the bargraph on the LCD. * affect the bargraph on the LCD.
*/ */
analog->mqflags |= SR_MQFLAG_HOLD; analog->meaning->mqflags |= SR_MQFLAG_HOLD;
if (info->is_max) if (info->is_max)
analog->mqflags |= SR_MQFLAG_MAX; analog->meaning->mqflags |= SR_MQFLAG_MAX;
if (info->is_min) if (info->is_min)
analog->mqflags |= SR_MQFLAG_MIN; analog->meaning->mqflags |= SR_MQFLAG_MIN;
if (info->is_rel) if (info->is_rel)
analog->mqflags |= SR_MQFLAG_RELATIVE; analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
/* Other flags */ /* Other flags */
if (info->is_judge) if (info->is_judge)
@ -604,7 +604,7 @@ static gboolean sr_es519xx_packet_valid(const uint8_t *buf,
} }
static int sr_es519xx_parse(const uint8_t *buf, float *floatval, static int sr_es519xx_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, struct sr_datafeed_analog *analog,
struct es519xx_info *info) struct es519xx_info *info)
{ {
int ret; int ret;
@ -640,7 +640,7 @@ SR_PRIV gboolean sr_es519xx_2400_11b_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_es519xx_2400_11b_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_es519xx_2400_11b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
struct es519xx_info *info_local; struct es519xx_info *info_local;
@ -669,7 +669,7 @@ SR_PRIV gboolean sr_es519xx_2400_11b_altfn_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_es519xx_2400_11b_altfn_parse(const uint8_t *buf, SR_PRIV int sr_es519xx_2400_11b_altfn_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog_old *analog, void *info) float *floatval, struct sr_datafeed_analog *analog, void *info)
{ {
struct es519xx_info *info_local; struct es519xx_info *info_local;
@ -699,7 +699,7 @@ SR_PRIV gboolean sr_es519xx_19200_11b_5digits_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_es519xx_19200_11b_5digits_parse(const uint8_t *buf, SR_PRIV int sr_es519xx_19200_11b_5digits_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog_old *analog, void *info) float *floatval, struct sr_datafeed_analog *analog, void *info)
{ {
struct es519xx_info *info_local; struct es519xx_info *info_local;
@ -729,7 +729,7 @@ SR_PRIV gboolean sr_es519xx_19200_11b_clamp_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_es519xx_19200_11b_clamp_parse(const uint8_t *buf, SR_PRIV int sr_es519xx_19200_11b_clamp_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog_old *analog, void *info) float *floatval, struct sr_datafeed_analog *analog, void *info)
{ {
struct es519xx_info *info_local; struct es519xx_info *info_local;
@ -758,7 +758,7 @@ SR_PRIV gboolean sr_es519xx_19200_11b_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_es519xx_19200_11b_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_es519xx_19200_11b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
struct es519xx_info *info_local; struct es519xx_info *info_local;
@ -786,7 +786,7 @@ SR_PRIV gboolean sr_es519xx_19200_14b_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_es519xx_19200_14b_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_es519xx_19200_14b_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
struct es519xx_info *info_local; struct es519xx_info *info_local;
@ -815,7 +815,7 @@ SR_PRIV gboolean sr_es519xx_19200_14b_sel_lpf_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_es519xx_19200_14b_sel_lpf_parse(const uint8_t *buf, SR_PRIV int sr_es519xx_19200_14b_sel_lpf_parse(const uint8_t *buf,
float *floatval, struct sr_datafeed_analog_old *analog, void *info) float *floatval, struct sr_datafeed_analog *analog, void *info)
{ {
struct es519xx_info *info_local; struct es519xx_info *info_local;

View File

@ -243,7 +243,7 @@ static void parse_flags(const uint8_t *buf, struct fs9721_info *info)
info->is_c2c1_00 = (buf[13] & (1 << 0)) != 0; info->is_c2c1_00 = (buf[13] & (1 << 0)) != 0;
} }
static void handle_flags(struct sr_datafeed_analog_old *analog, float *floatval, static void handle_flags(struct sr_datafeed_analog *analog, float *floatval,
const struct fs9721_info *info) const struct fs9721_info *info)
{ {
/* Factors */ /* Factors */
@ -260,52 +260,52 @@ static void handle_flags(struct sr_datafeed_analog_old *analog, float *floatval,
/* Measurement modes */ /* Measurement modes */
if (info->is_volt) { if (info->is_volt) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_ampere) { if (info->is_ampere) {
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
} }
if (info->is_ohm) { if (info->is_ohm) {
analog->mq = SR_MQ_RESISTANCE; analog->meaning->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->meaning->unit = SR_UNIT_OHM;
} }
if (info->is_hz) { if (info->is_hz) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->meaning->unit = SR_UNIT_HERTZ;
} }
if (info->is_farad) { if (info->is_farad) {
analog->mq = SR_MQ_CAPACITANCE; analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->meaning->unit = SR_UNIT_FARAD;
} }
if (info->is_beep) { if (info->is_beep) {
analog->mq = SR_MQ_CONTINUITY; analog->meaning->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN; analog->meaning->unit = SR_UNIT_BOOLEAN;
*floatval = (*floatval == INFINITY) ? 0.0 : 1.0; *floatval = (*floatval == INFINITY) ? 0.0 : 1.0;
} }
if (info->is_diode) { if (info->is_diode) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_percent) { if (info->is_percent) {
analog->mq = SR_MQ_DUTY_CYCLE; analog->meaning->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE; analog->meaning->unit = SR_UNIT_PERCENTAGE;
} }
/* Measurement related flags */ /* Measurement related flags */
if (info->is_ac) if (info->is_ac)
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
if (info->is_dc) if (info->is_dc)
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
if (info->is_auto) if (info->is_auto)
analog->mqflags |= SR_MQFLAG_AUTORANGE; analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
if (info->is_diode) if (info->is_diode)
analog->mqflags |= SR_MQFLAG_DIODE; analog->meaning->mqflags |= SR_MQFLAG_DIODE;
if (info->is_hold) if (info->is_hold)
analog->mqflags |= SR_MQFLAG_HOLD; analog->meaning->mqflags |= SR_MQFLAG_HOLD;
if (info->is_rel) if (info->is_rel)
analog->mqflags |= SR_MQFLAG_RELATIVE; analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
/* Other flags */ /* Other flags */
if (info->is_rs232) if (info->is_rs232)
@ -337,7 +337,7 @@ SR_PRIV gboolean sr_fs9721_packet_valid(const uint8_t *buf)
* @param buf Buffer containing the 14-byte protocol packet. Must not be NULL. * @param buf Buffer containing the 14-byte protocol packet. Must not be NULL.
* @param floatval Pointer to a float variable. That variable will contain the * @param floatval Pointer to a float variable. That variable will contain the
* result value upon parsing success. Must not be NULL. * result value upon parsing success. Must not be NULL.
* @param analog Pointer to a struct sr_datafeed_analog_old. The struct will be * @param analog Pointer to a struct sr_datafeed_analog. The struct will be
* filled with data according to the protocol packet. * filled with data according to the protocol packet.
* Must not be NULL. * Must not be NULL.
* @param info Pointer to a struct fs9721_info. The struct will be filled * @param info Pointer to a struct fs9721_info. The struct will be filled
@ -347,7 +347,7 @@ SR_PRIV gboolean sr_fs9721_packet_valid(const uint8_t *buf)
* 'analog' variable contents are undefined and should not be used. * 'analog' variable contents are undefined and should not be used.
*/ */
SR_PRIV int sr_fs9721_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_fs9721_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
int ret; int ret;
struct fs9721_info *info_local; struct fs9721_info *info_local;
@ -365,7 +365,7 @@ SR_PRIV int sr_fs9721_parse(const uint8_t *buf, float *floatval,
return SR_OK; return SR_OK;
} }
SR_PRIV void sr_fs9721_00_temp_c(struct sr_datafeed_analog_old *analog, void *info) SR_PRIV void sr_fs9721_00_temp_c(struct sr_datafeed_analog *analog, void *info)
{ {
struct fs9721_info *info_local; struct fs9721_info *info_local;
@ -373,12 +373,12 @@ SR_PRIV void sr_fs9721_00_temp_c(struct sr_datafeed_analog_old *analog, void *in
/* User-defined FS9721_LP3 flag 'c2c1_00' means temperature (C). */ /* User-defined FS9721_LP3 flag 'c2c1_00' means temperature (C). */
if (info_local->is_c2c1_00) { if (info_local->is_c2c1_00) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
} }
SR_PRIV void sr_fs9721_01_temp_c(struct sr_datafeed_analog_old *analog, void *info) SR_PRIV void sr_fs9721_01_temp_c(struct sr_datafeed_analog *analog, void *info)
{ {
struct fs9721_info *info_local; struct fs9721_info *info_local;
@ -386,12 +386,12 @@ SR_PRIV void sr_fs9721_01_temp_c(struct sr_datafeed_analog_old *analog, void *in
/* User-defined FS9721_LP3 flag 'c2c1_01' means temperature (C). */ /* User-defined FS9721_LP3 flag 'c2c1_01' means temperature (C). */
if (info_local->is_c2c1_01) { if (info_local->is_c2c1_01) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
} }
SR_PRIV void sr_fs9721_10_temp_c(struct sr_datafeed_analog_old *analog, void *info) SR_PRIV void sr_fs9721_10_temp_c(struct sr_datafeed_analog *analog, void *info)
{ {
struct fs9721_info *info_local; struct fs9721_info *info_local;
@ -399,12 +399,12 @@ SR_PRIV void sr_fs9721_10_temp_c(struct sr_datafeed_analog_old *analog, void *in
/* User-defined FS9721_LP3 flag 'c2c1_10' means temperature (C). */ /* User-defined FS9721_LP3 flag 'c2c1_10' means temperature (C). */
if (info_local->is_c2c1_10) { if (info_local->is_c2c1_10) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
} }
SR_PRIV void sr_fs9721_01_10_temp_f_c(struct sr_datafeed_analog_old *analog, void *info) SR_PRIV void sr_fs9721_01_10_temp_f_c(struct sr_datafeed_analog *analog, void *info)
{ {
struct fs9721_info *info_local; struct fs9721_info *info_local;
@ -412,18 +412,18 @@ SR_PRIV void sr_fs9721_01_10_temp_f_c(struct sr_datafeed_analog_old *analog, voi
/* User-defined FS9721_LP3 flag 'c2c1_01' means temperature (F). */ /* User-defined FS9721_LP3 flag 'c2c1_01' means temperature (F). */
if (info_local->is_c2c1_01) { if (info_local->is_c2c1_01) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_FAHRENHEIT; analog->meaning->unit = SR_UNIT_FAHRENHEIT;
} }
/* User-defined FS9721_LP3 flag 'c2c1_10' means temperature (C). */ /* User-defined FS9721_LP3 flag 'c2c1_10' means temperature (C). */
if (info_local->is_c2c1_10) { if (info_local->is_c2c1_10) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
} }
SR_PRIV void sr_fs9721_max_c_min(struct sr_datafeed_analog_old *analog, void *info) SR_PRIV void sr_fs9721_max_c_min(struct sr_datafeed_analog *analog, void *info)
{ {
struct fs9721_info *info_local; struct fs9721_info *info_local;
@ -431,16 +431,16 @@ SR_PRIV void sr_fs9721_max_c_min(struct sr_datafeed_analog_old *analog, void *in
/* User-defined FS9721_LP3 flag 'c2c1_00' means MAX. */ /* User-defined FS9721_LP3 flag 'c2c1_00' means MAX. */
if (info_local->is_c2c1_00) if (info_local->is_c2c1_00)
analog->mqflags |= SR_MQFLAG_MAX; analog->meaning->mqflags |= SR_MQFLAG_MAX;
/* User-defined FS9721_LP3 flag 'c2c1_01' means temperature (C). */ /* User-defined FS9721_LP3 flag 'c2c1_01' means temperature (C). */
if (info_local->is_c2c1_01) { if (info_local->is_c2c1_01) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
/* User-defined FS9721_LP3 flag 'c2c1_11' means MIN. */ /* User-defined FS9721_LP3 flag 'c2c1_11' means MIN. */
if (info_local->is_c2c1_11) if (info_local->is_c2c1_11)
analog->mqflags |= SR_MQFLAG_MIN; analog->meaning->mqflags |= SR_MQFLAG_MIN;
} }

View File

@ -223,7 +223,7 @@ static void parse_flags(const uint8_t *buf, struct fs9922_info *info)
/* Byte 13: Always '\n' (newline, 0x0a, 10) */ /* Byte 13: Always '\n' (newline, 0x0a, 10) */
} }
static void handle_flags(struct sr_datafeed_analog_old *analog, float *floatval, static void handle_flags(struct sr_datafeed_analog *analog, float *floatval,
const struct fs9922_info *info) const struct fs9922_info *info)
{ {
/* Factors */ /* Factors */
@ -241,64 +241,64 @@ static void handle_flags(struct sr_datafeed_analog_old *analog, float *floatval,
/* Measurement modes */ /* Measurement modes */
if (info->is_volt || info->is_diode) { if (info->is_volt || info->is_diode) {
/* Note: In "diode mode" both is_diode and is_volt are set. */ /* Note: In "diode mode" both is_diode and is_volt are set. */
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_ampere) { if (info->is_ampere) {
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
} }
if (info->is_ohm) { if (info->is_ohm) {
analog->mq = SR_MQ_RESISTANCE; analog->meaning->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->meaning->unit = SR_UNIT_OHM;
} }
if (info->is_hfe) { if (info->is_hfe) {
analog->mq = SR_MQ_GAIN; analog->meaning->mq = SR_MQ_GAIN;
analog->unit = SR_UNIT_UNITLESS; analog->meaning->unit = SR_UNIT_UNITLESS;
} }
if (info->is_hertz) { if (info->is_hertz) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->meaning->unit = SR_UNIT_HERTZ;
} }
if (info->is_farad) { if (info->is_farad) {
analog->mq = SR_MQ_CAPACITANCE; analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->meaning->unit = SR_UNIT_FARAD;
} }
if (info->is_celsius) { if (info->is_celsius) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
if (info->is_fahrenheit) { if (info->is_fahrenheit) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_FAHRENHEIT; analog->meaning->unit = SR_UNIT_FAHRENHEIT;
} }
if (info->is_beep) { if (info->is_beep) {
analog->mq = SR_MQ_CONTINUITY; analog->meaning->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN; analog->meaning->unit = SR_UNIT_BOOLEAN;
*floatval = (*floatval == INFINITY) ? 0.0 : 1.0; *floatval = (*floatval == INFINITY) ? 0.0 : 1.0;
} }
if (info->is_percent) { if (info->is_percent) {
analog->mq = SR_MQ_DUTY_CYCLE; analog->meaning->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE; analog->meaning->unit = SR_UNIT_PERCENTAGE;
} }
/* Measurement related flags */ /* Measurement related flags */
if (info->is_ac) if (info->is_ac)
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
if (info->is_dc) if (info->is_dc)
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
if (info->is_auto) if (info->is_auto)
analog->mqflags |= SR_MQFLAG_AUTORANGE; analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
if (info->is_diode) if (info->is_diode)
analog->mqflags |= SR_MQFLAG_DIODE; analog->meaning->mqflags |= SR_MQFLAG_DIODE;
if (info->is_hold) if (info->is_hold)
analog->mqflags |= SR_MQFLAG_HOLD; analog->meaning->mqflags |= SR_MQFLAG_HOLD;
if (info->is_max) if (info->is_max)
analog->mqflags |= SR_MQFLAG_MAX; analog->meaning->mqflags |= SR_MQFLAG_MAX;
if (info->is_min) if (info->is_min)
analog->mqflags |= SR_MQFLAG_MIN; analog->meaning->mqflags |= SR_MQFLAG_MIN;
if (info->is_rel) if (info->is_rel)
analog->mqflags |= SR_MQFLAG_RELATIVE; analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
/* Other flags */ /* Other flags */
if (info->is_apo) if (info->is_apo)
@ -344,7 +344,7 @@ SR_PRIV gboolean sr_fs9922_packet_valid(const uint8_t *buf)
* @param buf Buffer containing the protocol packet. Must not be NULL. * @param buf Buffer containing the protocol packet. Must not be NULL.
* @param floatval Pointer to a float variable. That variable will contain the * @param floatval Pointer to a float variable. That variable will contain the
* result value upon parsing success. Must not be NULL. * result value upon parsing success. Must not be NULL.
* @param analog Pointer to a struct sr_datafeed_analog_old. The struct will be * @param analog Pointer to a struct sr_datafeed_analog. The struct will be
* filled with data according to the protocol packet. * filled with data according to the protocol packet.
* Must not be NULL. * Must not be NULL.
* @param info Pointer to a struct fs9922_info. The struct will be filled * @param info Pointer to a struct fs9922_info. The struct will be filled
@ -354,7 +354,7 @@ SR_PRIV gboolean sr_fs9922_packet_valid(const uint8_t *buf)
* 'analog' variable contents are undefined and should not be used. * 'analog' variable contents are undefined and should not be used.
*/ */
SR_PRIV int sr_fs9922_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_fs9922_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
int ret; int ret;
struct fs9922_info *info_local; struct fs9922_info *info_local;
@ -372,7 +372,7 @@ SR_PRIV int sr_fs9922_parse(const uint8_t *buf, float *floatval,
return SR_OK; return SR_OK;
} }
SR_PRIV void sr_fs9922_z1_diode(struct sr_datafeed_analog_old *analog, void *info) SR_PRIV void sr_fs9922_z1_diode(struct sr_datafeed_analog *analog, void *info)
{ {
struct fs9922_info *info_local; struct fs9922_info *info_local;
@ -380,8 +380,8 @@ SR_PRIV void sr_fs9922_z1_diode(struct sr_datafeed_analog_old *analog, void *inf
/* User-defined z1 flag means "diode mode". */ /* User-defined z1 flag means "diode mode". */
if (info_local->is_z1) { if (info_local->is_z1) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
analog->mqflags |= SR_MQFLAG_DIODE; analog->meaning->mqflags |= SR_MQFLAG_DIODE;
} }
} }

View File

@ -51,16 +51,16 @@ SR_PRIV gboolean sr_m2110_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_m2110_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_m2110_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
float val; float val;
(void)info; (void)info;
/* We don't know the unit, so that's the best we can do. */ /* We don't know the unit, so that's the best we can do. */
analog->mq = SR_MQ_GAIN; analog->meaning->mq = SR_MQ_GAIN;
analog->unit = SR_UNIT_UNITLESS; analog->meaning->unit = SR_UNIT_UNITLESS;
analog->mqflags = 0; analog->meaning->mqflags = 0;
if (!strncmp((const char *)buf, "OVERRNG", 7)) if (!strncmp((const char *)buf, "OVERRNG", 7))
*floatval = INFINITY; *floatval = INFINITY;

View File

@ -170,7 +170,7 @@ static void parse_flags(const char *buf, struct metex14_info *info)
/* Byte 13: Always '\r' (carriage return, 0x0d, 13) */ /* Byte 13: Always '\r' (carriage return, 0x0d, 13) */
} }
static void handle_flags(struct sr_datafeed_analog_old *analog, float *floatval, static void handle_flags(struct sr_datafeed_analog *analog, float *floatval,
const struct metex14_info *info) const struct metex14_info *info)
{ {
/* Factors */ /* Factors */
@ -189,53 +189,53 @@ static void handle_flags(struct sr_datafeed_analog_old *analog, float *floatval,
/* Measurement modes */ /* Measurement modes */
if (info->is_volt) { if (info->is_volt) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_ampere) { if (info->is_ampere) {
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
} }
if (info->is_ohm) { if (info->is_ohm) {
analog->mq = SR_MQ_RESISTANCE; analog->meaning->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->meaning->unit = SR_UNIT_OHM;
} }
if (info->is_hertz) { if (info->is_hertz) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->meaning->unit = SR_UNIT_HERTZ;
} }
if (info->is_farad) { if (info->is_farad) {
analog->mq = SR_MQ_CAPACITANCE; analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->meaning->unit = SR_UNIT_FARAD;
} }
if (info->is_celsius) { if (info->is_celsius) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
if (info->is_diode) { if (info->is_diode) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_gain) { if (info->is_gain) {
analog->mq = SR_MQ_GAIN; analog->meaning->mq = SR_MQ_GAIN;
analog->unit = SR_UNIT_DECIBEL_VOLT; analog->meaning->unit = SR_UNIT_DECIBEL_VOLT;
} }
if (info->is_hfe) { if (info->is_hfe) {
analog->mq = SR_MQ_GAIN; analog->meaning->mq = SR_MQ_GAIN;
analog->unit = SR_UNIT_UNITLESS; analog->meaning->unit = SR_UNIT_UNITLESS;
} }
if (info->is_logic) { if (info->is_logic) {
analog->mq = SR_MQ_GAIN; analog->meaning->mq = SR_MQ_GAIN;
analog->unit = SR_UNIT_UNITLESS; analog->meaning->unit = SR_UNIT_UNITLESS;
} }
/* Measurement related flags */ /* Measurement related flags */
if (info->is_ac) if (info->is_ac)
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
if (info->is_dc) if (info->is_dc)
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
if (info->is_diode) if (info->is_diode)
analog->mqflags |= SR_MQFLAG_DIODE; analog->meaning->mqflags |= SR_MQFLAG_DIODE;
} }
static gboolean flags_valid(const struct metex14_info *info) static gboolean flags_valid(const struct metex14_info *info)
@ -311,7 +311,7 @@ SR_PRIV gboolean sr_metex14_packet_valid(const uint8_t *buf)
* @param buf Buffer containing the protocol packet. Must not be NULL. * @param buf Buffer containing the protocol packet. Must not be NULL.
* @param floatval Pointer to a float variable. That variable will be modified * @param floatval Pointer to a float variable. That variable will be modified
* in-place depending on the protocol packet. Must not be NULL. * in-place depending on the protocol packet. Must not be NULL.
* @param analog Pointer to a struct sr_datafeed_analog_old. The struct will be * @param analog Pointer to a struct sr_datafeed_analog. The struct will be
* filled with data according to the protocol packet. * filled with data according to the protocol packet.
* Must not be NULL. * Must not be NULL.
* @param info Pointer to a struct metex14_info. The struct will be filled * @param info Pointer to a struct metex14_info. The struct will be filled
@ -321,7 +321,7 @@ SR_PRIV gboolean sr_metex14_packet_valid(const uint8_t *buf)
* 'analog' variable contents are undefined and should not be used. * 'analog' variable contents are undefined and should not be used.
*/ */
SR_PRIV int sr_metex14_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_metex14_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
int ret; int ret;
struct metex14_info *info_local; struct metex14_info *info_local;

View File

@ -318,7 +318,7 @@ static gboolean is_logic_high(const struct rs9lcd_packet *rs_packet)
} }
SR_PRIV int sr_rs9lcd_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_rs9lcd_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
const struct rs9lcd_packet *rs_packet = (void *)buf; const struct rs9lcd_packet *rs_packet = (void *)buf;
double rawval; double rawval;
@ -329,95 +329,95 @@ SR_PRIV int sr_rs9lcd_parse(const uint8_t *buf, float *floatval,
switch (rs_packet->mode) { switch (rs_packet->mode) {
case MODE_DC_V: case MODE_DC_V:
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
break; break;
case MODE_AC_V: case MODE_AC_V:
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
break; break;
case MODE_DC_UA: /* Fall through */ case MODE_DC_UA: /* Fall through */
case MODE_DC_MA: /* Fall through */ case MODE_DC_MA: /* Fall through */
case MODE_DC_A: case MODE_DC_A:
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
break; break;
case MODE_AC_UA: /* Fall through */ case MODE_AC_UA: /* Fall through */
case MODE_AC_MA: /* Fall through */ case MODE_AC_MA: /* Fall through */
case MODE_AC_A: case MODE_AC_A:
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
break; break;
case MODE_OHM: case MODE_OHM:
analog->mq = SR_MQ_RESISTANCE; analog->meaning->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->meaning->unit = SR_UNIT_OHM;
break; break;
case MODE_FARAD: case MODE_FARAD:
analog->mq = SR_MQ_CAPACITANCE; analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->meaning->unit = SR_UNIT_FARAD;
break; break;
case MODE_CONT: case MODE_CONT:
analog->mq = SR_MQ_CONTINUITY; analog->meaning->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN; analog->meaning->unit = SR_UNIT_BOOLEAN;
rawval = is_shortcirc(rs_packet); rawval = is_shortcirc(rs_packet);
break; break;
case MODE_DIODE: case MODE_DIODE:
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
analog->mqflags |= SR_MQFLAG_DIODE | SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DIODE | SR_MQFLAG_DC;
break; break;
case MODE_HZ: /* Fall through */ case MODE_HZ: /* Fall through */
case MODE_VOLT_HZ: /* Fall through */ case MODE_VOLT_HZ: /* Fall through */
case MODE_AMP_HZ: case MODE_AMP_HZ:
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->meaning->unit = SR_UNIT_HERTZ;
break; break;
case MODE_LOGIC: case MODE_LOGIC:
/* /*
* No matter whether or not we have an actual voltage reading, * No matter whether or not we have an actual voltage reading,
* we are measuring voltage, so we set our MQ as VOLTAGE. * we are measuring voltage, so we set our MQ as VOLTAGE.
*/ */
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
if (!isnan(rawval)) { if (!isnan(rawval)) {
/* We have an actual voltage. */ /* We have an actual voltage. */
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} else { } else {
/* We have either HI or LOW. */ /* We have either HI or LOW. */
analog->unit = SR_UNIT_BOOLEAN; analog->meaning->unit = SR_UNIT_BOOLEAN;
rawval = is_logic_high(rs_packet); rawval = is_logic_high(rs_packet);
} }
break; break;
case MODE_HFE: case MODE_HFE:
analog->mq = SR_MQ_GAIN; analog->meaning->mq = SR_MQ_GAIN;
analog->unit = SR_UNIT_UNITLESS; analog->meaning->unit = SR_UNIT_UNITLESS;
break; break;
case MODE_DUTY: /* Fall through */ case MODE_DUTY: /* Fall through */
case MODE_VOLT_DUTY: /* Fall through */ case MODE_VOLT_DUTY: /* Fall through */
case MODE_AMP_DUTY: case MODE_AMP_DUTY:
analog->mq = SR_MQ_DUTY_CYCLE; analog->meaning->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE; analog->meaning->unit = SR_UNIT_PERCENTAGE;
break; break;
case MODE_WIDTH: /* Fall through */ case MODE_WIDTH: /* Fall through */
case MODE_VOLT_WIDTH: /* Fall through */ case MODE_VOLT_WIDTH: /* Fall through */
case MODE_AMP_WIDTH: case MODE_AMP_WIDTH:
analog->mq = SR_MQ_PULSE_WIDTH; analog->meaning->mq = SR_MQ_PULSE_WIDTH;
analog->unit = SR_UNIT_SECOND; analog->meaning->unit = SR_UNIT_SECOND;
break; break;
case MODE_TEMP: case MODE_TEMP:
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
/* We need to reparse. */ /* We need to reparse. */
rawval = lcd_to_double(rs_packet, READ_TEMP); rawval = lcd_to_double(rs_packet, READ_TEMP);
analog->unit = is_celsius(rs_packet) ? analog->meaning->unit = is_celsius(rs_packet) ?
SR_UNIT_CELSIUS : SR_UNIT_FAHRENHEIT; SR_UNIT_CELSIUS : SR_UNIT_FAHRENHEIT;
break; break;
case MODE_DBM: case MODE_DBM:
analog->mq = SR_MQ_POWER; analog->meaning->mq = SR_MQ_POWER;
analog->unit = SR_UNIT_DECIBEL_MW; analog->meaning->unit = SR_UNIT_DECIBEL_MW;
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
break; break;
default: default:
sr_dbg("Unknown mode: %d.", rs_packet->mode); sr_dbg("Unknown mode: %d.", rs_packet->mode);
@ -425,13 +425,13 @@ SR_PRIV int sr_rs9lcd_parse(const uint8_t *buf, float *floatval,
} }
if (rs_packet->info & INFO_HOLD) if (rs_packet->info & INFO_HOLD)
analog->mqflags |= SR_MQFLAG_HOLD; analog->meaning->mqflags |= SR_MQFLAG_HOLD;
if (rs_packet->digit4 & DIG4_MAX) if (rs_packet->digit4 & DIG4_MAX)
analog->mqflags |= SR_MQFLAG_MAX; analog->meaning->mqflags |= SR_MQFLAG_MAX;
if (rs_packet->indicatrix2 & IND2_MIN) if (rs_packet->indicatrix2 & IND2_MIN)
analog->mqflags |= SR_MQFLAG_MIN; analog->meaning->mqflags |= SR_MQFLAG_MIN;
if (rs_packet->info & INFO_AUTO) if (rs_packet->info & INFO_AUTO)
analog->mqflags |= SR_MQFLAG_AUTORANGE; analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
*floatval = rawval; *floatval = rawval;
return SR_OK; return SR_OK;

View File

@ -88,7 +88,7 @@ SR_PRIV gboolean sr_ut372_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_ut372_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_ut372_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
unsigned int i, j, value, divisor; unsigned int i, j, value, divisor;
uint8_t segments, flags1, flags2; uint8_t segments, flags1, flags2;
@ -99,21 +99,21 @@ SR_PRIV int sr_ut372_parse(const uint8_t *buf, float *floatval,
flags2 = decode_pair(buf + 23); flags2 = decode_pair(buf + 23);
if (flags2 & FLAGS2_RPM_MASK) { if (flags2 & FLAGS2_RPM_MASK) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_REVOLUTIONS_PER_MINUTE; analog->meaning->unit = SR_UNIT_REVOLUTIONS_PER_MINUTE;
} else if (flags2 & FLAGS2_COUNT_MASK) { } else if (flags2 & FLAGS2_COUNT_MASK) {
analog->mq = SR_MQ_COUNT; analog->meaning->mq = SR_MQ_COUNT;
analog->unit = SR_UNIT_UNITLESS; analog->meaning->unit = SR_UNIT_UNITLESS;
} }
if (flags1 & FLAGS1_HOLD_MASK) if (flags1 & FLAGS1_HOLD_MASK)
analog->mqflags |= SR_MQFLAG_HOLD; analog->meaning->mqflags |= SR_MQFLAG_HOLD;
if (flags2 & FLAGS2_MIN_MASK) if (flags2 & FLAGS2_MIN_MASK)
analog->mqflags |= SR_MQFLAG_MIN; analog->meaning->mqflags |= SR_MQFLAG_MIN;
if (flags2 & FLAGS2_MAX_MASK) if (flags2 & FLAGS2_MAX_MASK)
analog->mqflags |= SR_MQFLAG_MAX; analog->meaning->mqflags |= SR_MQFLAG_MAX;
if (flags2 & FLAGS2_AVG_MASK) if (flags2 & FLAGS2_AVG_MASK)
analog->mqflags |= SR_MQFLAG_AVG; analog->meaning->mqflags |= SR_MQFLAG_AVG;
value = 0; value = 0;
divisor = 1; divisor = 1;

View File

@ -212,73 +212,73 @@ static void parse_flags(const uint8_t *buf, struct ut71x_info *info)
} }
} }
static void handle_flags(struct sr_datafeed_analog_old *analog, static void handle_flags(struct sr_datafeed_analog *analog,
float *floatval, const struct ut71x_info *info) float *floatval, const struct ut71x_info *info)
{ {
/* Measurement modes */ /* Measurement modes */
if (info->is_voltage) { if (info->is_voltage) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_current) { if (info->is_current) {
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
} }
if (info->is_resistance) { if (info->is_resistance) {
analog->mq = SR_MQ_RESISTANCE; analog->meaning->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->meaning->unit = SR_UNIT_OHM;
} }
if (info->is_frequency) { if (info->is_frequency) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->meaning->unit = SR_UNIT_HERTZ;
} }
if (info->is_capacitance) { if (info->is_capacitance) {
analog->mq = SR_MQ_CAPACITANCE; analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->meaning->unit = SR_UNIT_FARAD;
} }
if (info->is_temperature && info->is_celsius) { if (info->is_temperature && info->is_celsius) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
} }
if (info->is_temperature && info->is_fahrenheit) { if (info->is_temperature && info->is_fahrenheit) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_FAHRENHEIT; analog->meaning->unit = SR_UNIT_FAHRENHEIT;
} }
if (info->is_continuity) { if (info->is_continuity) {
analog->mq = SR_MQ_CONTINUITY; analog->meaning->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN; analog->meaning->unit = SR_UNIT_BOOLEAN;
*floatval = (*floatval < 0.0 || *floatval > 60.0) ? 0.0 : 1.0; *floatval = (*floatval < 0.0 || *floatval > 60.0) ? 0.0 : 1.0;
} }
if (info->is_diode) { if (info->is_diode) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_duty_cycle) { if (info->is_duty_cycle) {
analog->mq = SR_MQ_DUTY_CYCLE; analog->meaning->mq = SR_MQ_DUTY_CYCLE;
analog->unit = SR_UNIT_PERCENTAGE; analog->meaning->unit = SR_UNIT_PERCENTAGE;
} }
if (info->is_power) { if (info->is_power) {
analog->mq = SR_MQ_POWER; analog->meaning->mq = SR_MQ_POWER;
analog->unit = SR_UNIT_WATT; analog->meaning->unit = SR_UNIT_WATT;
} }
if (info->is_loop_current) { if (info->is_loop_current) {
/* 4mA = 0%, 20mA = 100% */ /* 4mA = 0%, 20mA = 100% */
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_PERCENTAGE; analog->meaning->unit = SR_UNIT_PERCENTAGE;
} }
/* Measurement related flags */ /* Measurement related flags */
if (info->is_ac) if (info->is_ac)
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
if (info->is_dc) if (info->is_dc)
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
if (info->is_ac) if (info->is_ac)
/* All AC modes do True-RMS measurements. */ /* All AC modes do True-RMS measurements. */
analog->mqflags |= SR_MQFLAG_RMS; analog->meaning->mqflags |= SR_MQFLAG_RMS;
if (info->is_auto) if (info->is_auto)
analog->mqflags |= SR_MQFLAG_AUTORANGE; analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
if (info->is_diode) if (info->is_diode)
analog->mqflags |= SR_MQFLAG_DIODE; analog->meaning->mqflags |= SR_MQFLAG_DIODE;
} }
static gboolean flags_valid(const struct ut71x_info *info) static gboolean flags_valid(const struct ut71x_info *info)
@ -325,7 +325,7 @@ SR_PRIV gboolean sr_ut71x_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_ut71x_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_ut71x_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
int ret; int ret;
struct ut71x_info *info_local; struct ut71x_info *info_local;

View File

@ -282,7 +282,7 @@ static void parse_flags(const uint8_t *buf, struct vc870_info *info)
info->is_auto = !info->is_manu; info->is_auto = !info->is_manu;
} }
static void handle_flags(struct sr_datafeed_analog_old *analog, static void handle_flags(struct sr_datafeed_analog *analog,
float *floatval, const struct vc870_info *info) float *floatval, const struct vc870_info *info)
{ {
/* /*
@ -292,95 +292,95 @@ static void handle_flags(struct sr_datafeed_analog_old *analog,
/* Measurement modes */ /* Measurement modes */
if (info->is_voltage) { if (info->is_voltage) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_current) { if (info->is_current) {
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_AMPERE; analog->meaning->unit = SR_UNIT_AMPERE;
} }
if (info->is_resistance) { if (info->is_resistance) {
analog->mq = SR_MQ_RESISTANCE; analog->meaning->mq = SR_MQ_RESISTANCE;
analog->unit = SR_UNIT_OHM; analog->meaning->unit = SR_UNIT_OHM;
} }
if (info->is_frequency) { if (info->is_frequency) {
analog->mq = SR_MQ_FREQUENCY; analog->meaning->mq = SR_MQ_FREQUENCY;
analog->unit = SR_UNIT_HERTZ; analog->meaning->unit = SR_UNIT_HERTZ;
} }
if (info->is_capacitance) { if (info->is_capacitance) {
analog->mq = SR_MQ_CAPACITANCE; analog->meaning->mq = SR_MQ_CAPACITANCE;
analog->unit = SR_UNIT_FARAD; analog->meaning->unit = SR_UNIT_FARAD;
} }
if (info->is_temperature) { if (info->is_temperature) {
analog->mq = SR_MQ_TEMPERATURE; analog->meaning->mq = SR_MQ_TEMPERATURE;
analog->unit = SR_UNIT_CELSIUS; analog->meaning->unit = SR_UNIT_CELSIUS;
/* TODO: Handle Fahrenheit in auxiliary display. */ /* TODO: Handle Fahrenheit in auxiliary display. */
// analog->unit = SR_UNIT_FAHRENHEIT; // analog->meaning->unit = SR_UNIT_FAHRENHEIT;
} }
if (info->is_continuity) { if (info->is_continuity) {
analog->mq = SR_MQ_CONTINUITY; analog->meaning->mq = SR_MQ_CONTINUITY;
analog->unit = SR_UNIT_BOOLEAN; analog->meaning->unit = SR_UNIT_BOOLEAN;
/* Vendor docs: "< 20 Ohm acoustic" */ /* Vendor docs: "< 20 Ohm acoustic" */
*floatval = (*floatval < 0.0 || *floatval > 20.0) ? 0.0 : 1.0; *floatval = (*floatval < 0.0 || *floatval > 20.0) ? 0.0 : 1.0;
} }
if (info->is_diode) { if (info->is_diode) {
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
} }
if (info->is_loop_current) { if (info->is_loop_current) {
/* 4mA = 0%, 20mA = 100% */ /* 4mA = 0%, 20mA = 100% */
analog->mq = SR_MQ_CURRENT; analog->meaning->mq = SR_MQ_CURRENT;
analog->unit = SR_UNIT_PERCENTAGE; analog->meaning->unit = SR_UNIT_PERCENTAGE;
} }
if (info->is_power) { if (info->is_power) {
analog->mq = SR_MQ_POWER; analog->meaning->mq = SR_MQ_POWER;
analog->unit = SR_UNIT_WATT; analog->meaning->unit = SR_UNIT_WATT;
} }
if (info->is_power_apparent_power) { if (info->is_power_apparent_power) {
analog->mq = SR_MQ_POWER; analog->meaning->mq = SR_MQ_POWER;
analog->unit = SR_UNIT_WATT; analog->meaning->unit = SR_UNIT_WATT;
/* TODO: Handle apparent power. */ /* TODO: Handle apparent power. */
// analog->mq = SR_MQ_APPARENT_POWER; // analog->meaning->mq = SR_MQ_APPARENT_POWER;
// analog->unit = SR_UNIT_VOLT_AMPERE; // analog->meaning->unit = SR_UNIT_VOLT_AMPERE;
} }
if (info->is_power_factor_freq) { if (info->is_power_factor_freq) {
analog->mq = SR_MQ_POWER_FACTOR; analog->meaning->mq = SR_MQ_POWER_FACTOR;
analog->unit = SR_UNIT_UNITLESS; analog->meaning->unit = SR_UNIT_UNITLESS;
/* TODO: Handle frequency. */ /* TODO: Handle frequency. */
// analog->mq = SR_MQ_FREQUENCY; // analog->meaning->mq = SR_MQ_FREQUENCY;
// analog->unit = SR_UNIT_HERTZ; // analog->meaning->unit = SR_UNIT_HERTZ;
} }
if (info->is_v_a_rms_value) { if (info->is_v_a_rms_value) {
analog->mqflags |= SR_MQFLAG_RMS; analog->meaning->mqflags |= SR_MQFLAG_RMS;
analog->mq = SR_MQ_VOLTAGE; analog->meaning->mq = SR_MQ_VOLTAGE;
analog->unit = SR_UNIT_VOLT; analog->meaning->unit = SR_UNIT_VOLT;
/* TODO: Handle effective current value */ /* TODO: Handle effective current value */
// analog->mq = SR_MQ_CURRENT; // analog->meaning->mq = SR_MQ_CURRENT;
// analog->unit = SR_UNIT_AMPERE; // analog->meaning->unit = SR_UNIT_AMPERE;
} }
/* Measurement related flags */ /* Measurement related flags */
if (info->is_ac) if (info->is_ac)
analog->mqflags |= SR_MQFLAG_AC; analog->meaning->mqflags |= SR_MQFLAG_AC;
if (info->is_dc) if (info->is_dc)
analog->mqflags |= SR_MQFLAG_DC; analog->meaning->mqflags |= SR_MQFLAG_DC;
if (info->is_auto) if (info->is_auto)
analog->mqflags |= SR_MQFLAG_AUTORANGE; analog->meaning->mqflags |= SR_MQFLAG_AUTORANGE;
if (info->is_diode) if (info->is_diode)
analog->mqflags |= SR_MQFLAG_DIODE; analog->meaning->mqflags |= SR_MQFLAG_DIODE;
if (info->is_hold) if (info->is_hold)
/* /*
* Note: HOLD only affects the number displayed on the LCD, * Note: HOLD only affects the number displayed on the LCD,
* but not the value sent via the protocol! It also does not * but not the value sent via the protocol! It also does not
* affect the bargraph on the LCD. * affect the bargraph on the LCD.
*/ */
analog->mqflags |= SR_MQFLAG_HOLD; analog->meaning->mqflags |= SR_MQFLAG_HOLD;
if (info->is_max) if (info->is_max)
analog->mqflags |= SR_MQFLAG_MAX; analog->meaning->mqflags |= SR_MQFLAG_MAX;
if (info->is_min) if (info->is_min)
analog->mqflags |= SR_MQFLAG_MIN; analog->meaning->mqflags |= SR_MQFLAG_MIN;
if (info->is_rel) if (info->is_rel)
analog->mqflags |= SR_MQFLAG_RELATIVE; analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
/* Other flags */ /* Other flags */
if (info->is_batt) if (info->is_batt)
@ -412,7 +412,7 @@ SR_PRIV gboolean sr_vc870_packet_valid(const uint8_t *buf)
} }
SR_PRIV int sr_vc870_parse(const uint8_t *buf, float *floatval, SR_PRIV int sr_vc870_parse(const uint8_t *buf, float *floatval,
struct sr_datafeed_analog_old *analog, void *info) struct sr_datafeed_analog *analog, void *info)
{ {
int ret; int ret;
struct vc870_info *info_local; struct vc870_info *info_local;