la8: Cleanups, cosmetics, simplifications.

Also, make some LA8 references more generic in preparation of
LA16 support.
This commit is contained in:
Uwe Hermann 2014-03-30 22:40:27 +02:00
parent 9503583268
commit b172c1301e
3 changed files with 129 additions and 176 deletions

View File

@ -1,7 +1,7 @@
/* /*
* This file is part of the libsigrok project. * This file is part of the libsigrok project.
* *
* Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de> * Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
@ -18,11 +18,6 @@
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/ */
#include <ftdi.h>
#include <glib.h>
#include <string.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "protocol.h" #include "protocol.h"
SR_PRIV struct sr_dev_driver chronovu_la8_driver_info; SR_PRIV struct sr_dev_driver chronovu_la8_driver_info;
@ -34,10 +29,9 @@ static struct sr_dev_driver *di = &chronovu_la8_driver_info;
* Min: 1 sample per 0.01us -> sample time is 0.084s, samplerate 100MHz * Min: 1 sample per 0.01us -> sample time is 0.084s, samplerate 100MHz
* Max: 1 sample per 2.55us -> sample time is 21.391s, samplerate 392.15kHz * Max: 1 sample per 2.55us -> sample time is 21.391s, samplerate 392.15kHz
*/ */
SR_PRIV uint64_t chronovu_la8_samplerates[255] = { 0 }; SR_PRIV uint64_t cv_samplerates[255] = { 0 };
/* Note: Continuous sampling is not supported by the hardware. */ SR_PRIV const int32_t cv_hwcaps[] = {
SR_PRIV const int32_t chronovu_la8_hwcaps[] = {
SR_CONF_LOGIC_ANALYZER, SR_CONF_LOGIC_ANALYZER,
SR_CONF_SAMPLERATE, SR_CONF_SAMPLERATE,
SR_CONF_LIMIT_MSEC, /* TODO: Not yet implemented. */ SR_CONF_LIMIT_MSEC, /* TODO: Not yet implemented. */
@ -53,13 +47,12 @@ static const uint16_t usb_pids[] = {
0x8867, 0x8867,
}; };
/* Function prototypes. */
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data); static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
static void clear_helper(void *priv) static void clear_helper(void *priv)
{ {
struct dev_context *devc; struct dev_context *devc;
devc = priv; devc = priv;
ftdi_free(devc->ftdic); ftdi_free(devc->ftdic);
@ -93,10 +86,7 @@ static GSList *scan(GSList *options)
devices = NULL; devices = NULL;
/* Allocate memory for our private device context. */ /* Allocate memory for our private device context. */
if (!(devc = g_try_malloc(sizeof(struct dev_context)))) { devc = g_try_malloc(sizeof(struct dev_context));
sr_err("Device context malloc failed.");
goto err_free_nothing;
}
/* Set some sane defaults. */ /* Set some sane defaults. */
devc->ftdic = NULL; devc->ftdic = NULL;
@ -117,13 +107,13 @@ static GSList *scan(GSList *options)
/* Allocate memory where we'll store the de-mangled data. */ /* Allocate memory where we'll store the de-mangled data. */
if (!(devc->final_buf = g_try_malloc(SDRAM_SIZE))) { if (!(devc->final_buf = g_try_malloc(SDRAM_SIZE))) {
sr_err("final_buf malloc failed."); sr_err("Failed to allocate memory for sample buffer.");
goto err_free_devc; goto err_free_devc;
} }
/* Allocate memory for the FTDI context (ftdic) and initialize it. */ /* Allocate memory for the FTDI context (ftdic) and initialize it. */
if (!(devc->ftdic = ftdi_new())) { if (!(devc->ftdic = ftdi_new())) {
sr_err("%s: ftdi_new failed.", __func__); sr_err("Failed to initialize libftdi.");
goto err_free_final_buf; goto err_free_final_buf;
} }
@ -147,15 +137,15 @@ static GSList *scan(GSList *options)
sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING,
USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION); USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
if (!sdi) { if (!sdi) {
sr_err("%s: sr_dev_inst_new failed.", __func__); sr_err("Failed to create device instance.");
goto err_close_ftdic; goto err_close_ftdic;
} }
sdi->driver = di; sdi->driver = di;
sdi->priv = devc; sdi->priv = devc;
for (i = 0; chronovu_la8_channel_names[i]; i++) { for (i = 0; cv_channel_names[i]; i++) {
if (!(ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE, if (!(ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
chronovu_la8_channel_names[i]))) cv_channel_names[i])))
return NULL; return NULL;
sdi->channels = g_slist_append(sdi->channels, ch); sdi->channels = g_slist_append(sdi->channels, ch);
} }
@ -164,12 +154,12 @@ static GSList *scan(GSList *options)
drvc->instances = g_slist_append(drvc->instances, sdi); drvc->instances = g_slist_append(drvc->instances, sdi);
/* Close device. We'll reopen it again when we need it. */ /* Close device. We'll reopen it again when we need it. */
(void) la8_close(devc); /* Log, but ignore errors. */ (void) cv_close(devc); /* Log, but ignore errors. */
return devices; return devices;
err_close_ftdic: err_close_ftdic:
(void) la8_close(devc); /* Log, but ignore errors. */ (void) cv_close(devc); /* Log, but ignore errors. */
err_free_ftdic: err_free_ftdic:
ftdi_free(devc->ftdic); /* NOT free() or g_free()! */ ftdi_free(devc->ftdic); /* NOT free() or g_free()! */
err_free_final_buf: err_free_final_buf:
@ -191,10 +181,8 @@ static int dev_open(struct sr_dev_inst *sdi)
struct dev_context *devc; struct dev_context *devc;
int ret; int ret;
if (!(devc = sdi->priv)) { if (!(devc = sdi->priv))
sr_err("%s: sdi->priv was NULL.", __func__);
return SR_ERR_BUG; return SR_ERR_BUG;
}
sr_dbg("Opening LA8 device (%04x:%04x).", USB_VENDOR_ID, sr_dbg("Opening LA8 device (%04x:%04x).", USB_VENDOR_ID,
devc->usb_pid); devc->usb_pid);
@ -202,27 +190,27 @@ static int dev_open(struct sr_dev_inst *sdi)
/* Open the device. */ /* Open the device. */
if ((ret = ftdi_usb_open_desc(devc->ftdic, USB_VENDOR_ID, if ((ret = ftdi_usb_open_desc(devc->ftdic, USB_VENDOR_ID,
devc->usb_pid, USB_DESCRIPTION, NULL)) < 0) { devc->usb_pid, USB_DESCRIPTION, NULL)) < 0) {
sr_err("%s: ftdi_usb_open_desc: (%d) %s", sr_err("Failed to open FTDI device (%d): %s.",
__func__, ret, ftdi_get_error_string(devc->ftdic)); ret, ftdi_get_error_string(devc->ftdic));
(void) la8_close_usb_reset_sequencer(devc); /* Ignore errors. */ (void) cv_close_usb_reset_sequencer(devc); /* Ignore errors. */
return SR_ERR; return SR_ERR;
} }
sr_dbg("Device opened successfully."); sr_dbg("Device opened successfully.");
/* Purge RX/TX buffers in the FTDI chip. */ /* Purge RX/TX buffers in the FTDI chip. */
if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0) { if ((ret = ftdi_usb_purge_buffers(devc->ftdic)) < 0) {
sr_err("%s: ftdi_usb_purge_buffers: (%d) %s", sr_err("Failed to purge FTDI buffers (%d): %s.",
__func__, ret, ftdi_get_error_string(devc->ftdic)); ret, ftdi_get_error_string(devc->ftdic));
(void) la8_close_usb_reset_sequencer(devc); /* Ignore errors. */ (void) cv_close_usb_reset_sequencer(devc); /* Ignore errors. */
goto err_dev_open_close_ftdic; goto err_dev_open_close_ftdic;
} }
sr_dbg("FTDI buffers purged successfully."); sr_dbg("FTDI buffers purged successfully.");
/* Enable flow control in the FTDI chip. */ /* Enable flow control in the FTDI chip. */
if ((ret = ftdi_setflowctrl(devc->ftdic, SIO_RTS_CTS_HS)) < 0) { if ((ret = ftdi_setflowctrl(devc->ftdic, SIO_RTS_CTS_HS)) < 0) {
sr_err("%s: ftdi_setflowcontrol: (%d) %s", sr_err("Failed to enable FTDI flow control (%d): %s.",
__func__, ret, ftdi_get_error_string(devc->ftdic)); ret, ftdi_get_error_string(devc->ftdic));
(void) la8_close_usb_reset_sequencer(devc); /* Ignore errors. */ (void) cv_close_usb_reset_sequencer(devc); /* Ignore errors. */
goto err_dev_open_close_ftdic; goto err_dev_open_close_ftdic;
} }
sr_dbg("FTDI flow control enabled successfully."); sr_dbg("FTDI flow control enabled successfully.");
@ -235,7 +223,7 @@ static int dev_open(struct sr_dev_inst *sdi)
return SR_OK; return SR_OK;
err_dev_open_close_ftdic: err_dev_open_close_ftdic:
(void) la8_close(devc); /* Log, but ignore errors. */ (void) cv_close(devc); /* Log, but ignore errors. */
return SR_ERR; return SR_ERR;
} }
@ -247,7 +235,7 @@ static int dev_close(struct sr_dev_inst *sdi)
if (sdi->status == SR_ST_ACTIVE) { if (sdi->status == SR_ST_ACTIVE) {
sr_dbg("Status ACTIVE, closing device."); sr_dbg("Status ACTIVE, closing device.");
(void) la8_close_usb_reset_sequencer(devc); /* Ignore errors. */ (void) cv_close_usb_reset_sequencer(devc); /* Ignore errors. */
} else { } else {
sr_spew("Status not ACTIVE, nothing to do."); sr_spew("Status not ACTIVE, nothing to do.");
} }
@ -271,13 +259,9 @@ static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
switch (id) { switch (id) {
case SR_CONF_SAMPLERATE: case SR_CONF_SAMPLERATE:
if (sdi) { if (!sdi || !(devc = sdi->priv))
devc = sdi->priv; return SR_ERR_BUG;
*data = g_variant_new_uint64(devc->cur_samplerate); *data = g_variant_new_uint64(devc->cur_samplerate);
sr_spew("%s: Returning samplerate: %" PRIu64 "Hz.",
__func__, devc->cur_samplerate);
} else
return SR_ERR;
break; break;
default: default:
return SR_ERR_NA; return SR_ERR_NA;
@ -296,34 +280,23 @@ static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
if (sdi->status != SR_ST_ACTIVE) if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED; return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv)) { if (!(devc = sdi->priv))
sr_err("%s: sdi->priv was NULL.", __func__);
return SR_ERR_BUG; return SR_ERR_BUG;
}
switch (id) { switch (id) {
case SR_CONF_SAMPLERATE: case SR_CONF_SAMPLERATE:
if (set_samplerate(sdi, g_variant_get_uint64(data)) == SR_ERR) { if (set_samplerate(sdi, g_variant_get_uint64(data)) < 0)
sr_err("%s: setting samplerate failed.", __func__);
return SR_ERR; return SR_ERR;
}
sr_dbg("SAMPLERATE = %" PRIu64, devc->cur_samplerate);
break; break;
case SR_CONF_LIMIT_MSEC: case SR_CONF_LIMIT_MSEC:
if (g_variant_get_uint64(data) == 0) { if (g_variant_get_uint64(data) == 0)
sr_err("%s: LIMIT_MSEC can't be 0.", __func__); return SR_ERR_ARG;
return SR_ERR;
}
devc->limit_msec = g_variant_get_uint64(data); devc->limit_msec = g_variant_get_uint64(data);
sr_dbg("LIMIT_MSEC = %" PRIu64, devc->limit_msec);
break; break;
case SR_CONF_LIMIT_SAMPLES: case SR_CONF_LIMIT_SAMPLES:
if (g_variant_get_uint64(data) < MIN_NUM_SAMPLES) { if (g_variant_get_uint64(data) == 0)
sr_err("%s: LIMIT_SAMPLES too small.", __func__); return SR_ERR_ARG;
return SR_ERR;
}
devc->limit_samples = g_variant_get_uint64(data); devc->limit_samples = g_variant_get_uint64(data);
sr_dbg("LIMIT_SAMPLES = %" PRIu64, devc->limit_samples);
break; break;
default: default:
return SR_ERR_NA; return SR_ERR_NA;
@ -344,16 +317,14 @@ static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
switch (key) { switch (key) {
case SR_CONF_DEVICE_OPTIONS: case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32, *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
chronovu_la8_hwcaps, cv_hwcaps, ARRAY_SIZE(cv_hwcaps),
ARRAY_SIZE(chronovu_la8_hwcaps),
sizeof(int32_t)); sizeof(int32_t));
break; break;
case SR_CONF_SAMPLERATE: case SR_CONF_SAMPLERATE:
fill_supported_samplerates_if_needed(); cv_fill_samplerates_if_needed();
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}")); g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
chronovu_la8_samplerates, cv_samplerates, ARRAY_SIZE(cv_samplerates),
ARRAY_SIZE(chronovu_la8_samplerates),
sizeof(uint64_t)); sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar); g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb); *data = g_variant_builder_end(&gvb);
@ -383,23 +354,23 @@ static int receive_data(int fd, int revents, void *cb_data)
(void)revents; (void)revents;
if (!(sdi = cb_data)) { if (!(sdi = cb_data)) {
sr_err("%s: cb_data was NULL.", __func__); sr_err("cb_data was NULL.");
return FALSE; return FALSE;
} }
if (!(devc = sdi->priv)) { if (!(devc = sdi->priv)) {
sr_err("%s: sdi->priv was NULL.", __func__); sr_err("sdi->priv was NULL.");
return FALSE; return FALSE;
} }
if (!devc->ftdic) { if (!devc->ftdic) {
sr_err("%s: devc->ftdic was NULL.", __func__); sr_err("devc->ftdic was NULL.");
return FALSE; return FALSE;
} }
/* Get one block of data. */ /* Get one block of data. */
if ((ret = la8_read_block(devc)) < 0) { if ((ret = cv_read_block(devc)) < 0) {
sr_err("%s: la8_read_block error: %d.", __func__, ret); sr_err("Failed to read data block: %d.", ret);
dev_acquisition_stop(sdi, sdi); dev_acquisition_stop(sdi, sdi);
return FALSE; return FALSE;
} }
@ -414,7 +385,7 @@ static int receive_data(int fd, int revents, void *cb_data)
/* All data was received and demangled, send it to the session bus. */ /* All data was received and demangled, send it to the session bus. */
for (i = 0; i < NUM_BLOCKS; i++) for (i = 0; i < NUM_BLOCKS; i++)
send_block_to_session_bus(devc, i); cv_send_block_to_session_bus(devc, i);
dev_acquisition_stop(sdi, sdi); dev_acquisition_stop(sdi, sdi);
@ -431,22 +402,22 @@ static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
return SR_ERR_DEV_CLOSED; return SR_ERR_DEV_CLOSED;
if (!(devc = sdi->priv)) { if (!(devc = sdi->priv)) {
sr_err("%s: sdi->priv was NULL.", __func__); sr_err("sdi->priv was NULL.");
return SR_ERR_BUG; return SR_ERR_BUG;
} }
if (!devc->ftdic) { if (!devc->ftdic) {
sr_err("%s: devc->ftdic was NULL.", __func__); sr_err("devc->ftdic was NULL.");
return SR_ERR_BUG; return SR_ERR_BUG;
} }
devc->divcount = samplerate_to_divcount(devc->cur_samplerate); devc->divcount = cv_samplerate_to_divcount(devc->cur_samplerate);
if (devc->divcount == 0xff) { if (devc->divcount == 0xff) {
sr_err("%s: Invalid divcount/samplerate.", __func__); sr_err("Invalid divcount/samplerate.");
return SR_ERR; return SR_ERR;
} }
if (configure_channels(sdi) != SR_OK) { if (cv_configure_channels(sdi) != SR_OK) {
sr_err("Failed to configure channels."); sr_err("Failed to configure channels.");
return SR_ERR; return SR_ERR;
} }
@ -458,7 +429,7 @@ static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
buf[3] = devc->trigger_mask; buf[3] = devc->trigger_mask;
/* Start acquisition. */ /* Start acquisition. */
bytes_written = la8_write(devc, buf, 4); bytes_written = cv_write(devc, buf, 4);
if (bytes_written < 0) { if (bytes_written < 0) {
sr_err("Acquisition failed to start: %d.", bytes_written); sr_err("Acquisition failed to start: %d.", bytes_written);
@ -481,7 +452,7 @@ static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
devc->block_counter = 0; devc->block_counter = 0;
devc->trigger_found = 0; devc->trigger_found = 0;
/* Hook up a dummy handler to receive data from the LA8. */ /* Hook up a dummy handler to receive data from the device. */
sr_source_add(-1, G_IO_IN, 0, receive_data, (void *)sdi); sr_source_add(-1, G_IO_IN, 0, receive_data, (void *)sdi);
return SR_OK; return SR_OK;

View File

@ -1,7 +1,7 @@
/* /*
* This file is part of the libsigrok project. * This file is part of the libsigrok project.
* *
* Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de> * Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
@ -18,43 +18,39 @@
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/ */
#include <ftdi.h>
#include <glib.h>
#include "libsigrok.h"
#include "libsigrok-internal.h"
#include "protocol.h" #include "protocol.h"
/* Channels are numbered 0-7. */ /* Channels are numbered 0-7. */
SR_PRIV const char *chronovu_la8_channel_names[NUM_CHANNELS + 1] = { SR_PRIV const char *cv_channel_names[NUM_CHANNELS + 1] = {
"0", "1", "2", "3", "4", "5", "6", "7", "0", "1", "2", "3", "4", "5", "6", "7",
NULL, NULL,
}; };
SR_PRIV void fill_supported_samplerates_if_needed(void) SR_PRIV void cv_fill_samplerates_if_needed(void)
{ {
int i; int i;
if (chronovu_la8_samplerates[0] != 0) if (cv_samplerates[0] != 0)
return; return;
for (i = 0; i < 255; i++) for (i = 0; i < 255; i++)
chronovu_la8_samplerates[254 - i] = SR_MHZ(100) / (i + 1); cv_samplerates[254 - i] = SR_MHZ(100) / (i + 1);
} }
/** /**
* Check if the given samplerate is supported by the LA8 hardware. * Check if the given samplerate is supported by the hardware.
* *
* @param samplerate The samplerate (in Hz) to check. * @param samplerate The samplerate (in Hz) to check.
* @return 1 if the samplerate is supported/valid, 0 otherwise. * @return 1 if the samplerate is supported/valid, 0 otherwise.
*/ */
SR_PRIV int is_valid_samplerate(uint64_t samplerate) static int is_valid_samplerate(uint64_t samplerate)
{ {
int i; int i;
fill_supported_samplerates_if_needed(); cv_fill_samplerates_if_needed();
for (i = 0; i < 255; i++) { for (i = 0; i < 255; i++) {
if (chronovu_la8_samplerates[i] == samplerate) if (cv_samplerates[i] == samplerate)
return 1; return 1;
} }
@ -64,7 +60,7 @@ SR_PRIV int is_valid_samplerate(uint64_t samplerate)
} }
/** /**
* Convert a samplerate (in Hz) to the 'divcount' value the LA8 wants. * Convert a samplerate (in Hz) to the 'divcount' value the device wants.
* *
* LA8 hardware: sample period = (divcount + 1) * 10ns. * LA8 hardware: sample period = (divcount + 1) * 10ns.
* Min. value for divcount: 0x00 (10ns sample period, 100MHz samplerate). * Min. value for divcount: 0x00 (10ns sample period, 100MHz samplerate).
@ -73,15 +69,15 @@ SR_PRIV int is_valid_samplerate(uint64_t samplerate)
* @param samplerate The samplerate in Hz. * @param samplerate The samplerate in Hz.
* @return The divcount value as needed by the hardware, or 0xff upon errors. * @return The divcount value as needed by the hardware, or 0xff upon errors.
*/ */
SR_PRIV uint8_t samplerate_to_divcount(uint64_t samplerate) SR_PRIV uint8_t cv_samplerate_to_divcount(uint64_t samplerate)
{ {
if (samplerate == 0) { if (samplerate == 0) {
sr_err("%s: samplerate was 0.", __func__); sr_err("Can't convert invalid samplerate of 0 Hz.");
return 0xff; return 0xff;
} }
if (!is_valid_samplerate(samplerate)) { if (!is_valid_samplerate(samplerate)) {
sr_err("%s: Can't get divcount, samplerate invalid.", __func__); sr_err("Can't get divcount, samplerate invalid.");
return 0xff; return 0xff;
} }
@ -89,85 +85,73 @@ SR_PRIV uint8_t samplerate_to_divcount(uint64_t samplerate)
} }
/** /**
* Write data of a certain length to the LA8's FTDI device. * Write data of a certain length to the FTDI device.
* *
* @param devc The struct containing private per-device-instance data. Must not * @param devc The struct containing private per-device-instance data. Must not
* be NULL. devc->ftdic must not be NULL either. * be NULL. devc->ftdic must not be NULL either.
* @param buf The buffer containing the data to write. Must not be NULL. * @param buf The buffer containing the data to write. Must not be NULL.
* @param size The number of bytes to write. Must be >= 0. * @param size The number of bytes to write. Must be > 0.
*
* @return The number of bytes written, or a negative value upon errors. * @return The number of bytes written, or a negative value upon errors.
*/ */
SR_PRIV int la8_write(struct dev_context *devc, uint8_t *buf, int size) SR_PRIV int cv_write(struct dev_context *devc, uint8_t *buf, int size)
{ {
int bytes_written; int bytes_written;
/* Note: Caller checked that devc and devc->ftdic != NULL. */ /* Note: Caller ensures devc/devc->ftdic/buf != NULL and size > 0. */
if (!buf) { if (!buf)
sr_err("%s: buf was NULL.", __func__);
return SR_ERR_ARG; return SR_ERR_ARG;
}
if (size < 0) { if (size < 0)
sr_err("%s: size was < 0.", __func__);
return SR_ERR_ARG; return SR_ERR_ARG;
}
bytes_written = ftdi_write_data(devc->ftdic, buf, size); bytes_written = ftdi_write_data(devc->ftdic, buf, size);
if (bytes_written < 0) { if (bytes_written < 0) {
sr_err("%s: ftdi_write_data: (%d) %s.", __func__, sr_err("Failed to write data (%d): %s.",
bytes_written, ftdi_get_error_string(devc->ftdic)); bytes_written, ftdi_get_error_string(devc->ftdic));
(void) la8_close_usb_reset_sequencer(devc); /* Ignore errors. */ (void) cv_close_usb_reset_sequencer(devc); /* Ignore errors. */
} else if (bytes_written != size) { } else if (bytes_written != size) {
sr_err("%s: bytes to write: %d, bytes written: %d.", sr_err("Failed to write data, only %d/%d bytes written.",
__func__, size, bytes_written); size, bytes_written);
(void) la8_close_usb_reset_sequencer(devc); /* Ignore errors. */ (void) cv_close_usb_reset_sequencer(devc); /* Ignore errors. */
} }
return bytes_written; return bytes_written;
} }
/** /**
* Read a certain amount of bytes from the LA8's FTDI device. * Read a certain amount of bytes from the FTDI device.
* *
* @param devc The struct containing private per-device-instance data. Must not * @param devc The struct containing private per-device-instance data. Must not
* be NULL. devc->ftdic must not be NULL either. * be NULL. devc->ftdic must not be NULL either.
* @param buf The buffer where the received data will be stored. Must not * @param buf The buffer where the received data will be stored. Must not
* be NULL. * be NULL.
* @param size The number of bytes to read. Must be >= 1. * @param size The number of bytes to read. Must be >= 1.
*
* @return The number of bytes read, or a negative value upon errors. * @return The number of bytes read, or a negative value upon errors.
*/ */
SR_PRIV int la8_read(struct dev_context *devc, uint8_t *buf, int size) static int cv_read(struct dev_context *devc, uint8_t *buf, int size)
{ {
int bytes_read; int bytes_read;
/* Note: Caller checked that devc and devc->ftdic != NULL. */ /* Note: Caller ensures devc/devc->ftdic/buf != NULL and size > 0. */
if (!buf) {
sr_err("%s: buf was NULL.", __func__);
return SR_ERR_ARG;
}
if (size <= 0) {
sr_err("%s: size was <= 0.", __func__);
return SR_ERR_ARG;
}
bytes_read = ftdi_read_data(devc->ftdic, buf, size); bytes_read = ftdi_read_data(devc->ftdic, buf, size);
if (bytes_read < 0) { if (bytes_read < 0) {
sr_err("%s: ftdi_read_data: (%d) %s.", __func__, sr_err("Failed to read data (%d): %s.",
bytes_read, ftdi_get_error_string(devc->ftdic)); bytes_read, ftdi_get_error_string(devc->ftdic));
} else if (bytes_read != size) { } else if (bytes_read != size) {
// sr_err("%s: Bytes to read: %d, bytes read: %d.", // sr_err("Failed to read data, only %d/%d bytes read.",
// __func__, size, bytes_read); // bytes_read, size);
} }
return bytes_read; return bytes_read;
} }
SR_PRIV int la8_close(struct dev_context *devc) SR_PRIV int cv_close(struct dev_context *devc)
{ {
int ret; int ret;
@ -190,31 +174,29 @@ SR_PRIV int la8_close(struct dev_context *devc)
} }
/** /**
* Close the ChronoVu LA8 USB port and reset the LA8 sequencer logic. * Close the USB port and reset the sequencer logic.
* *
* @param devc The struct containing private per-device-instance data. * @param devc The struct containing private per-device-instance data.
* @return SR_OK upon success, SR_ERR_ARG upon invalid arguments. * @return SR_OK upon success, SR_ERR_ARG upon invalid arguments.
*/ */
SR_PRIV int la8_close_usb_reset_sequencer(struct dev_context *devc) SR_PRIV int cv_close_usb_reset_sequencer(struct dev_context *devc)
{ {
/* Magic sequence of bytes for resetting the LA8 sequencer logic. */ /* Magic sequence of bytes for resetting the sequencer logic. */
uint8_t buf[8] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01}; uint8_t buf[8] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
int ret; int ret;
if (!devc) { if (!devc)
sr_err("%s: devc was NULL.", __func__);
return SR_ERR_ARG; return SR_ERR_ARG;
}
if (!devc->ftdic) { if (!devc->ftdic) {
sr_err("%s: devc->ftdic was NULL.", __func__); sr_err("devc->ftdic was NULL.");
return SR_ERR_ARG; return SR_ERR_ARG;
} }
if (devc->ftdic->usb_dev) { if (devc->ftdic->usb_dev) {
/* Reset the LA8 sequencer logic, then wait 100ms. */ /* Reset the sequencer logic, then wait 100ms. */
sr_dbg("Resetting sequencer logic."); sr_dbg("Resetting sequencer logic.");
(void) la8_write(devc, buf, 8); /* Ignore errors. */ (void) cv_write(devc, buf, 8); /* Ignore errors. */
g_usleep(100 * 1000); g_usleep(100 * 1000);
/* Purge FTDI buffers, then reset and close the FTDI device. */ /* Purge FTDI buffers, then reset and close the FTDI device. */
@ -240,14 +222,14 @@ SR_PRIV int la8_close_usb_reset_sequencer(struct dev_context *devc)
} }
/** /**
* Reset the ChronoVu LA8. * Reset the ChronoVu device.
* *
* The LA8 must be reset after a failed read/write operation or upon timeouts. * A reset is required after a failed read/write operation or upon timeouts.
* *
* @param devc The struct containing private per-device-instance data. * @param devc The struct containing private per-device-instance data.
* @return SR_OK upon success, SR_ERR upon failure. * @return SR_OK upon success, SR_ERR upon failure.
*/ */
SR_PRIV int la8_reset(struct dev_context *devc) static int cv_reset(struct dev_context *devc)
{ {
uint8_t buf[BS]; uint8_t buf[BS];
time_t done, now; time_t done, now;
@ -271,20 +253,20 @@ SR_PRIV int la8_reset(struct dev_context *devc)
*/ */
done = 20 + time(NULL); done = 20 + time(NULL);
do { do {
/* TODO: Ignore errors? Check for < 0 at least! */ /* Try to read bytes until none are left (or errors occur). */
bytes_read = la8_read(devc, (uint8_t *)&buf, BS); bytes_read = cv_read(devc, (uint8_t *)&buf, BS);
now = time(NULL); now = time(NULL);
} while ((done > now) && (bytes_read > 0)); } while ((done > now) && (bytes_read > 0));
/* Reset the LA8 sequencer logic and close the USB port. */ /* Reset the sequencer logic and close the USB port. */
(void) la8_close_usb_reset_sequencer(devc); /* Ignore errors. */ (void) cv_close_usb_reset_sequencer(devc); /* Ignore errors. */
sr_dbg("Device reset finished."); sr_dbg("Device reset finished.");
return SR_OK; return SR_OK;
} }
SR_PRIV int configure_channels(const struct sr_dev_inst *sdi) SR_PRIV int cv_configure_channels(const struct sr_dev_inst *sdi)
{ {
struct dev_context *devc; struct dev_context *devc;
const struct sr_channel *ch; const struct sr_channel *ch;
@ -343,7 +325,7 @@ SR_PRIV int configure_channels(const struct sr_dev_inst *sdi)
return SR_OK; return SR_OK;
} }
SR_PRIV int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate) SR_PRIV int cv_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
{ {
struct dev_context *devc; struct dev_context *devc;
@ -353,11 +335,14 @@ SR_PRIV int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
sr_spew("Trying to set samplerate to %" PRIu64 "Hz.", samplerate); sr_spew("Trying to set samplerate to %" PRIu64 "Hz.", samplerate);
fill_supported_samplerates_if_needed(); cv_fill_samplerates_if_needed();
/* Check if this is a samplerate supported by the hardware. */ /* Check if this is a samplerate supported by the hardware. */
if (!is_valid_samplerate(samplerate)) if (!is_valid_samplerate(samplerate)) {
sr_dbg("Failed to set invalid samplerate (%" PRIu64 "Hz).",
samplerate);
return SR_ERR; return SR_ERR;
}
/* Set the new samplerate. */ /* Set the new samplerate. */
devc->cur_samplerate = samplerate; devc->cur_samplerate = samplerate;
@ -368,13 +353,14 @@ SR_PRIV int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
} }
/** /**
* Get a block of data from the LA8. * Get a block of data from the device.
* *
* @param devc The struct containing private per-device-instance data. Must not * @param devc The struct containing private per-device-instance data. Must not
* be NULL. devc->ftdic must not be NULL either. * be NULL. devc->ftdic must not be NULL either.
*
* @return SR_OK upon success, or SR_ERR upon errors. * @return SR_OK upon success, or SR_ERR upon errors.
*/ */
SR_PRIV int la8_read_block(struct dev_context *devc) SR_PRIV int cv_read_block(struct dev_context *devc)
{ {
int i, byte_offset, m, mi, p, index, bytes_read; int i, byte_offset, m, mi, p, index, bytes_read;
time_t now; time_t now;
@ -383,13 +369,13 @@ SR_PRIV int la8_read_block(struct dev_context *devc)
sr_spew("Reading block %d.", devc->block_counter); sr_spew("Reading block %d.", devc->block_counter);
bytes_read = la8_read(devc, devc->mangled_buf, BS); bytes_read = cv_read(devc, devc->mangled_buf, BS);
/* If first block read got 0 bytes, retry until success or timeout. */ /* If first block read got 0 bytes, retry until success or timeout. */
if ((bytes_read == 0) && (devc->block_counter == 0)) { if ((bytes_read == 0) && (devc->block_counter == 0)) {
do { do {
sr_spew("Reading block 0 (again)."); sr_spew("Reading block 0 (again).");
bytes_read = la8_read(devc, devc->mangled_buf, BS); bytes_read = cv_read(devc, devc->mangled_buf, BS);
/* TODO: How to handle read errors here? */ /* TODO: How to handle read errors here? */
now = time(NULL); now = time(NULL);
} while ((devc->done > now) && (bytes_read == 0)); } while ((devc->done > now) && (bytes_read == 0));
@ -398,7 +384,7 @@ SR_PRIV int la8_read_block(struct dev_context *devc)
/* Check if block read was successful or a timeout occured. */ /* Check if block read was successful or a timeout occured. */
if (bytes_read != BS) { if (bytes_read != BS) {
sr_err("Trigger timed out. Bytes read: %d.", bytes_read); sr_err("Trigger timed out. Bytes read: %d.", bytes_read);
(void) la8_reset(devc); /* Ignore errors. */ (void) cv_reset(devc); /* Ignore errors. */
return SR_ERR; return SR_ERR;
} }
@ -417,7 +403,7 @@ SR_PRIV int la8_read_block(struct dev_context *devc)
return SR_OK; return SR_OK;
} }
SR_PRIV void send_block_to_session_bus(struct dev_context *devc, int block) SR_PRIV void cv_send_block_to_session_bus(struct dev_context *devc, int block)
{ {
int i; int i;
uint8_t sample, expected_sample; uint8_t sample, expected_sample;

View File

@ -1,7 +1,7 @@
/* /*
* This file is part of the libsigrok project. * This file is part of the libsigrok project.
* *
* Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de> * Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
@ -38,7 +38,6 @@
#define NUM_CHANNELS 8 #define NUM_CHANNELS 8
#define TRIGGER_TYPE "01" #define TRIGGER_TYPE "01"
#define SDRAM_SIZE (8 * 1024 * 1024) #define SDRAM_SIZE (8 * 1024 * 1024)
#define MIN_NUM_SAMPLES 1
#define MAX_NUM_SAMPLES SDRAM_SIZE #define MAX_NUM_SAMPLES SDRAM_SIZE
#define BS 4096 /* Block size */ #define BS 4096 /* Block size */
@ -91,34 +90,31 @@ struct dev_context {
/** Tells us whether an SR_DF_TRIGGER packet was already sent. */ /** Tells us whether an SR_DF_TRIGGER packet was already sent. */
int trigger_found; int trigger_found;
/** TODO */ /** Used for keeping track how much time has passed. */
time_t done; time_t done;
/** Counter/index for the data block to be read. */ /** Counter/index for the data block to be read. */
int block_counter; int block_counter;
/** The divcount value (determines the sample period) for the LA8. */ /** The divcount value (determines the sample period). */
uint8_t divcount; uint8_t divcount;
/** This ChronoVu LA8's USB PID (multiple versions exist). */ /** This ChronoVu device's USB PID. */
uint16_t usb_pid; uint16_t usb_pid;
}; };
/* protocol.c */ /* protocol.c */
extern const int32_t chronovu_la8_hwcaps[]; extern const int32_t cv_hwcaps[];
extern uint64_t chronovu_la8_samplerates[]; extern uint64_t cv_samplerates[];
extern SR_PRIV const char *chronovu_la8_channel_names[]; extern SR_PRIV const char *cv_channel_names[];
SR_PRIV void fill_supported_samplerates_if_needed(void); SR_PRIV void cv_fill_samplerates_if_needed(void);
SR_PRIV int is_valid_samplerate(uint64_t samplerate); SR_PRIV uint8_t cv_samplerate_to_divcount(uint64_t samplerate);
SR_PRIV uint8_t samplerate_to_divcount(uint64_t samplerate); SR_PRIV int cv_write(struct dev_context *devc, uint8_t *buf, int size);
SR_PRIV int la8_write(struct dev_context *devc, uint8_t *buf, int size); SR_PRIV int cv_close(struct dev_context *devc);
SR_PRIV int la8_read(struct dev_context *devc, uint8_t *buf, int size); SR_PRIV int cv_close_usb_reset_sequencer(struct dev_context *devc);
SR_PRIV int la8_close(struct dev_context *devc); SR_PRIV int cv_configure_channels(const struct sr_dev_inst *sdi);
SR_PRIV int la8_close_usb_reset_sequencer(struct dev_context *devc); SR_PRIV int cv_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate);
SR_PRIV int la8_reset(struct dev_context *devc); SR_PRIV int cv_read_block(struct dev_context *devc);
SR_PRIV int configure_channels(const struct sr_dev_inst *sdi); SR_PRIV void cv_send_block_to_session_bus(struct dev_context *devc, int block);
SR_PRIV int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate);
SR_PRIV int la8_read_block(struct dev_context *devc);
SR_PRIV void send_block_to_session_bus(struct dev_context *devc, int block);
#endif #endif