sysclk-lwla: Implement support for LWLA1016
Refactor the sysclk-lwla driver to separate the generic logic from the model-specific implementation. Based on this, implement support for the SysClk LWLA1016 device.
This commit is contained in:
parent
ce19d4c615
commit
be64f90b53
|
@ -406,6 +406,8 @@ if HW_SYSCLK_LWLA
|
|||
libsigrok_la_SOURCES += \
|
||||
src/hardware/sysclk-lwla/lwla.h \
|
||||
src/hardware/sysclk-lwla/lwla.c \
|
||||
src/hardware/sysclk-lwla/lwla1016.c \
|
||||
src/hardware/sysclk-lwla/lwla1034.c \
|
||||
src/hardware/sysclk-lwla/protocol.h \
|
||||
src/hardware/sysclk-lwla/protocol.c \
|
||||
src/hardware/sysclk-lwla/api.c
|
||||
|
|
|
@ -26,22 +26,20 @@
|
|||
#include "libsigrok-internal.h"
|
||||
#include "protocol.h"
|
||||
|
||||
/* Supported device scan options.
|
||||
*/
|
||||
static const uint32_t scanopts[] = {
|
||||
SR_CONF_CONN,
|
||||
};
|
||||
|
||||
static const uint32_t devopts[] = {
|
||||
/* Driver capabilities.
|
||||
*/
|
||||
static const uint32_t drvopts[] = {
|
||||
SR_CONF_LOGIC_ANALYZER,
|
||||
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
|
||||
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
|
||||
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
|
||||
SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
|
||||
SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
|
||||
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
|
||||
SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
|
||||
SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
|
||||
};
|
||||
|
||||
/* Supported trigger match conditions.
|
||||
*/
|
||||
static const int32_t trigger_matches[] = {
|
||||
SR_TRIGGER_ZERO,
|
||||
SR_TRIGGER_ONE,
|
||||
|
@ -49,56 +47,53 @@ static const int32_t trigger_matches[] = {
|
|||
SR_TRIGGER_FALLING,
|
||||
};
|
||||
|
||||
/* The hardware supports more samplerates than these, but these are the
|
||||
* options hardcoded into the vendor's Windows GUI.
|
||||
/* Names assigned to available trigger sources.
|
||||
*/
|
||||
static const uint64_t samplerates[] = {
|
||||
SR_MHZ(125), SR_MHZ(100),
|
||||
SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
|
||||
SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
|
||||
SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
|
||||
SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
|
||||
SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
|
||||
SR_HZ(500), SR_HZ(200), SR_HZ(100),
|
||||
static const char *const trigger_source_names[] = {
|
||||
[TRIGGER_CHANNELS] = "CH",
|
||||
[TRIGGER_EXT_TRG] = "TRG",
|
||||
};
|
||||
|
||||
/* Names assigned to available trigger sources. Indices must match
|
||||
* trigger_source enum values.
|
||||
/* Names assigned to available edge slope choices.
|
||||
*/
|
||||
static const char *const trigger_source_names[] = { "CH", "TRG" };
|
||||
static const char *const signal_edge_names[] = {
|
||||
[EDGE_POSITIVE] = "r",
|
||||
[EDGE_NEGATIVE] = "f",
|
||||
};
|
||||
|
||||
/* Names assigned to available trigger slope choices. Indices must
|
||||
* match the signal_edge enum values.
|
||||
/* Initialize the SysClk LWLA driver.
|
||||
*/
|
||||
static const char *const signal_edge_names[] = { "r", "f" };
|
||||
|
||||
static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
|
||||
{
|
||||
return std_init(sr_ctx, di, LOG_PREFIX);
|
||||
}
|
||||
|
||||
static struct sr_dev_inst *dev_inst_new(void)
|
||||
/* Create a new sigrok device instance for the indicated LWLA model.
|
||||
*/
|
||||
static struct sr_dev_inst *dev_inst_new(const struct model_info *model)
|
||||
{
|
||||
struct sr_dev_inst *sdi;
|
||||
struct dev_context *devc;
|
||||
int i;
|
||||
char name[8];
|
||||
|
||||
/* Allocate memory for our private driver context. */
|
||||
/* Initialize private device context. */
|
||||
devc = g_malloc0(sizeof(struct dev_context));
|
||||
devc->model = model;
|
||||
devc->active_fpga_config = FPGA_NOCONF;
|
||||
devc->cfg_rle = TRUE;
|
||||
devc->samplerate = model->samplerates[0];
|
||||
devc->channel_mask = (UINT64_C(1) << model->num_channels) - 1;
|
||||
|
||||
/* Register the device with libsigrok. */
|
||||
/* Create sigrok device instance. */
|
||||
sdi = g_malloc0(sizeof(struct sr_dev_inst));
|
||||
sdi->status = SR_ST_INACTIVE;
|
||||
sdi->vendor = g_strdup(VENDOR_NAME);
|
||||
sdi->model = g_strdup(MODEL_NAME);
|
||||
|
||||
/* Enable all channels to match the default channel configuration. */
|
||||
devc->channel_mask = ALL_CHANNELS_MASK;
|
||||
devc->samplerate = DEFAULT_SAMPLERATE;
|
||||
|
||||
sdi->model = g_strdup(model->name);
|
||||
sdi->priv = devc;
|
||||
for (i = 0; i < NUM_CHANNELS; ++i) {
|
||||
|
||||
/* Generate list of logic channels. */
|
||||
for (i = 0; i < model->num_channels; i++) {
|
||||
/* The LWLA series simply number channels from CH1 to CHxx. */
|
||||
g_snprintf(name, sizeof(name), "CH%d", i + 1);
|
||||
sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, name);
|
||||
|
@ -107,17 +102,76 @@ static struct sr_dev_inst *dev_inst_new(void)
|
|||
return sdi;
|
||||
}
|
||||
|
||||
/* Create a new device instance for a libusb device if it is a SysClk LWLA
|
||||
* device and also matches the connection specification.
|
||||
*/
|
||||
static struct sr_dev_inst *dev_inst_new_matching(GSList *conn_matches,
|
||||
libusb_device *dev)
|
||||
{
|
||||
GSList *node;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
const struct model_info *model;
|
||||
struct sr_dev_inst *sdi;
|
||||
struct libusb_device_descriptor des;
|
||||
int bus, address;
|
||||
unsigned int vid, pid;
|
||||
int ret;
|
||||
|
||||
bus = libusb_get_bus_number(dev);
|
||||
address = libusb_get_device_address(dev);
|
||||
|
||||
for (node = conn_matches; node != NULL; node = node->next) {
|
||||
usb = node->data;
|
||||
if (usb && usb->bus == bus && usb->address == address)
|
||||
break; /* found */
|
||||
}
|
||||
if (conn_matches && !node)
|
||||
return NULL; /* no match */
|
||||
|
||||
ret = libusb_get_device_descriptor(dev, &des);
|
||||
if (ret != 0) {
|
||||
sr_err("Failed to get USB device descriptor: %s.",
|
||||
libusb_error_name(ret));
|
||||
return NULL;
|
||||
}
|
||||
vid = des.idVendor;
|
||||
pid = des.idProduct;
|
||||
|
||||
/* Create sigrok device instance. */
|
||||
if (vid == USB_VID_SYSCLK && pid == USB_PID_LWLA1016) {
|
||||
model = &lwla1016_info;
|
||||
} else if (vid == USB_VID_SYSCLK && pid == USB_PID_LWLA1034) {
|
||||
model = &lwla1034_info;
|
||||
} else {
|
||||
if (conn_matches)
|
||||
sr_warn("USB device %d.%d (%04x:%04x) is not a"
|
||||
" SysClk LWLA.", bus, address, vid, pid);
|
||||
return NULL;
|
||||
}
|
||||
sdi = dev_inst_new(model);
|
||||
|
||||
sdi->inst_type = SR_INST_USB;
|
||||
sdi->conn = sr_usb_dev_inst_new(bus, address, NULL);
|
||||
|
||||
return sdi;
|
||||
}
|
||||
|
||||
/* Scan for SysClk LWLA devices and create a device instance for each one.
|
||||
*/
|
||||
static GSList *scan(struct sr_dev_driver *di, GSList *options)
|
||||
{
|
||||
GSList *usb_devices, *devices, *node;
|
||||
GSList *conn_devices, *devices, *node;
|
||||
struct drv_context *drvc;
|
||||
struct sr_dev_inst *sdi;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
struct sr_config *src;
|
||||
const char *conn;
|
||||
libusb_device **devlist;
|
||||
ssize_t num_devs, i;
|
||||
|
||||
drvc = di->context;
|
||||
conn = USB_VID_PID;
|
||||
conn = NULL;
|
||||
conn_devices = NULL;
|
||||
devices = NULL;
|
||||
|
||||
for (node = options; node != NULL; node = node->next) {
|
||||
src = node->data;
|
||||
|
@ -126,32 +180,41 @@ static GSList *scan(struct sr_dev_driver *di, GSList *options)
|
|||
break;
|
||||
}
|
||||
}
|
||||
usb_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
|
||||
devices = NULL;
|
||||
if (conn) {
|
||||
/* Find devices matching the connection specification. */
|
||||
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
|
||||
}
|
||||
|
||||
for (node = usb_devices; node != NULL; node = node->next) {
|
||||
usb = node->data;
|
||||
/* List all libusb devices. */
|
||||
num_devs = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
|
||||
if (num_devs < 0) {
|
||||
sr_err("Failed to list USB devices: %s.",
|
||||
libusb_error_name(num_devs));
|
||||
g_slist_free_full(conn_devices,
|
||||
(GDestroyNotify)&sr_usb_dev_inst_free);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Create sigrok device instance. */
|
||||
sdi = dev_inst_new();
|
||||
if (!sdi) {
|
||||
sr_usb_dev_inst_free(usb);
|
||||
continue;
|
||||
}
|
||||
sdi->driver = di;
|
||||
sdi->inst_type = SR_INST_USB;
|
||||
sdi->conn = usb;
|
||||
/* Scan the USB device list for matching LWLA devices. */
|
||||
for (i = 0; i < num_devs; i++) {
|
||||
sdi = dev_inst_new_matching(conn_devices, devlist[i]);
|
||||
if (!sdi)
|
||||
continue; /* no match */
|
||||
|
||||
/* Register device instance with driver. */
|
||||
sdi->driver = di;
|
||||
drvc->instances = g_slist_append(drvc->instances, sdi);
|
||||
devices = g_slist_append(devices, sdi);
|
||||
}
|
||||
|
||||
g_slist_free(usb_devices);
|
||||
libusb_free_device_list(devlist, 1);
|
||||
g_slist_free_full(conn_devices, (GDestroyNotify)&sr_usb_dev_inst_free);
|
||||
|
||||
return devices;
|
||||
}
|
||||
|
||||
/* Return the list of devices found during scan.
|
||||
*/
|
||||
static GSList *dev_list(const struct sr_dev_driver *di)
|
||||
{
|
||||
struct drv_context *drvc;
|
||||
|
@ -161,30 +224,42 @@ static GSList *dev_list(const struct sr_dev_driver *di)
|
|||
return drvc->instances;
|
||||
}
|
||||
|
||||
/* Destroy the private device context.
|
||||
*/
|
||||
static void clear_dev_context(void *priv)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
|
||||
devc = priv;
|
||||
|
||||
if (devc->acquisition) {
|
||||
sr_err("Cannot clear device context during acquisition!");
|
||||
return; /* leak and pray */
|
||||
}
|
||||
sr_dbg("Device context cleared.");
|
||||
|
||||
lwla_free_acquisition_state(devc->acquisition);
|
||||
g_free(devc);
|
||||
}
|
||||
|
||||
/* Destroy all device instances.
|
||||
*/
|
||||
static int dev_clear(const struct sr_dev_driver *di)
|
||||
{
|
||||
return std_dev_clear(di, &clear_dev_context);
|
||||
}
|
||||
|
||||
/* Open and initialize device.
|
||||
*/
|
||||
static int dev_open(struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct drv_context *drvc;
|
||||
struct dev_context *devc;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
int ret;
|
||||
|
||||
drvc = sdi->driver->context;
|
||||
devc = sdi->priv;
|
||||
usb = sdi->conn;
|
||||
|
||||
if (!drvc) {
|
||||
sr_err("Driver was not initialized.");
|
||||
|
@ -194,7 +269,6 @@ static int dev_open(struct sr_dev_inst *sdi)
|
|||
sr_err("Device already open.");
|
||||
return SR_ERR;
|
||||
}
|
||||
usb = sdi->conn;
|
||||
|
||||
ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
|
||||
if (ret != SR_OK)
|
||||
|
@ -219,42 +293,58 @@ static int dev_open(struct sr_dev_inst *sdi)
|
|||
sr_usb_close(usb);
|
||||
return SR_ERR;
|
||||
}
|
||||
|
||||
sdi->status = SR_ST_ACTIVE;
|
||||
|
||||
ret = lwla_init_device(sdi);
|
||||
devc->active_fpga_config = FPGA_NOCONF;
|
||||
devc->state = STATE_IDLE;
|
||||
|
||||
ret = (*devc->model->apply_fpga_config)(sdi);
|
||||
|
||||
if (ret == SR_OK)
|
||||
ret = (*devc->model->device_init_check)(sdi);
|
||||
|
||||
if (ret != SR_OK) {
|
||||
sr_usb_close(usb);
|
||||
sdi->status = SR_ST_INACTIVE;
|
||||
sr_usb_close(usb);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Shutdown and close device.
|
||||
*/
|
||||
static int dev_close(struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct sr_usb_dev_inst *usb;
|
||||
struct drv_context *drvc;
|
||||
struct dev_context *devc;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
int ret;
|
||||
|
||||
if (!sdi->driver->context) {
|
||||
drvc = sdi->driver->context;
|
||||
devc = sdi->priv;
|
||||
usb = sdi->conn;
|
||||
|
||||
if (!drvc) {
|
||||
sr_err("Driver was not initialized.");
|
||||
return SR_ERR;
|
||||
}
|
||||
usb = sdi->conn;
|
||||
devc = sdi->priv;
|
||||
|
||||
if (sdi->status == SR_ST_INACTIVE)
|
||||
if (sdi->status == SR_ST_INACTIVE) {
|
||||
sr_dbg("Device already closed.");
|
||||
return SR_OK;
|
||||
|
||||
if (devc && devc->acquisition) {
|
||||
sr_err("Attempt to close device during acquisition.");
|
||||
return SR_ERR;
|
||||
}
|
||||
if (devc->acquisition) {
|
||||
sr_err("Cannot close device during acquisition!");
|
||||
/* Request stop, leak handle, and prepare for the worst. */
|
||||
devc->cancel_requested = TRUE;
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
|
||||
sdi->status = SR_ST_INACTIVE;
|
||||
|
||||
/* Trigger download of the shutdown bitstream. */
|
||||
ret = lwla_set_clock_config(sdi);
|
||||
/* Download of the shutdown bitstream, if any. */
|
||||
ret = (*devc->model->apply_fpga_config)(sdi);
|
||||
if (ret != SR_OK)
|
||||
sr_err("Unable to shut down device.");
|
||||
sr_warn("Unable to shut down device.");
|
||||
|
||||
libusb_release_interface(usb->devhdl, USB_INTERFACE);
|
||||
sr_usb_close(usb);
|
||||
|
@ -262,11 +352,22 @@ static int dev_close(struct sr_dev_inst *sdi)
|
|||
return ret;
|
||||
}
|
||||
|
||||
static int cleanup(const struct sr_dev_driver *di)
|
||||
/* Check whether the device options contain a specific key.
|
||||
* Also match against get/set/list bits if specified.
|
||||
*/
|
||||
static int has_devopt(const struct model_info *model, uint32_t key)
|
||||
{
|
||||
return dev_clear(di);
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < model->num_devopts; i++) {
|
||||
if ((model->devopts[i] & (SR_CONF_MASK | key)) == key)
|
||||
return TRUE;
|
||||
}
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
/* Read device configuration setting.
|
||||
*/
|
||||
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
|
||||
const struct sr_channel_group *cg)
|
||||
{
|
||||
|
@ -280,6 +381,9 @@ static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *s
|
|||
|
||||
devc = sdi->priv;
|
||||
|
||||
if (!has_devopt(devc->model, key | SR_CONF_GET))
|
||||
return SR_ERR_NA;
|
||||
|
||||
switch (key) {
|
||||
case SR_CONF_SAMPLERATE:
|
||||
*data = g_variant_new_uint64(devc->samplerate);
|
||||
|
@ -290,6 +394,9 @@ static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *s
|
|||
case SR_CONF_LIMIT_SAMPLES:
|
||||
*data = g_variant_new_uint64(devc->limit_samples);
|
||||
break;
|
||||
case SR_CONF_RLE:
|
||||
*data = g_variant_new_boolean(devc->cfg_rle);
|
||||
break;
|
||||
case SR_CONF_EXTERNAL_CLOCK:
|
||||
*data = g_variant_new_boolean(devc->cfg_clock_source
|
||||
== CLOCK_EXT_CLK);
|
||||
|
@ -313,7 +420,8 @@ static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *s
|
|||
*data = g_variant_new_string(signal_edge_names[idx]);
|
||||
break;
|
||||
default:
|
||||
return SR_ERR_NA;
|
||||
/* Must not happen for a key listed in devopts. */
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
|
||||
return SR_OK;
|
||||
|
@ -339,6 +447,8 @@ static int lookup_index(GVariant *value, const char *const *table, int len)
|
|||
return -1;
|
||||
}
|
||||
|
||||
/* Write device configuration setting.
|
||||
*/
|
||||
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
|
||||
const struct sr_channel_group *cg)
|
||||
{
|
||||
|
@ -348,15 +458,19 @@ static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sd
|
|||
|
||||
(void)cg;
|
||||
|
||||
if (!sdi)
|
||||
return SR_ERR_ARG;
|
||||
|
||||
devc = sdi->priv;
|
||||
if (!devc)
|
||||
return SR_ERR_DEV_CLOSED;
|
||||
|
||||
if (!has_devopt(devc->model, key | SR_CONF_SET))
|
||||
return SR_ERR_NA;
|
||||
|
||||
switch (key) {
|
||||
case SR_CONF_SAMPLERATE:
|
||||
value = g_variant_get_uint64(data);
|
||||
if (value < samplerates[ARRAY_SIZE(samplerates) - 1]
|
||||
|| value > samplerates[0])
|
||||
if (value < devc->model->samplerates[devc->model->num_samplerates - 1]
|
||||
|| value > devc->model->samplerates[0])
|
||||
return SR_ERR_SAMPLERATE;
|
||||
devc->samplerate = value;
|
||||
break;
|
||||
|
@ -372,6 +486,9 @@ static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sd
|
|||
return SR_ERR_ARG;
|
||||
devc->limit_samples = value;
|
||||
break;
|
||||
case SR_CONF_RLE:
|
||||
devc->cfg_rle = g_variant_get_boolean(data);
|
||||
break;
|
||||
case SR_CONF_EXTERNAL_CLOCK:
|
||||
devc->cfg_clock_source = (g_variant_get_boolean(data))
|
||||
? CLOCK_EXT_CLK : CLOCK_INTERNAL;
|
||||
|
@ -398,30 +515,35 @@ static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sd
|
|||
devc->cfg_trigger_slope = idx;
|
||||
break;
|
||||
default:
|
||||
return SR_ERR_NA;
|
||||
/* Must not happen for a key listed in devopts. */
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Apply channel configuration change.
|
||||
*/
|
||||
static int config_channel_set(const struct sr_dev_inst *sdi,
|
||||
struct sr_channel *ch, unsigned int changes)
|
||||
struct sr_channel *ch, unsigned int changes)
|
||||
{
|
||||
uint64_t channel_bit;
|
||||
struct dev_context *devc;
|
||||
|
||||
devc = sdi->priv;
|
||||
if (!devc)
|
||||
return SR_ERR_DEV_CLOSED;
|
||||
if (!sdi)
|
||||
return SR_ERR_ARG;
|
||||
|
||||
if (ch->index < 0 || ch->index >= NUM_CHANNELS) {
|
||||
devc = sdi->priv;
|
||||
|
||||
if (ch->index < 0 || ch->index >= devc->model->num_channels) {
|
||||
sr_err("Channel index %d out of range.", ch->index);
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
channel_bit = (uint64_t)1 << ch->index;
|
||||
|
||||
if ((changes & SR_CHANNEL_SET_ENABLED) != 0) {
|
||||
/* Enable or disable input channel for this channel. */
|
||||
channel_bit = UINT64_C(1) << ch->index;
|
||||
|
||||
/* Enable or disable logic input for this channel. */
|
||||
if (ch->enabled)
|
||||
devc->channel_mask |= channel_bit;
|
||||
else
|
||||
|
@ -431,6 +553,8 @@ static int config_channel_set(const struct sr_dev_inst *sdi,
|
|||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Derive trigger masks from the session's trigger configuration.
|
||||
*/
|
||||
static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
uint64_t trigger_mask;
|
||||
|
@ -442,6 +566,7 @@ static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
|
|||
struct sr_trigger_stage *stage;
|
||||
struct sr_trigger_match *match;
|
||||
const GSList *node;
|
||||
int idx;
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
|
@ -465,7 +590,13 @@ static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
|
|||
if (!match->channel->enabled)
|
||||
continue; /* ignore disabled channel */
|
||||
|
||||
channel_bit = (uint64_t)1 << match->channel->index;
|
||||
idx = match->channel->index;
|
||||
|
||||
if (idx < 0 || idx >= devc->model->num_channels) {
|
||||
sr_err("Channel index %d out of range.", idx);
|
||||
return SR_ERR_BUG; /* should not happen */
|
||||
}
|
||||
channel_bit = UINT64_C(1) << idx;
|
||||
trigger_mask |= channel_bit;
|
||||
|
||||
switch (match->match) {
|
||||
|
@ -481,8 +612,7 @@ static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
|
|||
trigger_edge_mask |= channel_bit;
|
||||
break;
|
||||
default:
|
||||
sr_err("Unsupported trigger match for CH%d.",
|
||||
match->channel->index + 1);
|
||||
sr_err("Unsupported trigger match for CH%d.", idx + 1);
|
||||
return SR_ERR_ARG;
|
||||
}
|
||||
}
|
||||
|
@ -493,56 +623,94 @@ static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
|
|||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Apply current device configuration to the hardware.
|
||||
*/
|
||||
static int config_commit(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
int rc;
|
||||
int ret;
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
if (sdi->status != SR_ST_ACTIVE)
|
||||
return SR_ERR_DEV_CLOSED;
|
||||
|
||||
devc = sdi->priv;
|
||||
if (devc->acquisition) {
|
||||
sr_err("Acquisition still in progress?");
|
||||
return SR_ERR;
|
||||
}
|
||||
rc = prepare_trigger_masks(sdi);
|
||||
if (rc != SR_OK)
|
||||
return rc;
|
||||
|
||||
return lwla_set_clock_config(sdi);
|
||||
ret = prepare_trigger_masks(sdi);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = (*devc->model->apply_fpga_config)(sdi);
|
||||
if (ret != SR_OK) {
|
||||
sr_err("Failed to apply FPGA configuration.");
|
||||
return ret;
|
||||
}
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
|
||||
/* List available choices for a configuration setting.
|
||||
*/
|
||||
static int config_list(uint32_t key, GVariant **data,
|
||||
const struct sr_dev_inst *sdi,
|
||||
const struct sr_channel_group *cg)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
GVariant *gvar;
|
||||
GVariantBuilder gvb;
|
||||
|
||||
(void)sdi;
|
||||
(void)cg;
|
||||
|
||||
if (key == SR_CONF_SCAN_OPTIONS) {
|
||||
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
|
||||
scanopts, ARRAY_SIZE(scanopts),
|
||||
sizeof(scanopts[0]));
|
||||
return SR_OK;
|
||||
}
|
||||
if (!sdi) {
|
||||
if (key != SR_CONF_DEVICE_OPTIONS)
|
||||
return SR_ERR_ARG;
|
||||
|
||||
/* List driver capabilities. */
|
||||
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
|
||||
drvopts, ARRAY_SIZE(drvopts),
|
||||
sizeof(drvopts[0]));
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
devc = sdi->priv;
|
||||
|
||||
/* List the model's device options. */
|
||||
if (key == SR_CONF_DEVICE_OPTIONS) {
|
||||
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
|
||||
devc->model->devopts,
|
||||
devc->model->num_devopts,
|
||||
sizeof(devc->model->devopts[0]));
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
if (!has_devopt(devc->model, key | SR_CONF_LIST))
|
||||
return SR_ERR_NA;
|
||||
|
||||
switch (key) {
|
||||
case SR_CONF_SCAN_OPTIONS:
|
||||
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
|
||||
scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
|
||||
break;
|
||||
case SR_CONF_DEVICE_OPTIONS:
|
||||
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
|
||||
devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
|
||||
break;
|
||||
case SR_CONF_SAMPLERATE:
|
||||
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
|
||||
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
|
||||
samplerates, ARRAY_SIZE(samplerates),
|
||||
sizeof(uint64_t));
|
||||
g_variant_builder_init(&gvb, G_VARIANT_TYPE_VARDICT);
|
||||
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
|
||||
devc->model->samplerates,
|
||||
devc->model->num_samplerates,
|
||||
sizeof(devc->model->samplerates[0]));
|
||||
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
|
||||
*data = g_variant_builder_end(&gvb);
|
||||
break;
|
||||
case SR_CONF_TRIGGER_MATCH:
|
||||
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
|
||||
trigger_matches, ARRAY_SIZE(trigger_matches),
|
||||
sizeof(int32_t));
|
||||
trigger_matches,
|
||||
ARRAY_SIZE(trigger_matches),
|
||||
sizeof(trigger_matches[0]));
|
||||
break;
|
||||
case SR_CONF_TRIGGER_SOURCE:
|
||||
*data = g_variant_new_strv(trigger_source_names,
|
||||
|
@ -554,68 +722,31 @@ static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *
|
|||
ARRAY_SIZE(signal_edge_names));
|
||||
break;
|
||||
default:
|
||||
return SR_ERR_NA;
|
||||
/* Must not happen for a key listed in devopts. */
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Set up the device hardware to begin capturing samples as soon as the
|
||||
* configured trigger conditions are met, or immediately if no triggers
|
||||
* are configured.
|
||||
*/
|
||||
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
|
||||
{
|
||||
struct drv_context *drvc;
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
int ret;
|
||||
|
||||
(void)cb_data;
|
||||
|
||||
if (sdi->status != SR_ST_ACTIVE)
|
||||
return SR_ERR_DEV_CLOSED;
|
||||
|
||||
devc = sdi->priv;
|
||||
drvc = sdi->driver->context;
|
||||
|
||||
if (devc->acquisition) {
|
||||
sr_err("Acquisition still in progress?");
|
||||
return SR_ERR;
|
||||
}
|
||||
acq = lwla_alloc_acquisition_state();
|
||||
if (!acq)
|
||||
return SR_ERR_MALLOC;
|
||||
|
||||
devc->cancel_requested = FALSE;
|
||||
devc->stopping_in_progress = FALSE;
|
||||
devc->transfer_error = FALSE;
|
||||
|
||||
sr_info("Starting acquisition.");
|
||||
|
||||
devc->acquisition = acq;
|
||||
ret = lwla_setup_acquisition(sdi);
|
||||
if (ret != SR_OK) {
|
||||
sr_err("Failed to set up acquisition.");
|
||||
devc->acquisition = NULL;
|
||||
lwla_free_acquisition_state(acq);
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = lwla_start_acquisition(sdi);
|
||||
if (ret != SR_OK) {
|
||||
sr_err("Failed to start acquisition.");
|
||||
devc->acquisition = NULL;
|
||||
lwla_free_acquisition_state(acq);
|
||||
return ret;
|
||||
}
|
||||
usb_source_add(sdi->session, drvc->sr_ctx, 100, &lwla_receive_data,
|
||||
(struct sr_dev_inst *)sdi);
|
||||
|
||||
sr_info("Waiting for data.");
|
||||
|
||||
/* Send header packet to the session bus. */
|
||||
std_session_send_df_header(sdi, LOG_PREFIX);
|
||||
|
||||
return SR_OK;
|
||||
return lwla_start_acquisition(sdi);
|
||||
}
|
||||
|
||||
/* Request that a running capture operation be stopped.
|
||||
*/
|
||||
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
|
@ -626,19 +757,21 @@ static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
|
|||
if (sdi->status != SR_ST_ACTIVE)
|
||||
return SR_ERR_DEV_CLOSED;
|
||||
|
||||
if (devc->acquisition && !devc->cancel_requested) {
|
||||
if (devc->state != STATE_IDLE && !devc->cancel_requested) {
|
||||
devc->cancel_requested = TRUE;
|
||||
sr_dbg("Stopping acquisition.");
|
||||
}
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* SysClk LWLA driver descriptor.
|
||||
*/
|
||||
SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info = {
|
||||
.name = "sysclk-lwla",
|
||||
.longname = "SysClk LWLA series",
|
||||
.api_version = 1,
|
||||
.init = init,
|
||||
.cleanup = cleanup,
|
||||
.cleanup = dev_clear,
|
||||
.scan = scan,
|
||||
.dev_list = dev_list,
|
||||
.dev_clear = dev_clear,
|
||||
|
|
|
@ -95,7 +95,7 @@ SR_PRIV int lwla_send_bitstream(struct sr_context *ctx,
|
|||
sr_info("Downloading FPGA bitstream '%s'.", name);
|
||||
|
||||
/* Transfer the entire bitstream in one URB. */
|
||||
ret = libusb_bulk_transfer(usb->devhdl, EP_BITSTREAM,
|
||||
ret = libusb_bulk_transfer(usb->devhdl, EP_CONFIG,
|
||||
stream, length, &xfer_len, USB_TIMEOUT_MS);
|
||||
g_free(stream);
|
||||
|
||||
|
@ -191,33 +191,6 @@ SR_PRIV int lwla_read_reg(const struct sr_usb_dev_inst *usb,
|
|||
return ret;
|
||||
}
|
||||
|
||||
SR_PRIV int lwla_read_long_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint32_t addr, uint64_t *value)
|
||||
{
|
||||
uint32_t low, high, dummy;
|
||||
int ret;
|
||||
|
||||
ret = lwla_write_reg(usb, REG_LONG_ADDR, addr);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = lwla_read_reg(usb, REG_LONG_STROBE, &dummy);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = lwla_read_reg(usb, REG_LONG_HIGH, &high);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = lwla_read_reg(usb, REG_LONG_LOW, &low);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
*value = ((uint64_t)high << 32) | low;
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint16_t reg, uint32_t value)
|
||||
{
|
||||
|
@ -232,7 +205,7 @@ SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
|
|||
}
|
||||
|
||||
SR_PRIV int lwla_write_regs(const struct sr_usb_dev_inst *usb,
|
||||
const struct regval_pair *regvals, int count)
|
||||
const struct regval *regvals, int count)
|
||||
{
|
||||
int i;
|
||||
int ret;
|
||||
|
|
|
@ -47,84 +47,112 @@ struct sr_usb_dev_inst;
|
|||
#define LWLA_WORD_2(val) GUINT16_TO_LE(((val) >> 48) & 0xFFFF)
|
||||
#define LWLA_WORD_3(val) GUINT16_TO_LE(((val) >> 32) & 0xFFFF)
|
||||
|
||||
/* Maximum number of 16-bit words sent at a time during acquisition.
|
||||
* Used for allocating the libusb transfer buffer.
|
||||
*/
|
||||
#define MAX_ACQ_SEND_LEN16 64 /* 43 for capture setup plus stuffing */
|
||||
|
||||
/* Maximum number of 32-bit words received at a time during acquisition.
|
||||
* This is a multiple of the endpoint buffer size to avoid transfer overflow
|
||||
* conditions.
|
||||
*/
|
||||
#define MAX_ACQ_RECV_LEN32 (2 * 512 / 4)
|
||||
|
||||
/* Maximum length of a register read/write sequence.
|
||||
*/
|
||||
#define MAX_REG_SEQ_LEN 16
|
||||
|
||||
/* Logic datafeed packet size in bytes.
|
||||
* This is a multiple of both 4 and 5 to match any model's unit size
|
||||
* and memory granularity.
|
||||
*/
|
||||
#define PACKET_SIZE (5000 * 4 * 5)
|
||||
|
||||
/** USB device end points.
|
||||
*/
|
||||
enum {
|
||||
EP_COMMAND = 2,
|
||||
EP_BITSTREAM = 4,
|
||||
EP_REPLY = 6 | LIBUSB_ENDPOINT_IN
|
||||
enum usb_endpoint {
|
||||
EP_COMMAND = 2,
|
||||
EP_CONFIG = 4,
|
||||
EP_REPLY = 6 | LIBUSB_ENDPOINT_IN
|
||||
};
|
||||
|
||||
/** LWLA protocol command ID codes.
|
||||
*/
|
||||
enum {
|
||||
enum command_id {
|
||||
CMD_READ_REG = 1,
|
||||
CMD_WRITE_REG = 2,
|
||||
CMD_READ_MEM = 6,
|
||||
CMD_CAP_SETUP = 7,
|
||||
CMD_CAP_STATUS = 8,
|
||||
CMD_READ_MEM32 = 3,
|
||||
CMD_READ_MEM36 = 6,
|
||||
CMD_WRITE_LREGS = 7,
|
||||
CMD_READ_LREGS = 8,
|
||||
};
|
||||
|
||||
/** LWLA capture state flags.
|
||||
* The bit positions are the same as in the LWLA1016 control register.
|
||||
*/
|
||||
enum {
|
||||
STATUS_CAPTURING = 1 << 1,
|
||||
STATUS_TRIGGERED = 1 << 4,
|
||||
STATUS_MEM_AVAIL = 1 << 5,
|
||||
STATUS_FLAG_MASK = 0x3F
|
||||
STATUS_CAPTURING = 1 << 2,
|
||||
STATUS_TRIGGERED = 1 << 5,
|
||||
STATUS_MEM_AVAIL = 1 << 6,
|
||||
};
|
||||
|
||||
/** LWLA1034 register addresses.
|
||||
/** LWLA1034 run-length encoding states.
|
||||
*/
|
||||
enum {
|
||||
REG_MEM_CTRL = 0x1074, /* capture buffer control */
|
||||
REG_MEM_FILL = 0x1078, /* capture buffer fill level */
|
||||
REG_MEM_START = 0x107C, /* capture buffer start address */
|
||||
|
||||
REG_DIV_BYPASS = 0x1094, /* bypass clock divider flag */
|
||||
|
||||
REG_LONG_STROBE = 0x10B0, /* long register read/write strobe */
|
||||
REG_LONG_ADDR = 0x10B4, /* long register address */
|
||||
REG_LONG_LOW = 0x10B8, /* long register low word */
|
||||
REG_LONG_HIGH = 0x10BC, /* long register high word */
|
||||
|
||||
REG_FREQ_CH1 = 0x10C0, /* channel 1 live frequency */
|
||||
REG_FREQ_CH2 = 0x10C4, /* channel 2 live frequency */
|
||||
REG_FREQ_CH3 = 0x10C8, /* channel 3 live frequency */
|
||||
REG_FREQ_CH4 = 0x10CC, /* channel 4 live frequency */
|
||||
enum rle_state {
|
||||
RLE_STATE_DATA,
|
||||
RLE_STATE_LEN
|
||||
};
|
||||
|
||||
/** Flag bits for REG_MEM_CTRL.
|
||||
/** Register address/value pair.
|
||||
*/
|
||||
enum {
|
||||
MEM_CTRL_WRITE = 1 << 0, /* "wr1rd0" bit */
|
||||
MEM_CTRL_CLR_IDX = 1 << 1, /* "clr_idx" bit */
|
||||
};
|
||||
|
||||
/* LWLA1034 long register addresses.
|
||||
*/
|
||||
enum {
|
||||
LREG_CAP_CTRL = 10, /* capture control bits */
|
||||
LREG_TEST_ID = 100, /* constant test ID */
|
||||
};
|
||||
|
||||
/** Flag bits for LREG_CAP_CTRL.
|
||||
*/
|
||||
enum {
|
||||
CAP_CTRL_TRG_EN = 1 << 0, /* "trg_en" bit */
|
||||
CAP_CTRL_CLR_TIMEBASE = 1 << 2, /* "do_clr_timebase" bit */
|
||||
CAP_CTRL_FLUSH_FIFO = 1 << 4, /* "flush_fifo" bit */
|
||||
CAP_CTRL_CLR_FIFOFULL = 1 << 5, /* "clr_fifo32_ful" bit */
|
||||
CAP_CTRL_CLR_COUNTER = 1 << 6, /* "clr_cntr0" bit */
|
||||
};
|
||||
|
||||
/** Register/value pair.
|
||||
*/
|
||||
struct regval_pair {
|
||||
struct regval {
|
||||
unsigned int reg;
|
||||
unsigned int val;
|
||||
uint32_t val;
|
||||
};
|
||||
|
||||
/** LWLA sample acquisition and decompression state.
|
||||
*/
|
||||
struct acquisition_state {
|
||||
uint64_t samples_max; /* maximum number of samples to process */
|
||||
uint64_t samples_done; /* number of samples sent to the session bus */
|
||||
uint64_t duration_max; /* maximum capture duration in milliseconds */
|
||||
uint64_t duration_now; /* running capture duration since trigger */
|
||||
|
||||
uint64_t sample; /* last sample read from capture memory */
|
||||
uint64_t run_len; /* remaining run length of current sample */
|
||||
|
||||
struct libusb_transfer *xfer_in; /* USB in transfer record */
|
||||
struct libusb_transfer *xfer_out; /* USB out transfer record */
|
||||
|
||||
size_t mem_addr_fill; /* capture memory fill level */
|
||||
size_t mem_addr_done; /* position up to which data was received */
|
||||
size_t mem_addr_next; /* start address for next async read */
|
||||
size_t mem_addr_stop; /* end of memory range to be read */
|
||||
size_t in_index; /* position in read transfer buffer */
|
||||
size_t out_index; /* position in logic packet buffer */
|
||||
enum rle_state rle; /* RLE decoding state */
|
||||
|
||||
gboolean rle_enabled; /* capturing in timing-state mode */
|
||||
gboolean clock_boost; /* switch to faster clock during capture */
|
||||
unsigned int status; /* last received device status */
|
||||
|
||||
unsigned int reg_seq_pos; /* index of next register/value pair */
|
||||
unsigned int reg_seq_len; /* length of register/value sequence */
|
||||
|
||||
struct regval reg_sequence[MAX_REG_SEQ_LEN]; /* register buffer */
|
||||
uint32_t xfer_buf_in[MAX_ACQ_RECV_LEN32]; /* USB in buffer */
|
||||
uint16_t xfer_buf_out[MAX_ACQ_SEND_LEN16]; /* USB out buffer */
|
||||
uint8_t out_packet[PACKET_SIZE]; /* logic payload */
|
||||
};
|
||||
|
||||
static inline void lwla_queue_regval(struct acquisition_state *acq,
|
||||
unsigned int reg, uint32_t value)
|
||||
{
|
||||
acq->reg_sequence[acq->reg_seq_len].reg = reg;
|
||||
acq->reg_sequence[acq->reg_seq_len].val = value;
|
||||
acq->reg_seq_len++;
|
||||
}
|
||||
|
||||
SR_PRIV int lwla_send_bitstream(struct sr_context *ctx,
|
||||
const struct sr_usb_dev_inst *usb,
|
||||
const char *name);
|
||||
|
@ -138,13 +166,10 @@ SR_PRIV int lwla_receive_reply(const struct sr_usb_dev_inst *usb,
|
|||
SR_PRIV int lwla_read_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint16_t reg, uint32_t *value);
|
||||
|
||||
SR_PRIV int lwla_read_long_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint32_t addr, uint64_t *value);
|
||||
|
||||
SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint16_t reg, uint32_t value);
|
||||
|
||||
SR_PRIV int lwla_write_regs(const struct sr_usb_dev_inst *usb,
|
||||
const struct regval_pair *regvals, int count);
|
||||
const struct regval *regvals, int count);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,415 @@
|
|||
/*
|
||||
* This file is part of the libsigrok project.
|
||||
*
|
||||
* Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include "lwla.h"
|
||||
#include "protocol.h"
|
||||
|
||||
/* Number of logic channels.
|
||||
*/
|
||||
#define NUM_CHANNELS 16
|
||||
|
||||
/* Unit size for the sigrok logic datafeed.
|
||||
*/
|
||||
#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
|
||||
|
||||
/* Size of the acquisition buffer in device memory units.
|
||||
*/
|
||||
#define MEMORY_DEPTH (256 * 1024) /* 256k x 32 bit */
|
||||
|
||||
/* Capture memory read start address.
|
||||
*/
|
||||
#define READ_START_ADDR 2
|
||||
|
||||
/* Number of device memory units (32 bit) to read at a time.
|
||||
*/
|
||||
#define READ_CHUNK_LEN32 250
|
||||
|
||||
/** LWLA1016 register addresses.
|
||||
*/
|
||||
enum reg_addr {
|
||||
REG_CHAN_MASK = 0x1000, /* bit mask of enabled channels */
|
||||
|
||||
REG_DURATION = 0x1010, /* capture duration in ms */
|
||||
|
||||
REG_MEM_WR_PTR = 0x1070,
|
||||
REG_MEM_RD_PTR = 0x1074,
|
||||
REG_MEM_DATA = 0x1078,
|
||||
REG_MEM_CTRL = 0x107C,
|
||||
|
||||
REG_CAP_COUNT = 0x10B0,
|
||||
|
||||
REG_TEST_ID = 0x10B4, /* read */
|
||||
REG_TRG_SEL = 0x10B4, /* write */
|
||||
|
||||
REG_CAP_CTRL = 0x10B8,
|
||||
|
||||
REG_CAP_TOTAL = 0x10BC, /* read */
|
||||
REG_DIV_COUNT = 0x10BC, /* write */
|
||||
};
|
||||
|
||||
/** Flag bits for REG_MEM_CTRL.
|
||||
*/
|
||||
enum mem_ctrl_flag {
|
||||
MEM_CTRL_RESET = 1 << 0,
|
||||
MEM_CTRL_WRITE = 1 << 1,
|
||||
};
|
||||
|
||||
/** Flag bits for REG_CAP_CTRL.
|
||||
*/
|
||||
enum cap_ctrl_flag {
|
||||
CAP_CTRL_FIFO32_FULL = 1 << 0, /* "fifo32_ful" bit */
|
||||
CAP_CTRL_FIFO64_FULL = 1 << 1, /* "fifo64_ful" bit */
|
||||
CAP_CTRL_TRG_EN = 1 << 2, /* "trg_en" bit */
|
||||
CAP_CTRL_CLR_TIMEBASE = 1 << 3, /* "do_clr_timebase" bit */
|
||||
CAP_CTRL_FIFO_EMPTY = 1 << 4, /* "fifo_empty" bit */
|
||||
CAP_CTRL_SAMPLE_EN = 1 << 5, /* "sample_en" bit */
|
||||
CAP_CTRL_CNTR_NOT_ENDR = 1 << 6, /* "cntr_not_endr" bit */
|
||||
};
|
||||
|
||||
/* Available FPGA configurations.
|
||||
*/
|
||||
enum fpga_config {
|
||||
FPGA_100 = 0, /* 100 MS/s, no compression */
|
||||
FPGA_100_TS, /* 100 MS/s, timing-state mode */
|
||||
};
|
||||
|
||||
/* FPGA bitstream resource filenames.
|
||||
*/
|
||||
static const char bitstream_map[][32] = {
|
||||
[FPGA_100] = "sysclk-lwla1016-100.rbf",
|
||||
[FPGA_100_TS] = "sysclk-lwla1016-100-ts.rbf",
|
||||
};
|
||||
|
||||
/* Demangle incoming sample data from the transfer buffer.
|
||||
*/
|
||||
static void read_response(struct acquisition_state *acq)
|
||||
{
|
||||
uint32_t *in_p, *out_p;
|
||||
size_t words_left, num_words;
|
||||
size_t max_samples, run_samples;
|
||||
size_t i;
|
||||
|
||||
words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
|
||||
- acq->mem_addr_done;
|
||||
/* Calculate number of samples to write into packet. */
|
||||
max_samples = MIN(acq->samples_max - acq->samples_done,
|
||||
PACKET_SIZE / UNIT_SIZE - acq->out_index);
|
||||
run_samples = MIN(max_samples, 2 * words_left);
|
||||
|
||||
/* Round up in case the samples limit is an odd number. */
|
||||
num_words = (run_samples + 1) / 2;
|
||||
/*
|
||||
* Without RLE the output index will always be a multiple of two
|
||||
* samples (at least before reaching the samples limit), thus 32-bit
|
||||
* alignment is guaranteed.
|
||||
*/
|
||||
out_p = (uint32_t *)&acq->out_packet[acq->out_index * UNIT_SIZE];
|
||||
in_p = &acq->xfer_buf_in[acq->in_index];
|
||||
/*
|
||||
* Transfer two samples at a time, taking care to swap the 16-bit
|
||||
* halves of each input word but keeping the samples themselves in
|
||||
* the original Little Endian order.
|
||||
*/
|
||||
for (i = 0; i < num_words; i++)
|
||||
out_p[i] = LROTATE(in_p[i], 16);
|
||||
|
||||
acq->in_index += num_words;
|
||||
acq->mem_addr_done += num_words;
|
||||
acq->out_index += run_samples;
|
||||
acq->samples_done += run_samples;
|
||||
}
|
||||
|
||||
/* Demangle and decompress incoming sample data from the transfer buffer.
|
||||
*/
|
||||
static void read_response_rle(struct acquisition_state *acq)
|
||||
{
|
||||
uint32_t *in_p;
|
||||
uint16_t *out_p;
|
||||
size_t words_left;
|
||||
size_t max_samples, run_samples;
|
||||
size_t wi, ri;
|
||||
uint32_t word;
|
||||
uint16_t sample;
|
||||
|
||||
words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
|
||||
- acq->mem_addr_done;
|
||||
in_p = &acq->xfer_buf_in[acq->in_index];
|
||||
|
||||
for (wi = 0;; wi++) {
|
||||
/* Calculate number of samples to write into packet. */
|
||||
max_samples = MIN(acq->samples_max - acq->samples_done,
|
||||
PACKET_SIZE / UNIT_SIZE - acq->out_index);
|
||||
run_samples = MIN(max_samples, acq->run_len);
|
||||
|
||||
/* Expand run-length samples into session packet. */
|
||||
sample = acq->sample;
|
||||
out_p = &((uint16_t *)acq->out_packet)[acq->out_index];
|
||||
|
||||
for (ri = 0; ri < run_samples; ri++)
|
||||
out_p[ri] = GUINT16_TO_LE(sample);
|
||||
|
||||
acq->run_len -= run_samples;
|
||||
acq->out_index += run_samples;
|
||||
acq->samples_done += run_samples;
|
||||
|
||||
if (run_samples == max_samples)
|
||||
break; /* packet full or sample limit reached */
|
||||
if (wi >= words_left)
|
||||
break; /* done with current transfer */
|
||||
|
||||
word = GUINT32_FROM_LE(in_p[wi]);
|
||||
acq->sample = word >> 16;
|
||||
acq->run_len = (word & 0xFFFF) + 1;
|
||||
}
|
||||
acq->in_index += wi;
|
||||
acq->mem_addr_done += wi;
|
||||
}
|
||||
|
||||
/* Select and transfer FPGA bitstream for the current configuration.
|
||||
*/
|
||||
static int apply_fpga_config(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct drv_context *drvc;
|
||||
int config;
|
||||
int ret;
|
||||
|
||||
devc = sdi->priv;
|
||||
drvc = sdi->driver->context;
|
||||
|
||||
if (sdi->status == SR_ST_INACTIVE)
|
||||
return SR_OK; /* the LWLA1016 has no off state */
|
||||
|
||||
config = (devc->cfg_rle) ? FPGA_100_TS : FPGA_100;
|
||||
|
||||
if (config == devc->active_fpga_config)
|
||||
return SR_OK; /* no change */
|
||||
|
||||
ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
|
||||
bitstream_map[config]);
|
||||
devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Perform initialization self test.
|
||||
*/
|
||||
static int device_init_check(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
uint32_t value;
|
||||
int ret;
|
||||
|
||||
ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
/* Ignore the value returned by the first read. */
|
||||
ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
if (value != 0x12345678) {
|
||||
sr_err("Received invalid test word 0x%08X.", value);
|
||||
return SR_ERR;
|
||||
}
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
static int setup_acquisition(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
struct acquisition_state *acq;
|
||||
uint32_t divider_count;
|
||||
int ret;
|
||||
|
||||
devc = sdi->priv;
|
||||
usb = sdi->conn;
|
||||
acq = devc->acquisition;
|
||||
|
||||
acq->reg_seq_pos = 0;
|
||||
acq->reg_seq_len = 0;
|
||||
|
||||
lwla_queue_regval(acq, REG_CHAN_MASK, devc->channel_mask);
|
||||
|
||||
if (devc->samplerate > 0 && devc->samplerate < SR_MHZ(100))
|
||||
divider_count = SR_MHZ(100) / devc->samplerate - 1;
|
||||
else
|
||||
divider_count = 0;
|
||||
|
||||
lwla_queue_regval(acq, REG_DIV_COUNT, divider_count);
|
||||
|
||||
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
|
||||
lwla_queue_regval(acq, REG_DURATION, 0);
|
||||
|
||||
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
|
||||
lwla_queue_regval(acq, REG_MEM_CTRL, 0);
|
||||
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_WRITE);
|
||||
|
||||
lwla_queue_regval(acq, REG_CAP_CTRL,
|
||||
CAP_CTRL_FIFO32_FULL | CAP_CTRL_FIFO64_FULL);
|
||||
|
||||
lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_FIFO_EMPTY);
|
||||
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
|
||||
|
||||
lwla_queue_regval(acq, REG_CAP_COUNT, MEMORY_DEPTH - 5);
|
||||
|
||||
lwla_queue_regval(acq, REG_TRG_SEL,
|
||||
((devc->trigger_edge_mask & 0xFFFF) << 16)
|
||||
| (devc->trigger_values & 0xFFFF));
|
||||
|
||||
ret = lwla_write_regs(usb, acq->reg_sequence, acq->reg_seq_len);
|
||||
acq->reg_seq_len = 0;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int prepare_request(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
size_t count;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
acq->xfer_out->length = 0;
|
||||
acq->reg_seq_pos = 0;
|
||||
acq->reg_seq_len = 0;
|
||||
|
||||
switch (devc->state) {
|
||||
case STATE_START_CAPTURE:
|
||||
lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_TRG_EN
|
||||
| ((devc->trigger_mask & 0xFFFF) << 16));
|
||||
break;
|
||||
case STATE_STOP_CAPTURE:
|
||||
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
|
||||
lwla_queue_regval(acq, REG_DIV_COUNT, 0);
|
||||
break;
|
||||
case STATE_READ_PREPARE:
|
||||
lwla_queue_regval(acq, REG_MEM_CTRL, 0);
|
||||
break;
|
||||
case STATE_READ_FINISH:
|
||||
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
|
||||
lwla_queue_regval(acq, REG_MEM_CTRL, 0);
|
||||
break;
|
||||
case STATE_STATUS_REQUEST:
|
||||
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
|
||||
lwla_queue_regval(acq, REG_MEM_WR_PTR, 0);
|
||||
lwla_queue_regval(acq, REG_DURATION, 0);
|
||||
break;
|
||||
case STATE_LENGTH_REQUEST:
|
||||
lwla_queue_regval(acq, REG_CAP_COUNT, 0);
|
||||
break;
|
||||
case STATE_READ_REQUEST:
|
||||
/* Always read a multiple of 8 device words. */
|
||||
count = MIN(READ_CHUNK_LEN32,
|
||||
acq->mem_addr_stop - acq->mem_addr_next);
|
||||
|
||||
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM32);
|
||||
acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
|
||||
acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
|
||||
acq->xfer_buf_out[3] = LWLA_WORD_0(count);
|
||||
acq->xfer_buf_out[4] = LWLA_WORD_1(count);
|
||||
acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
|
||||
|
||||
acq->mem_addr_next += count;
|
||||
break;
|
||||
default:
|
||||
sr_err("BUG: unhandled request state %d.", devc->state);
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
static int handle_response(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
int expect_len;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
switch (devc->state) {
|
||||
case STATE_STATUS_REQUEST:
|
||||
acq->status = acq->reg_sequence[0].val & 0x7F;
|
||||
acq->mem_addr_fill = acq->reg_sequence[1].val;
|
||||
acq->duration_now = acq->reg_sequence[2].val;
|
||||
break;
|
||||
case STATE_LENGTH_REQUEST:
|
||||
acq->mem_addr_next = READ_START_ADDR;
|
||||
acq->mem_addr_stop = acq->reg_sequence[0].val + READ_START_ADDR - 1;
|
||||
break;
|
||||
case STATE_READ_REQUEST:
|
||||
expect_len = (acq->mem_addr_next - acq->mem_addr_done
|
||||
+ acq->in_index) * sizeof(acq->xfer_buf_in[0]);
|
||||
if (acq->xfer_in->actual_length != expect_len) {
|
||||
sr_err("Received size %d does not match expected size %d.",
|
||||
acq->xfer_in->actual_length, expect_len);
|
||||
devc->transfer_error = TRUE;
|
||||
return SR_ERR;
|
||||
}
|
||||
if (acq->rle_enabled)
|
||||
read_response_rle(acq);
|
||||
else
|
||||
read_response(acq);
|
||||
break;
|
||||
default:
|
||||
sr_err("BUG: unhandled response state %d.", devc->state);
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Model descriptor for the LWLA1016.
|
||||
*/
|
||||
SR_PRIV const struct model_info lwla1016_info = {
|
||||
.name = "LWLA1016",
|
||||
.num_channels = NUM_CHANNELS,
|
||||
|
||||
.num_devopts = 5,
|
||||
.devopts = {
|
||||
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
|
||||
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
|
||||
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
|
||||
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
|
||||
SR_CONF_RLE | SR_CONF_GET | SR_CONF_SET,
|
||||
},
|
||||
.num_samplerates = 19,
|
||||
.samplerates = {
|
||||
SR_MHZ(100),
|
||||
SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
|
||||
SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
|
||||
SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
|
||||
SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
|
||||
SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
|
||||
SR_HZ(500), SR_HZ(200), SR_HZ(100),
|
||||
},
|
||||
|
||||
.apply_fpga_config = &apply_fpga_config,
|
||||
.device_init_check = &device_init_check,
|
||||
.setup_acquisition = &setup_acquisition,
|
||||
|
||||
.prepare_request = &prepare_request,
|
||||
.handle_response = &handle_response,
|
||||
};
|
|
@ -0,0 +1,544 @@
|
|||
/*
|
||||
* This file is part of the libsigrok project.
|
||||
*
|
||||
* Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include "lwla.h"
|
||||
#include "protocol.h"
|
||||
|
||||
/* Number of logic channels.
|
||||
*/
|
||||
#define NUM_CHANNELS 34
|
||||
|
||||
/* Bit mask covering all logic channels.
|
||||
*/
|
||||
#define ALL_CHANNELS_MASK ((UINT64_C(1) << NUM_CHANNELS) - 1)
|
||||
|
||||
/* Unit size for the sigrok logic datafeed.
|
||||
*/
|
||||
#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
|
||||
|
||||
/* Size of the acquisition buffer in device memory units.
|
||||
*/
|
||||
#define MEMORY_DEPTH (256 * 1024) /* 256k x 36 bit */
|
||||
|
||||
/* Capture memory read start address.
|
||||
*/
|
||||
#define READ_START_ADDR 4
|
||||
|
||||
/* Number of device memory units (36 bit) to read at a time. Slices of 8
|
||||
* consecutive 36-bit words are mapped to 9 32-bit words each, so the chunk
|
||||
* length should be a multiple of 8 to ensure alignment to slice boundaries.
|
||||
*
|
||||
* Experimentation has shown that reading chunks larger than about 1024 bytes
|
||||
* is unreliable. The threshold seems to relate to the buffer size on the FX2
|
||||
* USB chip: The configured endpoint buffer size is 512, and with double or
|
||||
* triple buffering enabled a multiple of 512 bytes can be kept in fly.
|
||||
*
|
||||
* The vendor software limits reads to 120 words (15 slices, 540 bytes) at
|
||||
* a time. So far, it appears safe to increase this to 224 words (28 slices,
|
||||
* 1008 bytes), thus making the most of two 512 byte buffers.
|
||||
*/
|
||||
#define READ_CHUNK_LEN36 (28 * 8)
|
||||
|
||||
/* Bit mask for the RLE repeat-count-follows flag. */
|
||||
#define RLE_FLAG_LEN_FOLLOWS (UINT64_C(1) << 35)
|
||||
|
||||
/** LWLA1034 register addresses.
|
||||
*/
|
||||
enum reg_addr {
|
||||
REG_MEM_CTRL = 0x1074, /* capture buffer control */
|
||||
REG_MEM_FILL = 0x1078, /* capture buffer fill level */
|
||||
REG_MEM_START = 0x107C, /* capture buffer start address */
|
||||
|
||||
REG_CLK_BOOST = 0x1094, /* logic clock boost flag */
|
||||
|
||||
REG_LONG_STROBE = 0x10B0, /* long register read/write strobe */
|
||||
REG_LONG_ADDR = 0x10B4, /* long register address */
|
||||
REG_LONG_LOW = 0x10B8, /* long register low word */
|
||||
REG_LONG_HIGH = 0x10BC, /* long register high word */
|
||||
};
|
||||
|
||||
/** Flag bits for REG_MEM_CTRL.
|
||||
*/
|
||||
enum mem_ctrl_flag {
|
||||
MEM_CTRL_WRITE = 1 << 0, /* "wr1rd0" bit */
|
||||
MEM_CTRL_CLR_IDX = 1 << 1, /* "clr_idx" bit */
|
||||
};
|
||||
|
||||
/* LWLA1034 long register addresses.
|
||||
*/
|
||||
enum long_reg_addr {
|
||||
LREG_CHAN_MASK = 0, /* channel enable mask */
|
||||
LREG_DIV_COUNT = 1, /* clock divider max count */
|
||||
LREG_TRG_VALUE = 2, /* trigger level/slope bits */
|
||||
LREG_TRG_TYPE = 3, /* trigger type bits (level or edge) */
|
||||
LREG_TRG_ENABLE = 4, /* trigger enable mask */
|
||||
LREG_MEM_FILL = 5, /* capture memory fill level or limit */
|
||||
|
||||
LREG_DURATION = 7, /* elapsed time in ms (0.8 ms at 125 MS/s) */
|
||||
LREG_CHAN_STATE = 8, /* current logic levels at the inputs */
|
||||
LREG_STATUS = 9, /* capture status flags */
|
||||
|
||||
LREG_CAP_CTRL = 10, /* capture control bits */
|
||||
LREG_TEST_ID = 100, /* constant test ID */
|
||||
};
|
||||
|
||||
/** Flag bits for LREG_CAP_CTRL.
|
||||
*/
|
||||
enum cap_ctrl_flag {
|
||||
CAP_CTRL_TRG_EN = 1 << 0, /* "trg_en" bit */
|
||||
CAP_CTRL_CLR_TIMEBASE = 1 << 2, /* "do_clr_timebase" bit */
|
||||
CAP_CTRL_FLUSH_FIFO = 1 << 4, /* "flush_fifo" bit */
|
||||
CAP_CTRL_CLR_FIFOFULL = 1 << 5, /* "clr_fifo32_ful" bit */
|
||||
CAP_CTRL_CLR_COUNTER = 1 << 6, /* "clr_cntr0" bit */
|
||||
};
|
||||
|
||||
/* Available FPGA configurations.
|
||||
*/
|
||||
enum fpga_config {
|
||||
FPGA_OFF = 0, /* FPGA shutdown config */
|
||||
FPGA_INT, /* internal clock config */
|
||||
FPGA_EXTPOS, /* external clock, rising edge config */
|
||||
FPGA_EXTNEG, /* external clock, falling edge config */
|
||||
};
|
||||
|
||||
/* FPGA bitstream resource filenames.
|
||||
*/
|
||||
static const char bitstream_map[][32] = {
|
||||
[FPGA_OFF] = "sysclk-lwla1034-off.rbf",
|
||||
[FPGA_INT] = "sysclk-lwla1034-int.rbf",
|
||||
[FPGA_EXTPOS] = "sysclk-lwla1034-extpos.rbf",
|
||||
[FPGA_EXTNEG] = "sysclk-lwla1034-extneg.rbf",
|
||||
};
|
||||
|
||||
/* Read 64-bit long register.
|
||||
*/
|
||||
static int read_long_reg(const struct sr_usb_dev_inst *usb,
|
||||
uint32_t addr, uint64_t *value)
|
||||
{
|
||||
uint32_t low, high, dummy;
|
||||
int ret;
|
||||
|
||||
ret = lwla_write_reg(usb, REG_LONG_ADDR, addr);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = lwla_read_reg(usb, REG_LONG_STROBE, &dummy);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = lwla_read_reg(usb, REG_LONG_HIGH, &high);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
ret = lwla_read_reg(usb, REG_LONG_LOW, &low);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
*value = ((uint64_t)high << 32) | low;
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Queue access sequence for a long register write.
|
||||
*/
|
||||
static void queue_long_regval(struct acquisition_state *acq,
|
||||
uint32_t addr, uint64_t value)
|
||||
{
|
||||
lwla_queue_regval(acq, REG_LONG_ADDR, addr);
|
||||
lwla_queue_regval(acq, REG_LONG_LOW, value & 0xFFFFFFFF);
|
||||
lwla_queue_regval(acq, REG_LONG_HIGH, value >> 32);
|
||||
lwla_queue_regval(acq, REG_LONG_STROBE, 0);
|
||||
}
|
||||
|
||||
/* Helper to fill in the long register bulk write command.
|
||||
*/
|
||||
static inline void bulk_long_set(struct acquisition_state *acq,
|
||||
size_t idx, uint64_t value)
|
||||
{
|
||||
acq->xfer_buf_out[4 * idx + 3] = LWLA_WORD_0(value);
|
||||
acq->xfer_buf_out[4 * idx + 4] = LWLA_WORD_1(value);
|
||||
acq->xfer_buf_out[4 * idx + 5] = LWLA_WORD_2(value);
|
||||
acq->xfer_buf_out[4 * idx + 6] = LWLA_WORD_3(value);
|
||||
}
|
||||
|
||||
/* Helper for dissecting the response to a long register bulk read.
|
||||
*/
|
||||
static inline uint64_t bulk_long_get(const struct acquisition_state *acq,
|
||||
size_t idx)
|
||||
{
|
||||
uint64_t low, high;
|
||||
|
||||
low = LWLA_TO_UINT32(acq->xfer_buf_in[2 * idx]);
|
||||
high = LWLA_TO_UINT32(acq->xfer_buf_in[2 * idx + 1]);
|
||||
|
||||
return (high << 32) | low;
|
||||
}
|
||||
|
||||
/* Demangle and decompress incoming sample data from the transfer buffer.
|
||||
* The data chunk is taken from the acquisition state, and is expected to
|
||||
* contain a multiple of 8 packed 36-bit words.
|
||||
*/
|
||||
static void read_response(struct acquisition_state *acq)
|
||||
{
|
||||
uint64_t sample, high_nibbles, word;
|
||||
uint32_t *slice;
|
||||
uint8_t *out_p;
|
||||
size_t words_left;
|
||||
size_t max_samples, run_samples;
|
||||
size_t wi, ri, si;
|
||||
|
||||
/* Number of 36-bit words remaining in the transfer buffer. */
|
||||
words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
|
||||
- acq->mem_addr_done;
|
||||
|
||||
for (wi = 0;; wi++) {
|
||||
/* Calculate number of samples to write into packet. */
|
||||
max_samples = MIN(acq->samples_max - acq->samples_done,
|
||||
PACKET_SIZE / UNIT_SIZE - acq->out_index);
|
||||
run_samples = MIN(max_samples, acq->run_len);
|
||||
|
||||
/* Expand run-length samples into session packet. */
|
||||
sample = acq->sample;
|
||||
out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
|
||||
|
||||
for (ri = 0; ri < run_samples; ri++) {
|
||||
out_p[0] = sample & 0xFF;
|
||||
out_p[1] = (sample >> 8) & 0xFF;
|
||||
out_p[2] = (sample >> 16) & 0xFF;
|
||||
out_p[3] = (sample >> 24) & 0xFF;
|
||||
out_p[4] = (sample >> 32) & 0xFF;
|
||||
out_p += UNIT_SIZE;
|
||||
}
|
||||
acq->run_len -= run_samples;
|
||||
acq->out_index += run_samples;
|
||||
acq->samples_done += run_samples;
|
||||
|
||||
if (run_samples == max_samples)
|
||||
break; /* packet full or sample limit reached */
|
||||
if (wi >= words_left)
|
||||
break; /* done with current transfer */
|
||||
|
||||
/* Get the current slice of 8 packed 36-bit words. */
|
||||
slice = &acq->xfer_buf_in[(acq->in_index + wi) / 8 * 9];
|
||||
si = (acq->in_index + wi) % 8; /* word index within slice */
|
||||
|
||||
/* Extract the next 36-bit word. */
|
||||
high_nibbles = LWLA_TO_UINT32(slice[8]);
|
||||
word = LWLA_TO_UINT32(slice[si]);
|
||||
word |= (high_nibbles << (4 * si + 4)) & (UINT64_C(0xF) << 32);
|
||||
|
||||
if (acq->rle == RLE_STATE_DATA) {
|
||||
acq->sample = word & ALL_CHANNELS_MASK;
|
||||
acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
|
||||
acq->rle = ((word & RLE_FLAG_LEN_FOLLOWS) != 0)
|
||||
? RLE_STATE_LEN : RLE_STATE_DATA;
|
||||
} else {
|
||||
acq->run_len += word << 1;
|
||||
acq->rle = RLE_STATE_DATA;
|
||||
}
|
||||
}
|
||||
acq->in_index += wi;
|
||||
acq->mem_addr_done += wi;
|
||||
}
|
||||
|
||||
/* Select and transfer FPGA bitstream for the current configuration.
|
||||
*/
|
||||
static int apply_fpga_config(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct drv_context *drvc;
|
||||
int config;
|
||||
int ret;
|
||||
|
||||
devc = sdi->priv;
|
||||
drvc = sdi->driver->context;
|
||||
|
||||
if (sdi->status == SR_ST_INACTIVE)
|
||||
config = FPGA_OFF;
|
||||
else if (devc->cfg_clock_source == CLOCK_INTERNAL)
|
||||
config = FPGA_INT;
|
||||
else if (devc->cfg_clock_edge == EDGE_POSITIVE)
|
||||
config = FPGA_EXTPOS;
|
||||
else
|
||||
config = FPGA_EXTNEG;
|
||||
|
||||
if (config == devc->active_fpga_config)
|
||||
return SR_OK; /* no change */
|
||||
|
||||
ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
|
||||
bitstream_map[config]);
|
||||
devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Perform initialization self test.
|
||||
*/
|
||||
static int device_init_check(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
uint64_t value;
|
||||
int ret;
|
||||
|
||||
ret = read_long_reg(sdi->conn, LREG_TEST_ID, &value);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
/* Ignore the value returned by the first read. */
|
||||
ret = read_long_reg(sdi->conn, LREG_TEST_ID, &value);
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
if (value != UINT64_C(0x1234567887654321)) {
|
||||
sr_err("Received invalid test word 0x%016" PRIX64 ".", value);
|
||||
return SR_ERR;
|
||||
}
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/* Set up the device in preparation for an acquisition session.
|
||||
*/
|
||||
static int setup_acquisition(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
uint64_t divider_count;
|
||||
uint64_t trigger_mask;
|
||||
struct dev_context *devc;
|
||||
struct sr_usb_dev_inst *usb;
|
||||
struct acquisition_state *acq;
|
||||
int ret;
|
||||
|
||||
devc = sdi->priv;
|
||||
usb = sdi->conn;
|
||||
acq = devc->acquisition;
|
||||
|
||||
acq->reg_seq_pos = 0;
|
||||
acq->reg_seq_len = 0;
|
||||
|
||||
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_CLR_IDX);
|
||||
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_WRITE);
|
||||
|
||||
queue_long_regval(acq, LREG_CAP_CTRL,
|
||||
CAP_CTRL_CLR_TIMEBASE | CAP_CTRL_FLUSH_FIFO |
|
||||
CAP_CTRL_CLR_FIFOFULL | CAP_CTRL_CLR_COUNTER);
|
||||
|
||||
lwla_queue_regval(acq, REG_CLK_BOOST, acq->clock_boost);
|
||||
|
||||
ret = lwla_write_regs(usb, acq->reg_sequence, acq->reg_seq_len);
|
||||
acq->reg_seq_len = 0;
|
||||
|
||||
if (ret != SR_OK)
|
||||
return ret;
|
||||
|
||||
acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_LREGS);
|
||||
acq->xfer_buf_out[1] = LWLA_WORD(0);
|
||||
acq->xfer_buf_out[2] = LWLA_WORD(LREG_STATUS + 1);
|
||||
|
||||
bulk_long_set(acq, LREG_CHAN_MASK, devc->channel_mask);
|
||||
|
||||
if (devc->samplerate > 0 && devc->samplerate <= SR_MHZ(100)
|
||||
&& !acq->clock_boost)
|
||||
divider_count = SR_MHZ(100) / devc->samplerate - 1;
|
||||
else
|
||||
divider_count = 0;
|
||||
|
||||
bulk_long_set(acq, LREG_DIV_COUNT, divider_count);
|
||||
bulk_long_set(acq, LREG_TRG_VALUE, devc->trigger_values);
|
||||
bulk_long_set(acq, LREG_TRG_TYPE, devc->trigger_edge_mask);
|
||||
|
||||
trigger_mask = devc->trigger_mask;
|
||||
|
||||
/* Set bits to select external TRG input edge. */
|
||||
if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
|
||||
switch (devc->cfg_trigger_slope) {
|
||||
case EDGE_POSITIVE:
|
||||
trigger_mask |= UINT64_C(1) << 35;
|
||||
break;
|
||||
case EDGE_NEGATIVE:
|
||||
trigger_mask |= UINT64_C(1) << 34;
|
||||
break;
|
||||
}
|
||||
|
||||
bulk_long_set(acq, LREG_TRG_ENABLE, trigger_mask);
|
||||
|
||||
/* Set the capture memory full threshold. This is slightly less
|
||||
* than the actual maximum, most likely in order to compensate for
|
||||
* pipeline latency.
|
||||
*/
|
||||
bulk_long_set(acq, LREG_MEM_FILL, MEMORY_DEPTH - 16);
|
||||
|
||||
/* Fill remaining words with zeroes. */
|
||||
bulk_long_set(acq, 6, 0);
|
||||
bulk_long_set(acq, LREG_DURATION, 0);
|
||||
bulk_long_set(acq, LREG_CHAN_STATE, 0);
|
||||
bulk_long_set(acq, LREG_STATUS, 0);
|
||||
|
||||
return lwla_send_command(sdi->conn, acq->xfer_buf_out,
|
||||
3 + (LREG_STATUS + 1) * 4);
|
||||
}
|
||||
|
||||
static int prepare_request(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
size_t count;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
acq->xfer_out->length = 0;
|
||||
acq->reg_seq_pos = 0;
|
||||
acq->reg_seq_len = 0;
|
||||
|
||||
switch (devc->state) {
|
||||
case STATE_START_CAPTURE:
|
||||
queue_long_regval(acq, LREG_CAP_CTRL, CAP_CTRL_TRG_EN);
|
||||
break;
|
||||
case STATE_STOP_CAPTURE:
|
||||
queue_long_regval(acq, LREG_CAP_CTRL, 0);
|
||||
lwla_queue_regval(acq, REG_CLK_BOOST, 0);
|
||||
break;
|
||||
case STATE_READ_PREPARE:
|
||||
lwla_queue_regval(acq, REG_CLK_BOOST, 1);
|
||||
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_CLR_IDX);
|
||||
lwla_queue_regval(acq, REG_MEM_START, READ_START_ADDR);
|
||||
break;
|
||||
case STATE_READ_FINISH:
|
||||
lwla_queue_regval(acq, REG_CLK_BOOST, 0);
|
||||
break;
|
||||
case STATE_STATUS_REQUEST:
|
||||
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_LREGS);
|
||||
acq->xfer_buf_out[1] = LWLA_WORD(0);
|
||||
acq->xfer_buf_out[2] = LWLA_WORD(LREG_STATUS + 1);
|
||||
acq->xfer_out->length = 3 * sizeof(acq->xfer_buf_out[0]);
|
||||
break;
|
||||
case STATE_LENGTH_REQUEST:
|
||||
lwla_queue_regval(acq, REG_MEM_FILL, 0);
|
||||
break;
|
||||
case STATE_READ_REQUEST:
|
||||
/* Always read a multiple of 8 device words. */
|
||||
count = MIN(READ_CHUNK_LEN36, acq->mem_addr_stop
|
||||
- acq->mem_addr_next + 7) / 8 * 8;
|
||||
|
||||
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM36);
|
||||
acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
|
||||
acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
|
||||
acq->xfer_buf_out[3] = LWLA_WORD_0(count);
|
||||
acq->xfer_buf_out[4] = LWLA_WORD_1(count);
|
||||
acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
|
||||
|
||||
acq->mem_addr_next += count;
|
||||
break;
|
||||
default:
|
||||
sr_err("BUG: unhandled request state %d.", devc->state);
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
static int handle_response(const struct sr_dev_inst *sdi)
|
||||
{
|
||||
struct dev_context *devc;
|
||||
struct acquisition_state *acq;
|
||||
int expect_len;
|
||||
|
||||
devc = sdi->priv;
|
||||
acq = devc->acquisition;
|
||||
|
||||
switch (devc->state) {
|
||||
case STATE_STATUS_REQUEST:
|
||||
if (acq->xfer_in->actual_length != (LREG_STATUS + 1) * 8) {
|
||||
sr_err("Received size %d doesn't match expected size %d.",
|
||||
acq->xfer_in->actual_length, (LREG_STATUS + 1) * 8);
|
||||
return SR_ERR;
|
||||
}
|
||||
acq->mem_addr_fill = bulk_long_get(acq, LREG_MEM_FILL) & 0xFFFFFFFF;
|
||||
acq->duration_now = bulk_long_get(acq, LREG_DURATION);
|
||||
/* Shift left by one so the bit positions match the LWLA1016. */
|
||||
acq->status = (bulk_long_get(acq, LREG_STATUS) & 0x3F) << 1;
|
||||
/*
|
||||
* It seems that the 125 MS/s mode is implemented simply by
|
||||
* running the FPGA logic at a 25% higher clock rate. As a
|
||||
* result, the millisecond counter for the capture duration
|
||||
* is also off by 25%, and thus needs to be corrected here.
|
||||
*/
|
||||
if (acq->clock_boost)
|
||||
acq->duration_now = acq->duration_now * 4 / 5;
|
||||
break;
|
||||
case STATE_LENGTH_REQUEST:
|
||||
acq->mem_addr_next = READ_START_ADDR;
|
||||
acq->mem_addr_stop = acq->reg_sequence[0].val;
|
||||
break;
|
||||
case STATE_READ_REQUEST:
|
||||
/* Expect a multiple of 8 36-bit words packed into 9 32-bit
|
||||
* words. */
|
||||
expect_len = (acq->mem_addr_next - acq->mem_addr_done
|
||||
+ acq->in_index + 7) / 8 * 9 * sizeof(acq->xfer_buf_in[0]);
|
||||
|
||||
if (acq->xfer_in->actual_length != expect_len) {
|
||||
sr_err("Received size %d does not match expected size %d.",
|
||||
acq->xfer_in->actual_length, expect_len);
|
||||
devc->transfer_error = TRUE;
|
||||
return SR_ERR;
|
||||
}
|
||||
read_response(acq);
|
||||
break;
|
||||
default:
|
||||
sr_err("BUG: unhandled response state %d.", devc->state);
|
||||
return SR_ERR_BUG;
|
||||
}
|
||||
|
||||
return SR_OK;
|
||||
}
|
||||
|
||||
/** Model descriptor for the LWLA1034.
|
||||
*/
|
||||
SR_PRIV const struct model_info lwla1034_info = {
|
||||
.name = "LWLA1034",
|
||||
.num_channels = NUM_CHANNELS,
|
||||
|
||||
.num_devopts = 8,
|
||||
.devopts = {
|
||||
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
|
||||
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
|
||||
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
|
||||
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
|
||||
SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
|
||||
SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
|
||||
SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
|
||||
SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
|
||||
},
|
||||
.num_samplerates = 20,
|
||||
.samplerates = {
|
||||
SR_MHZ(125), SR_MHZ(100),
|
||||
SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
|
||||
SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
|
||||
SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
|
||||
SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
|
||||
SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
|
||||
SR_HZ(500), SR_HZ(200), SR_HZ(100),
|
||||
},
|
||||
|
||||
.apply_fpga_config = &apply_fpga_config,
|
||||
.device_init_check = &device_init_check,
|
||||
.setup_acquisition = &setup_acquisition,
|
||||
|
||||
.prepare_request = &prepare_request,
|
||||
.handle_response = &handle_response,
|
||||
};
|
File diff suppressed because it is too large
Load Diff
|
@ -25,242 +25,139 @@
|
|||
#include <stdint.h>
|
||||
#include <glib.h>
|
||||
#include <libsigrok/libsigrok.h>
|
||||
#include "libsigrok-internal.h"
|
||||
#include "lwla.h"
|
||||
#include <libsigrok-internal.h>
|
||||
|
||||
/* For now, only the LWLA1034 is supported.
|
||||
*/
|
||||
#define VENDOR_NAME "SysClk"
|
||||
#define MODEL_NAME "LWLA1034"
|
||||
|
||||
#define USB_VID_PID "2961.6689"
|
||||
#define USB_CONFIG 1
|
||||
#define USB_INTERFACE 0
|
||||
#define USB_TIMEOUT_MS 3000
|
||||
|
||||
#define NUM_CHANNELS 34
|
||||
|
||||
/* Bit mask covering all 34 channels.
|
||||
/* Maximum configurable sample count limit.
|
||||
* Due to compression, there is no meaningful hardware limit the driver
|
||||
* could report. So this value is less than 2^64-1 for no reason other
|
||||
* than to safeguard against integer overflows.
|
||||
*/
|
||||
#define ALL_CHANNELS_MASK (((uint64_t)1 << NUM_CHANNELS) - 1)
|
||||
#define MAX_LIMIT_SAMPLES (UINT64_C(1000) * 1000 * 1000 * 1000)
|
||||
|
||||
/** Unit and packet size for the sigrok logic datafeed.
|
||||
/* Maximum configurable acquisition time limit.
|
||||
* Due to compression, there is no hardware limit that would be meaningful
|
||||
* in practice. However, the LWLA1016 reports the elapsed time as a 32-bit
|
||||
* value, so keep this below 2^32.
|
||||
*/
|
||||
#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
|
||||
#define PACKET_LENGTH (10 * 1000) /* units */
|
||||
#define MAX_LIMIT_MSEC (1000 * 1000 * 1000)
|
||||
|
||||
/** Size of the acquisition buffer in device memory units.
|
||||
*/
|
||||
#define MEMORY_DEPTH (256 * 1024) /* 256k x 36 bit */
|
||||
struct acquisition_state;
|
||||
|
||||
/** Number of device memory units (36 bit) to read at a time. Slices of 8
|
||||
* consecutive 36-bit words are mapped to 9 32-bit words each, so the chunk
|
||||
* length should be a multiple of 8 to ensure alignment to slice boundaries.
|
||||
*
|
||||
* Experimentation has shown that reading chunks larger than about 1024 bytes
|
||||
* is unreliable. The threshold seems to relate to the buffer size on the FX2
|
||||
* USB chip: The configured endpoint buffer size is 512, and with double or
|
||||
* triple buffering enabled a multiple of 512 bytes can be kept in fly.
|
||||
*
|
||||
* The vendor software limits reads to 120 words (15 slices, 540 bytes) at
|
||||
* a time. So far, it appears safe to increase this to 224 words (28 slices,
|
||||
* 1008 bytes), thus making the most of two 512 byte buffers.
|
||||
/* USB vendor and product IDs.
|
||||
*/
|
||||
#define READ_CHUNK_LEN (28 * 8)
|
||||
|
||||
/** Calculate the required buffer size in 32-bit units for reading a given
|
||||
* number of device memory words. Rounded to a multiple of 8 device words.
|
||||
*/
|
||||
#define LWLA1034_MEMBUF_LEN(count) (((count) + 7) / 8 * 9)
|
||||
|
||||
/** Maximum number of 16-bit words sent at a time during acquisition.
|
||||
* Used for allocating the libusb transfer buffer.
|
||||
*/
|
||||
#define MAX_ACQ_SEND_WORDS 8 /* 5 for memory read request plus stuffing */
|
||||
|
||||
/** Maximum number of 32-bit words received at a time during acquisition.
|
||||
* Round to the next multiple of the endpoint buffer size to avoid nasty
|
||||
* transfer overflow conditions on hiccups.
|
||||
*/
|
||||
#define MAX_ACQ_RECV_LEN ((READ_CHUNK_LEN / 8 * 9 + 127) / 128 * 128)
|
||||
|
||||
/** Maximum length of a register write sequence.
|
||||
*/
|
||||
#define MAX_REG_WRITE_SEQ_LEN 5
|
||||
|
||||
/** Default configured samplerate.
|
||||
*/
|
||||
#define DEFAULT_SAMPLERATE SR_MHZ(125)
|
||||
|
||||
/** Maximum configurable sample count limit.
|
||||
*/
|
||||
#define MAX_LIMIT_SAMPLES (UINT64_C(1) << 48)
|
||||
|
||||
/** Maximum configurable capture duration in milliseconds.
|
||||
*/
|
||||
#define MAX_LIMIT_MSEC (UINT64_C(1) << 32)
|
||||
|
||||
/** LWLA1034 FPGA clock configurations.
|
||||
*/
|
||||
enum clock_config {
|
||||
CONF_CLOCK_NONE,
|
||||
CONF_CLOCK_INT,
|
||||
CONF_CLOCK_EXT_RISE,
|
||||
CONF_CLOCK_EXT_FALL,
|
||||
enum {
|
||||
USB_VID_SYSCLK = 0x2961,
|
||||
USB_PID_LWLA1016 = 0x6688,
|
||||
USB_PID_LWLA1034 = 0x6689,
|
||||
};
|
||||
|
||||
/** Available clock sources.
|
||||
/* USB device characteristics.
|
||||
*/
|
||||
enum {
|
||||
USB_CONFIG = 1,
|
||||
USB_INTERFACE = 0,
|
||||
USB_TIMEOUT_MS = 3000,
|
||||
};
|
||||
|
||||
/** LWLA1034 clock sources.
|
||||
*/
|
||||
enum clock_source {
|
||||
CLOCK_INTERNAL,
|
||||
CLOCK_INTERNAL = 0,
|
||||
CLOCK_EXT_CLK,
|
||||
};
|
||||
|
||||
/** Available trigger sources.
|
||||
/** LWLA1034 trigger sources.
|
||||
*/
|
||||
enum trigger_source {
|
||||
TRIGGER_CHANNELS = 0,
|
||||
TRIGGER_EXT_TRG,
|
||||
};
|
||||
|
||||
/** Available edge choices for the external clock and trigger inputs.
|
||||
/** Edge choices for the LWLA1034 external clock and trigger inputs.
|
||||
*/
|
||||
enum signal_edge {
|
||||
EDGE_POSITIVE = 0,
|
||||
EDGE_NEGATIVE,
|
||||
};
|
||||
|
||||
/** LWLA device states.
|
||||
/* Common indicator for no or unknown FPGA config. */
|
||||
enum {
|
||||
FPGA_NOCONF = -1,
|
||||
};
|
||||
|
||||
/** Acquisition protocol states.
|
||||
*/
|
||||
enum device_state {
|
||||
enum protocol_state {
|
||||
/* idle states */
|
||||
STATE_IDLE = 0,
|
||||
|
||||
STATE_START_CAPTURE,
|
||||
|
||||
STATE_STATUS_WAIT,
|
||||
STATE_STATUS_REQUEST,
|
||||
STATE_STATUS_RESPONSE,
|
||||
|
||||
/* device command states */
|
||||
STATE_START_CAPTURE,
|
||||
STATE_STOP_CAPTURE,
|
||||
|
||||
STATE_LENGTH_REQUEST,
|
||||
STATE_LENGTH_RESPONSE,
|
||||
|
||||
STATE_READ_PREPARE,
|
||||
STATE_READ_FINISH,
|
||||
/* command followed by response */
|
||||
STATE_EXPECT_RESPONSE = 1 << 3,
|
||||
STATE_STATUS_REQUEST = STATE_EXPECT_RESPONSE,
|
||||
STATE_LENGTH_REQUEST,
|
||||
STATE_READ_REQUEST,
|
||||
STATE_READ_RESPONSE,
|
||||
STATE_READ_END,
|
||||
};
|
||||
|
||||
/** LWLA run-length encoding states.
|
||||
*/
|
||||
enum rle_state {
|
||||
RLE_STATE_DATA,
|
||||
RLE_STATE_LEN
|
||||
};
|
||||
|
||||
/** LWLA sample acquisition and decompression state.
|
||||
*/
|
||||
struct acquisition_state {
|
||||
uint64_t sample;
|
||||
uint64_t run_len;
|
||||
|
||||
/** Maximum number of samples to process. */
|
||||
uint64_t samples_max;
|
||||
/** Number of samples sent to the session bus. */
|
||||
uint64_t samples_done;
|
||||
|
||||
/** Maximum duration of capture, in milliseconds. */
|
||||
uint64_t duration_max;
|
||||
/** Running capture duration since trigger event. */
|
||||
uint64_t duration_now;
|
||||
|
||||
/** Capture memory fill level. */
|
||||
size_t mem_addr_fill;
|
||||
|
||||
size_t mem_addr_done;
|
||||
size_t mem_addr_next;
|
||||
size_t mem_addr_stop;
|
||||
|
||||
size_t out_index;
|
||||
|
||||
struct libusb_transfer *xfer_in;
|
||||
struct libusb_transfer *xfer_out;
|
||||
|
||||
unsigned int capture_flags;
|
||||
|
||||
enum rle_state rle;
|
||||
|
||||
/** Whether to bypass the clock divider. */
|
||||
gboolean bypass_clockdiv;
|
||||
|
||||
/* Payload data buffers for incoming and outgoing transfers. */
|
||||
uint32_t xfer_buf_in[MAX_ACQ_RECV_LEN];
|
||||
uint16_t xfer_buf_out[MAX_ACQ_SEND_WORDS];
|
||||
|
||||
/* Payload buffer for sigrok logic packets. */
|
||||
uint8_t out_packet[PACKET_LENGTH * UNIT_SIZE];
|
||||
};
|
||||
|
||||
/** Private, per-device-instance driver context.
|
||||
*/
|
||||
struct dev_context {
|
||||
/** The samplerate selected by the user. */
|
||||
uint64_t samplerate;
|
||||
uint64_t samplerate; /* requested samplerate */
|
||||
|
||||
/** The maximum sampling duration, in milliseconds. */
|
||||
uint64_t limit_msec;
|
||||
uint64_t limit_msec; /* requested capture duration in ms */
|
||||
uint64_t limit_samples; /* requested capture length in samples */
|
||||
|
||||
/** The maximum number of samples to acquire. */
|
||||
uint64_t limit_samples;
|
||||
uint64_t channel_mask; /* bit mask of enabled channels */
|
||||
|
||||
/** Channels to use. */
|
||||
uint64_t channel_mask;
|
||||
uint64_t trigger_mask; /* trigger enable mask */
|
||||
uint64_t trigger_edge_mask; /* trigger type mask */
|
||||
uint64_t trigger_values; /* trigger level/slope bits */
|
||||
|
||||
uint64_t trigger_mask;
|
||||
uint64_t trigger_edge_mask;
|
||||
uint64_t trigger_values;
|
||||
const struct model_info *model; /* device model descriptor */
|
||||
struct acquisition_state *acquisition; /* running capture state */
|
||||
int active_fpga_config; /* FPGA configuration index */
|
||||
|
||||
struct acquisition_state *acquisition;
|
||||
enum protocol_state state; /* async protocol state */
|
||||
gboolean cancel_requested; /* stop after current transfer */
|
||||
gboolean transfer_error; /* error during device communication */
|
||||
|
||||
struct regval_pair reg_write_seq[MAX_REG_WRITE_SEQ_LEN];
|
||||
int reg_write_pos;
|
||||
int reg_write_len;
|
||||
gboolean cfg_rle; /* RLE compression setting */
|
||||
enum clock_source cfg_clock_source; /* clock source setting */
|
||||
enum signal_edge cfg_clock_edge; /* ext clock edge setting */
|
||||
enum trigger_source cfg_trigger_source; /* trigger source setting */
|
||||
enum signal_edge cfg_trigger_slope; /* ext trigger slope setting */
|
||||
|
||||
enum device_state state;
|
||||
|
||||
/** The currently active clock configuration of the device. */
|
||||
enum clock_config cur_clock_config;
|
||||
|
||||
/** Clock source configuration setting. */
|
||||
enum clock_source cfg_clock_source;
|
||||
/** Clock edge configuration setting. */
|
||||
enum signal_edge cfg_clock_edge;
|
||||
|
||||
/** Trigger source configuration setting. */
|
||||
enum trigger_source cfg_trigger_source;
|
||||
/** Trigger slope configuration setting. */
|
||||
enum signal_edge cfg_trigger_slope;
|
||||
|
||||
/** Whether a running acquisition should be canceled. */
|
||||
gboolean cancel_requested;
|
||||
|
||||
/* Indicates that stopping the acquisition is currently in progress. */
|
||||
gboolean stopping_in_progress;
|
||||
|
||||
/* Indicates whether a transfer failed. */
|
||||
gboolean transfer_error;
|
||||
};
|
||||
|
||||
SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void);
|
||||
SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq);
|
||||
/** LWLA model descriptor.
|
||||
*/
|
||||
struct model_info {
|
||||
char name[12];
|
||||
int num_channels;
|
||||
|
||||
unsigned int num_devopts;
|
||||
uint32_t devopts[8];
|
||||
|
||||
unsigned int num_samplerates;
|
||||
uint64_t samplerates[20];
|
||||
|
||||
int (*apply_fpga_config)(const struct sr_dev_inst *sdi);
|
||||
int (*device_init_check)(const struct sr_dev_inst *sdi);
|
||||
int (*setup_acquisition)(const struct sr_dev_inst *sdi);
|
||||
|
||||
int (*prepare_request)(const struct sr_dev_inst *sdi);
|
||||
int (*handle_response)(const struct sr_dev_inst *sdi);
|
||||
};
|
||||
|
||||
SR_PRIV const struct model_info lwla1016_info;
|
||||
SR_PRIV const struct model_info lwla1034_info;
|
||||
|
||||
SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi);
|
||||
SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi);
|
||||
SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi);
|
||||
SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi);
|
||||
SR_PRIV int lwla_abort_acquisition(const struct sr_dev_inst *sdi);
|
||||
|
||||
SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data);
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue