sysclk-lwla: Implement support for LWLA1016

Refactor the sysclk-lwla driver to separate the generic logic from
the model-specific implementation. Based on this, implement support
for the SysClk LWLA1016 device.
This commit is contained in:
Daniel Elstner 2015-11-22 17:45:54 +01:00 committed by Uwe Hermann
parent ce19d4c615
commit be64f90b53
8 changed files with 1771 additions and 1164 deletions

View File

@ -406,6 +406,8 @@ if HW_SYSCLK_LWLA
libsigrok_la_SOURCES += \
src/hardware/sysclk-lwla/lwla.h \
src/hardware/sysclk-lwla/lwla.c \
src/hardware/sysclk-lwla/lwla1016.c \
src/hardware/sysclk-lwla/lwla1034.c \
src/hardware/sysclk-lwla/protocol.h \
src/hardware/sysclk-lwla/protocol.c \
src/hardware/sysclk-lwla/api.c

View File

@ -26,22 +26,20 @@
#include "libsigrok-internal.h"
#include "protocol.h"
/* Supported device scan options.
*/
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
static const uint32_t devopts[] = {
/* Driver capabilities.
*/
static const uint32_t drvopts[] = {
SR_CONF_LOGIC_ANALYZER,
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
};
/* Supported trigger match conditions.
*/
static const int32_t trigger_matches[] = {
SR_TRIGGER_ZERO,
SR_TRIGGER_ONE,
@ -49,56 +47,53 @@ static const int32_t trigger_matches[] = {
SR_TRIGGER_FALLING,
};
/* The hardware supports more samplerates than these, but these are the
* options hardcoded into the vendor's Windows GUI.
/* Names assigned to available trigger sources.
*/
static const uint64_t samplerates[] = {
SR_MHZ(125), SR_MHZ(100),
SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
SR_HZ(500), SR_HZ(200), SR_HZ(100),
static const char *const trigger_source_names[] = {
[TRIGGER_CHANNELS] = "CH",
[TRIGGER_EXT_TRG] = "TRG",
};
/* Names assigned to available trigger sources. Indices must match
* trigger_source enum values.
/* Names assigned to available edge slope choices.
*/
static const char *const trigger_source_names[] = { "CH", "TRG" };
static const char *const signal_edge_names[] = {
[EDGE_POSITIVE] = "r",
[EDGE_NEGATIVE] = "f",
};
/* Names assigned to available trigger slope choices. Indices must
* match the signal_edge enum values.
/* Initialize the SysClk LWLA driver.
*/
static const char *const signal_edge_names[] = { "r", "f" };
static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
{
return std_init(sr_ctx, di, LOG_PREFIX);
}
static struct sr_dev_inst *dev_inst_new(void)
/* Create a new sigrok device instance for the indicated LWLA model.
*/
static struct sr_dev_inst *dev_inst_new(const struct model_info *model)
{
struct sr_dev_inst *sdi;
struct dev_context *devc;
int i;
char name[8];
/* Allocate memory for our private driver context. */
/* Initialize private device context. */
devc = g_malloc0(sizeof(struct dev_context));
devc->model = model;
devc->active_fpga_config = FPGA_NOCONF;
devc->cfg_rle = TRUE;
devc->samplerate = model->samplerates[0];
devc->channel_mask = (UINT64_C(1) << model->num_channels) - 1;
/* Register the device with libsigrok. */
/* Create sigrok device instance. */
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INACTIVE;
sdi->vendor = g_strdup(VENDOR_NAME);
sdi->model = g_strdup(MODEL_NAME);
/* Enable all channels to match the default channel configuration. */
devc->channel_mask = ALL_CHANNELS_MASK;
devc->samplerate = DEFAULT_SAMPLERATE;
sdi->model = g_strdup(model->name);
sdi->priv = devc;
for (i = 0; i < NUM_CHANNELS; ++i) {
/* Generate list of logic channels. */
for (i = 0; i < model->num_channels; i++) {
/* The LWLA series simply number channels from CH1 to CHxx. */
g_snprintf(name, sizeof(name), "CH%d", i + 1);
sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, name);
@ -107,17 +102,76 @@ static struct sr_dev_inst *dev_inst_new(void)
return sdi;
}
/* Create a new device instance for a libusb device if it is a SysClk LWLA
* device and also matches the connection specification.
*/
static struct sr_dev_inst *dev_inst_new_matching(GSList *conn_matches,
libusb_device *dev)
{
GSList *node;
struct sr_usb_dev_inst *usb;
const struct model_info *model;
struct sr_dev_inst *sdi;
struct libusb_device_descriptor des;
int bus, address;
unsigned int vid, pid;
int ret;
bus = libusb_get_bus_number(dev);
address = libusb_get_device_address(dev);
for (node = conn_matches; node != NULL; node = node->next) {
usb = node->data;
if (usb && usb->bus == bus && usb->address == address)
break; /* found */
}
if (conn_matches && !node)
return NULL; /* no match */
ret = libusb_get_device_descriptor(dev, &des);
if (ret != 0) {
sr_err("Failed to get USB device descriptor: %s.",
libusb_error_name(ret));
return NULL;
}
vid = des.idVendor;
pid = des.idProduct;
/* Create sigrok device instance. */
if (vid == USB_VID_SYSCLK && pid == USB_PID_LWLA1016) {
model = &lwla1016_info;
} else if (vid == USB_VID_SYSCLK && pid == USB_PID_LWLA1034) {
model = &lwla1034_info;
} else {
if (conn_matches)
sr_warn("USB device %d.%d (%04x:%04x) is not a"
" SysClk LWLA.", bus, address, vid, pid);
return NULL;
}
sdi = dev_inst_new(model);
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(bus, address, NULL);
return sdi;
}
/* Scan for SysClk LWLA devices and create a device instance for each one.
*/
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
GSList *usb_devices, *devices, *node;
GSList *conn_devices, *devices, *node;
struct drv_context *drvc;
struct sr_dev_inst *sdi;
struct sr_usb_dev_inst *usb;
struct sr_config *src;
const char *conn;
libusb_device **devlist;
ssize_t num_devs, i;
drvc = di->context;
conn = USB_VID_PID;
conn = NULL;
conn_devices = NULL;
devices = NULL;
for (node = options; node != NULL; node = node->next) {
src = node->data;
@ -126,32 +180,41 @@ static GSList *scan(struct sr_dev_driver *di, GSList *options)
break;
}
}
usb_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
devices = NULL;
if (conn) {
/* Find devices matching the connection specification. */
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
}
for (node = usb_devices; node != NULL; node = node->next) {
usb = node->data;
/* List all libusb devices. */
num_devs = libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
if (num_devs < 0) {
sr_err("Failed to list USB devices: %s.",
libusb_error_name(num_devs));
g_slist_free_full(conn_devices,
(GDestroyNotify)&sr_usb_dev_inst_free);
return NULL;
}
/* Create sigrok device instance. */
sdi = dev_inst_new();
if (!sdi) {
sr_usb_dev_inst_free(usb);
continue;
}
sdi->driver = di;
sdi->inst_type = SR_INST_USB;
sdi->conn = usb;
/* Scan the USB device list for matching LWLA devices. */
for (i = 0; i < num_devs; i++) {
sdi = dev_inst_new_matching(conn_devices, devlist[i]);
if (!sdi)
continue; /* no match */
/* Register device instance with driver. */
sdi->driver = di;
drvc->instances = g_slist_append(drvc->instances, sdi);
devices = g_slist_append(devices, sdi);
}
g_slist_free(usb_devices);
libusb_free_device_list(devlist, 1);
g_slist_free_full(conn_devices, (GDestroyNotify)&sr_usb_dev_inst_free);
return devices;
}
/* Return the list of devices found during scan.
*/
static GSList *dev_list(const struct sr_dev_driver *di)
{
struct drv_context *drvc;
@ -161,30 +224,42 @@ static GSList *dev_list(const struct sr_dev_driver *di)
return drvc->instances;
}
/* Destroy the private device context.
*/
static void clear_dev_context(void *priv)
{
struct dev_context *devc;
devc = priv;
if (devc->acquisition) {
sr_err("Cannot clear device context during acquisition!");
return; /* leak and pray */
}
sr_dbg("Device context cleared.");
lwla_free_acquisition_state(devc->acquisition);
g_free(devc);
}
/* Destroy all device instances.
*/
static int dev_clear(const struct sr_dev_driver *di)
{
return std_dev_clear(di, &clear_dev_context);
}
/* Open and initialize device.
*/
static int dev_open(struct sr_dev_inst *sdi)
{
struct drv_context *drvc;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
int ret;
drvc = sdi->driver->context;
devc = sdi->priv;
usb = sdi->conn;
if (!drvc) {
sr_err("Driver was not initialized.");
@ -194,7 +269,6 @@ static int dev_open(struct sr_dev_inst *sdi)
sr_err("Device already open.");
return SR_ERR;
}
usb = sdi->conn;
ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
if (ret != SR_OK)
@ -219,42 +293,58 @@ static int dev_open(struct sr_dev_inst *sdi)
sr_usb_close(usb);
return SR_ERR;
}
sdi->status = SR_ST_ACTIVE;
ret = lwla_init_device(sdi);
devc->active_fpga_config = FPGA_NOCONF;
devc->state = STATE_IDLE;
ret = (*devc->model->apply_fpga_config)(sdi);
if (ret == SR_OK)
ret = (*devc->model->device_init_check)(sdi);
if (ret != SR_OK) {
sr_usb_close(usb);
sdi->status = SR_ST_INACTIVE;
sr_usb_close(usb);
}
return ret;
}
/* Shutdown and close device.
*/
static int dev_close(struct sr_dev_inst *sdi)
{
struct sr_usb_dev_inst *usb;
struct drv_context *drvc;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
int ret;
if (!sdi->driver->context) {
drvc = sdi->driver->context;
devc = sdi->priv;
usb = sdi->conn;
if (!drvc) {
sr_err("Driver was not initialized.");
return SR_ERR;
}
usb = sdi->conn;
devc = sdi->priv;
if (sdi->status == SR_ST_INACTIVE)
if (sdi->status == SR_ST_INACTIVE) {
sr_dbg("Device already closed.");
return SR_OK;
if (devc && devc->acquisition) {
sr_err("Attempt to close device during acquisition.");
return SR_ERR;
}
if (devc->acquisition) {
sr_err("Cannot close device during acquisition!");
/* Request stop, leak handle, and prepare for the worst. */
devc->cancel_requested = TRUE;
return SR_ERR_BUG;
}
sdi->status = SR_ST_INACTIVE;
/* Trigger download of the shutdown bitstream. */
ret = lwla_set_clock_config(sdi);
/* Download of the shutdown bitstream, if any. */
ret = (*devc->model->apply_fpga_config)(sdi);
if (ret != SR_OK)
sr_err("Unable to shut down device.");
sr_warn("Unable to shut down device.");
libusb_release_interface(usb->devhdl, USB_INTERFACE);
sr_usb_close(usb);
@ -262,11 +352,22 @@ static int dev_close(struct sr_dev_inst *sdi)
return ret;
}
static int cleanup(const struct sr_dev_driver *di)
/* Check whether the device options contain a specific key.
* Also match against get/set/list bits if specified.
*/
static int has_devopt(const struct model_info *model, uint32_t key)
{
return dev_clear(di);
unsigned int i;
for (i = 0; i < model->num_devopts; i++) {
if ((model->devopts[i] & (SR_CONF_MASK | key)) == key)
return TRUE;
}
return FALSE;
}
/* Read device configuration setting.
*/
static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
@ -280,6 +381,9 @@ static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *s
devc = sdi->priv;
if (!has_devopt(devc->model, key | SR_CONF_GET))
return SR_ERR_NA;
switch (key) {
case SR_CONF_SAMPLERATE:
*data = g_variant_new_uint64(devc->samplerate);
@ -290,6 +394,9 @@ static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *s
case SR_CONF_LIMIT_SAMPLES:
*data = g_variant_new_uint64(devc->limit_samples);
break;
case SR_CONF_RLE:
*data = g_variant_new_boolean(devc->cfg_rle);
break;
case SR_CONF_EXTERNAL_CLOCK:
*data = g_variant_new_boolean(devc->cfg_clock_source
== CLOCK_EXT_CLK);
@ -313,7 +420,8 @@ static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *s
*data = g_variant_new_string(signal_edge_names[idx]);
break;
default:
return SR_ERR_NA;
/* Must not happen for a key listed in devopts. */
return SR_ERR_BUG;
}
return SR_OK;
@ -339,6 +447,8 @@ static int lookup_index(GVariant *value, const char *const *table, int len)
return -1;
}
/* Write device configuration setting.
*/
static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
@ -348,15 +458,19 @@ static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sd
(void)cg;
if (!sdi)
return SR_ERR_ARG;
devc = sdi->priv;
if (!devc)
return SR_ERR_DEV_CLOSED;
if (!has_devopt(devc->model, key | SR_CONF_SET))
return SR_ERR_NA;
switch (key) {
case SR_CONF_SAMPLERATE:
value = g_variant_get_uint64(data);
if (value < samplerates[ARRAY_SIZE(samplerates) - 1]
|| value > samplerates[0])
if (value < devc->model->samplerates[devc->model->num_samplerates - 1]
|| value > devc->model->samplerates[0])
return SR_ERR_SAMPLERATE;
devc->samplerate = value;
break;
@ -372,6 +486,9 @@ static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sd
return SR_ERR_ARG;
devc->limit_samples = value;
break;
case SR_CONF_RLE:
devc->cfg_rle = g_variant_get_boolean(data);
break;
case SR_CONF_EXTERNAL_CLOCK:
devc->cfg_clock_source = (g_variant_get_boolean(data))
? CLOCK_EXT_CLK : CLOCK_INTERNAL;
@ -398,30 +515,35 @@ static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sd
devc->cfg_trigger_slope = idx;
break;
default:
return SR_ERR_NA;
/* Must not happen for a key listed in devopts. */
return SR_ERR_BUG;
}
return SR_OK;
}
/* Apply channel configuration change.
*/
static int config_channel_set(const struct sr_dev_inst *sdi,
struct sr_channel *ch, unsigned int changes)
struct sr_channel *ch, unsigned int changes)
{
uint64_t channel_bit;
struct dev_context *devc;
devc = sdi->priv;
if (!devc)
return SR_ERR_DEV_CLOSED;
if (!sdi)
return SR_ERR_ARG;
if (ch->index < 0 || ch->index >= NUM_CHANNELS) {
devc = sdi->priv;
if (ch->index < 0 || ch->index >= devc->model->num_channels) {
sr_err("Channel index %d out of range.", ch->index);
return SR_ERR_BUG;
}
channel_bit = (uint64_t)1 << ch->index;
if ((changes & SR_CHANNEL_SET_ENABLED) != 0) {
/* Enable or disable input channel for this channel. */
channel_bit = UINT64_C(1) << ch->index;
/* Enable or disable logic input for this channel. */
if (ch->enabled)
devc->channel_mask |= channel_bit;
else
@ -431,6 +553,8 @@ static int config_channel_set(const struct sr_dev_inst *sdi,
return SR_OK;
}
/* Derive trigger masks from the session's trigger configuration.
*/
static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
{
uint64_t trigger_mask;
@ -442,6 +566,7 @@ static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
struct sr_trigger_stage *stage;
struct sr_trigger_match *match;
const GSList *node;
int idx;
devc = sdi->priv;
@ -465,7 +590,13 @@ static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
if (!match->channel->enabled)
continue; /* ignore disabled channel */
channel_bit = (uint64_t)1 << match->channel->index;
idx = match->channel->index;
if (idx < 0 || idx >= devc->model->num_channels) {
sr_err("Channel index %d out of range.", idx);
return SR_ERR_BUG; /* should not happen */
}
channel_bit = UINT64_C(1) << idx;
trigger_mask |= channel_bit;
switch (match->match) {
@ -481,8 +612,7 @@ static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
trigger_edge_mask |= channel_bit;
break;
default:
sr_err("Unsupported trigger match for CH%d.",
match->channel->index + 1);
sr_err("Unsupported trigger match for CH%d.", idx + 1);
return SR_ERR_ARG;
}
}
@ -493,56 +623,94 @@ static int prepare_trigger_masks(const struct sr_dev_inst *sdi)
return SR_OK;
}
/* Apply current device configuration to the hardware.
*/
static int config_commit(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
int rc;
int ret;
devc = sdi->priv;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
if (devc->acquisition) {
sr_err("Acquisition still in progress?");
return SR_ERR;
}
rc = prepare_trigger_masks(sdi);
if (rc != SR_OK)
return rc;
return lwla_set_clock_config(sdi);
ret = prepare_trigger_masks(sdi);
if (ret != SR_OK)
return ret;
ret = (*devc->model->apply_fpga_config)(sdi);
if (ret != SR_OK) {
sr_err("Failed to apply FPGA configuration.");
return ret;
}
return SR_OK;
}
static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
/* List available choices for a configuration setting.
*/
static int config_list(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi,
const struct sr_channel_group *cg)
{
struct dev_context *devc;
GVariant *gvar;
GVariantBuilder gvb;
(void)sdi;
(void)cg;
if (key == SR_CONF_SCAN_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts),
sizeof(scanopts[0]));
return SR_OK;
}
if (!sdi) {
if (key != SR_CONF_DEVICE_OPTIONS)
return SR_ERR_ARG;
/* List driver capabilities. */
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts, ARRAY_SIZE(drvopts),
sizeof(drvopts[0]));
return SR_OK;
}
devc = sdi->priv;
/* List the model's device options. */
if (key == SR_CONF_DEVICE_OPTIONS) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devc->model->devopts,
devc->model->num_devopts,
sizeof(devc->model->devopts[0]));
return SR_OK;
}
if (!has_devopt(devc->model, key | SR_CONF_LIST))
return SR_ERR_NA;
switch (key) {
case SR_CONF_SCAN_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
break;
case SR_CONF_DEVICE_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
samplerates, ARRAY_SIZE(samplerates),
sizeof(uint64_t));
g_variant_builder_init(&gvb, G_VARIANT_TYPE_VARDICT);
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
devc->model->samplerates,
devc->model->num_samplerates,
sizeof(devc->model->samplerates[0]));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
case SR_CONF_TRIGGER_MATCH:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
trigger_matches, ARRAY_SIZE(trigger_matches),
sizeof(int32_t));
trigger_matches,
ARRAY_SIZE(trigger_matches),
sizeof(trigger_matches[0]));
break;
case SR_CONF_TRIGGER_SOURCE:
*data = g_variant_new_strv(trigger_source_names,
@ -554,68 +722,31 @@ static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *
ARRAY_SIZE(signal_edge_names));
break;
default:
return SR_ERR_NA;
/* Must not happen for a key listed in devopts. */
return SR_ERR_BUG;
}
return SR_OK;
}
/* Set up the device hardware to begin capturing samples as soon as the
* configured trigger conditions are met, or immediately if no triggers
* are configured.
*/
static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
{
struct drv_context *drvc;
struct dev_context *devc;
struct acquisition_state *acq;
int ret;
(void)cb_data;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
drvc = sdi->driver->context;
if (devc->acquisition) {
sr_err("Acquisition still in progress?");
return SR_ERR;
}
acq = lwla_alloc_acquisition_state();
if (!acq)
return SR_ERR_MALLOC;
devc->cancel_requested = FALSE;
devc->stopping_in_progress = FALSE;
devc->transfer_error = FALSE;
sr_info("Starting acquisition.");
devc->acquisition = acq;
ret = lwla_setup_acquisition(sdi);
if (ret != SR_OK) {
sr_err("Failed to set up acquisition.");
devc->acquisition = NULL;
lwla_free_acquisition_state(acq);
return ret;
}
ret = lwla_start_acquisition(sdi);
if (ret != SR_OK) {
sr_err("Failed to start acquisition.");
devc->acquisition = NULL;
lwla_free_acquisition_state(acq);
return ret;
}
usb_source_add(sdi->session, drvc->sr_ctx, 100, &lwla_receive_data,
(struct sr_dev_inst *)sdi);
sr_info("Waiting for data.");
/* Send header packet to the session bus. */
std_session_send_df_header(sdi, LOG_PREFIX);
return SR_OK;
return lwla_start_acquisition(sdi);
}
/* Request that a running capture operation be stopped.
*/
static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
{
struct dev_context *devc;
@ -626,19 +757,21 @@ static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
if (devc->acquisition && !devc->cancel_requested) {
if (devc->state != STATE_IDLE && !devc->cancel_requested) {
devc->cancel_requested = TRUE;
sr_dbg("Stopping acquisition.");
}
return SR_OK;
}
/* SysClk LWLA driver descriptor.
*/
SR_PRIV struct sr_dev_driver sysclk_lwla_driver_info = {
.name = "sysclk-lwla",
.longname = "SysClk LWLA series",
.api_version = 1,
.init = init,
.cleanup = cleanup,
.cleanup = dev_clear,
.scan = scan,
.dev_list = dev_list,
.dev_clear = dev_clear,

View File

@ -95,7 +95,7 @@ SR_PRIV int lwla_send_bitstream(struct sr_context *ctx,
sr_info("Downloading FPGA bitstream '%s'.", name);
/* Transfer the entire bitstream in one URB. */
ret = libusb_bulk_transfer(usb->devhdl, EP_BITSTREAM,
ret = libusb_bulk_transfer(usb->devhdl, EP_CONFIG,
stream, length, &xfer_len, USB_TIMEOUT_MS);
g_free(stream);
@ -191,33 +191,6 @@ SR_PRIV int lwla_read_reg(const struct sr_usb_dev_inst *usb,
return ret;
}
SR_PRIV int lwla_read_long_reg(const struct sr_usb_dev_inst *usb,
uint32_t addr, uint64_t *value)
{
uint32_t low, high, dummy;
int ret;
ret = lwla_write_reg(usb, REG_LONG_ADDR, addr);
if (ret != SR_OK)
return ret;
ret = lwla_read_reg(usb, REG_LONG_STROBE, &dummy);
if (ret != SR_OK)
return ret;
ret = lwla_read_reg(usb, REG_LONG_HIGH, &high);
if (ret != SR_OK)
return ret;
ret = lwla_read_reg(usb, REG_LONG_LOW, &low);
if (ret != SR_OK)
return ret;
*value = ((uint64_t)high << 32) | low;
return SR_OK;
}
SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
uint16_t reg, uint32_t value)
{
@ -232,7 +205,7 @@ SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
}
SR_PRIV int lwla_write_regs(const struct sr_usb_dev_inst *usb,
const struct regval_pair *regvals, int count)
const struct regval *regvals, int count)
{
int i;
int ret;

View File

@ -47,84 +47,112 @@ struct sr_usb_dev_inst;
#define LWLA_WORD_2(val) GUINT16_TO_LE(((val) >> 48) & 0xFFFF)
#define LWLA_WORD_3(val) GUINT16_TO_LE(((val) >> 32) & 0xFFFF)
/* Maximum number of 16-bit words sent at a time during acquisition.
* Used for allocating the libusb transfer buffer.
*/
#define MAX_ACQ_SEND_LEN16 64 /* 43 for capture setup plus stuffing */
/* Maximum number of 32-bit words received at a time during acquisition.
* This is a multiple of the endpoint buffer size to avoid transfer overflow
* conditions.
*/
#define MAX_ACQ_RECV_LEN32 (2 * 512 / 4)
/* Maximum length of a register read/write sequence.
*/
#define MAX_REG_SEQ_LEN 16
/* Logic datafeed packet size in bytes.
* This is a multiple of both 4 and 5 to match any model's unit size
* and memory granularity.
*/
#define PACKET_SIZE (5000 * 4 * 5)
/** USB device end points.
*/
enum {
EP_COMMAND = 2,
EP_BITSTREAM = 4,
EP_REPLY = 6 | LIBUSB_ENDPOINT_IN
enum usb_endpoint {
EP_COMMAND = 2,
EP_CONFIG = 4,
EP_REPLY = 6 | LIBUSB_ENDPOINT_IN
};
/** LWLA protocol command ID codes.
*/
enum {
enum command_id {
CMD_READ_REG = 1,
CMD_WRITE_REG = 2,
CMD_READ_MEM = 6,
CMD_CAP_SETUP = 7,
CMD_CAP_STATUS = 8,
CMD_READ_MEM32 = 3,
CMD_READ_MEM36 = 6,
CMD_WRITE_LREGS = 7,
CMD_READ_LREGS = 8,
};
/** LWLA capture state flags.
* The bit positions are the same as in the LWLA1016 control register.
*/
enum {
STATUS_CAPTURING = 1 << 1,
STATUS_TRIGGERED = 1 << 4,
STATUS_MEM_AVAIL = 1 << 5,
STATUS_FLAG_MASK = 0x3F
STATUS_CAPTURING = 1 << 2,
STATUS_TRIGGERED = 1 << 5,
STATUS_MEM_AVAIL = 1 << 6,
};
/** LWLA1034 register addresses.
/** LWLA1034 run-length encoding states.
*/
enum {
REG_MEM_CTRL = 0x1074, /* capture buffer control */
REG_MEM_FILL = 0x1078, /* capture buffer fill level */
REG_MEM_START = 0x107C, /* capture buffer start address */
REG_DIV_BYPASS = 0x1094, /* bypass clock divider flag */
REG_LONG_STROBE = 0x10B0, /* long register read/write strobe */
REG_LONG_ADDR = 0x10B4, /* long register address */
REG_LONG_LOW = 0x10B8, /* long register low word */
REG_LONG_HIGH = 0x10BC, /* long register high word */
REG_FREQ_CH1 = 0x10C0, /* channel 1 live frequency */
REG_FREQ_CH2 = 0x10C4, /* channel 2 live frequency */
REG_FREQ_CH3 = 0x10C8, /* channel 3 live frequency */
REG_FREQ_CH4 = 0x10CC, /* channel 4 live frequency */
enum rle_state {
RLE_STATE_DATA,
RLE_STATE_LEN
};
/** Flag bits for REG_MEM_CTRL.
/** Register address/value pair.
*/
enum {
MEM_CTRL_WRITE = 1 << 0, /* "wr1rd0" bit */
MEM_CTRL_CLR_IDX = 1 << 1, /* "clr_idx" bit */
};
/* LWLA1034 long register addresses.
*/
enum {
LREG_CAP_CTRL = 10, /* capture control bits */
LREG_TEST_ID = 100, /* constant test ID */
};
/** Flag bits for LREG_CAP_CTRL.
*/
enum {
CAP_CTRL_TRG_EN = 1 << 0, /* "trg_en" bit */
CAP_CTRL_CLR_TIMEBASE = 1 << 2, /* "do_clr_timebase" bit */
CAP_CTRL_FLUSH_FIFO = 1 << 4, /* "flush_fifo" bit */
CAP_CTRL_CLR_FIFOFULL = 1 << 5, /* "clr_fifo32_ful" bit */
CAP_CTRL_CLR_COUNTER = 1 << 6, /* "clr_cntr0" bit */
};
/** Register/value pair.
*/
struct regval_pair {
struct regval {
unsigned int reg;
unsigned int val;
uint32_t val;
};
/** LWLA sample acquisition and decompression state.
*/
struct acquisition_state {
uint64_t samples_max; /* maximum number of samples to process */
uint64_t samples_done; /* number of samples sent to the session bus */
uint64_t duration_max; /* maximum capture duration in milliseconds */
uint64_t duration_now; /* running capture duration since trigger */
uint64_t sample; /* last sample read from capture memory */
uint64_t run_len; /* remaining run length of current sample */
struct libusb_transfer *xfer_in; /* USB in transfer record */
struct libusb_transfer *xfer_out; /* USB out transfer record */
size_t mem_addr_fill; /* capture memory fill level */
size_t mem_addr_done; /* position up to which data was received */
size_t mem_addr_next; /* start address for next async read */
size_t mem_addr_stop; /* end of memory range to be read */
size_t in_index; /* position in read transfer buffer */
size_t out_index; /* position in logic packet buffer */
enum rle_state rle; /* RLE decoding state */
gboolean rle_enabled; /* capturing in timing-state mode */
gboolean clock_boost; /* switch to faster clock during capture */
unsigned int status; /* last received device status */
unsigned int reg_seq_pos; /* index of next register/value pair */
unsigned int reg_seq_len; /* length of register/value sequence */
struct regval reg_sequence[MAX_REG_SEQ_LEN]; /* register buffer */
uint32_t xfer_buf_in[MAX_ACQ_RECV_LEN32]; /* USB in buffer */
uint16_t xfer_buf_out[MAX_ACQ_SEND_LEN16]; /* USB out buffer */
uint8_t out_packet[PACKET_SIZE]; /* logic payload */
};
static inline void lwla_queue_regval(struct acquisition_state *acq,
unsigned int reg, uint32_t value)
{
acq->reg_sequence[acq->reg_seq_len].reg = reg;
acq->reg_sequence[acq->reg_seq_len].val = value;
acq->reg_seq_len++;
}
SR_PRIV int lwla_send_bitstream(struct sr_context *ctx,
const struct sr_usb_dev_inst *usb,
const char *name);
@ -138,13 +166,10 @@ SR_PRIV int lwla_receive_reply(const struct sr_usb_dev_inst *usb,
SR_PRIV int lwla_read_reg(const struct sr_usb_dev_inst *usb,
uint16_t reg, uint32_t *value);
SR_PRIV int lwla_read_long_reg(const struct sr_usb_dev_inst *usb,
uint32_t addr, uint64_t *value);
SR_PRIV int lwla_write_reg(const struct sr_usb_dev_inst *usb,
uint16_t reg, uint32_t value);
SR_PRIV int lwla_write_regs(const struct sr_usb_dev_inst *usb,
const struct regval_pair *regvals, int count);
const struct regval *regvals, int count);
#endif

View File

@ -0,0 +1,415 @@
/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "lwla.h"
#include "protocol.h"
/* Number of logic channels.
*/
#define NUM_CHANNELS 16
/* Unit size for the sigrok logic datafeed.
*/
#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
/* Size of the acquisition buffer in device memory units.
*/
#define MEMORY_DEPTH (256 * 1024) /* 256k x 32 bit */
/* Capture memory read start address.
*/
#define READ_START_ADDR 2
/* Number of device memory units (32 bit) to read at a time.
*/
#define READ_CHUNK_LEN32 250
/** LWLA1016 register addresses.
*/
enum reg_addr {
REG_CHAN_MASK = 0x1000, /* bit mask of enabled channels */
REG_DURATION = 0x1010, /* capture duration in ms */
REG_MEM_WR_PTR = 0x1070,
REG_MEM_RD_PTR = 0x1074,
REG_MEM_DATA = 0x1078,
REG_MEM_CTRL = 0x107C,
REG_CAP_COUNT = 0x10B0,
REG_TEST_ID = 0x10B4, /* read */
REG_TRG_SEL = 0x10B4, /* write */
REG_CAP_CTRL = 0x10B8,
REG_CAP_TOTAL = 0x10BC, /* read */
REG_DIV_COUNT = 0x10BC, /* write */
};
/** Flag bits for REG_MEM_CTRL.
*/
enum mem_ctrl_flag {
MEM_CTRL_RESET = 1 << 0,
MEM_CTRL_WRITE = 1 << 1,
};
/** Flag bits for REG_CAP_CTRL.
*/
enum cap_ctrl_flag {
CAP_CTRL_FIFO32_FULL = 1 << 0, /* "fifo32_ful" bit */
CAP_CTRL_FIFO64_FULL = 1 << 1, /* "fifo64_ful" bit */
CAP_CTRL_TRG_EN = 1 << 2, /* "trg_en" bit */
CAP_CTRL_CLR_TIMEBASE = 1 << 3, /* "do_clr_timebase" bit */
CAP_CTRL_FIFO_EMPTY = 1 << 4, /* "fifo_empty" bit */
CAP_CTRL_SAMPLE_EN = 1 << 5, /* "sample_en" bit */
CAP_CTRL_CNTR_NOT_ENDR = 1 << 6, /* "cntr_not_endr" bit */
};
/* Available FPGA configurations.
*/
enum fpga_config {
FPGA_100 = 0, /* 100 MS/s, no compression */
FPGA_100_TS, /* 100 MS/s, timing-state mode */
};
/* FPGA bitstream resource filenames.
*/
static const char bitstream_map[][32] = {
[FPGA_100] = "sysclk-lwla1016-100.rbf",
[FPGA_100_TS] = "sysclk-lwla1016-100-ts.rbf",
};
/* Demangle incoming sample data from the transfer buffer.
*/
static void read_response(struct acquisition_state *acq)
{
uint32_t *in_p, *out_p;
size_t words_left, num_words;
size_t max_samples, run_samples;
size_t i;
words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
- acq->mem_addr_done;
/* Calculate number of samples to write into packet. */
max_samples = MIN(acq->samples_max - acq->samples_done,
PACKET_SIZE / UNIT_SIZE - acq->out_index);
run_samples = MIN(max_samples, 2 * words_left);
/* Round up in case the samples limit is an odd number. */
num_words = (run_samples + 1) / 2;
/*
* Without RLE the output index will always be a multiple of two
* samples (at least before reaching the samples limit), thus 32-bit
* alignment is guaranteed.
*/
out_p = (uint32_t *)&acq->out_packet[acq->out_index * UNIT_SIZE];
in_p = &acq->xfer_buf_in[acq->in_index];
/*
* Transfer two samples at a time, taking care to swap the 16-bit
* halves of each input word but keeping the samples themselves in
* the original Little Endian order.
*/
for (i = 0; i < num_words; i++)
out_p[i] = LROTATE(in_p[i], 16);
acq->in_index += num_words;
acq->mem_addr_done += num_words;
acq->out_index += run_samples;
acq->samples_done += run_samples;
}
/* Demangle and decompress incoming sample data from the transfer buffer.
*/
static void read_response_rle(struct acquisition_state *acq)
{
uint32_t *in_p;
uint16_t *out_p;
size_t words_left;
size_t max_samples, run_samples;
size_t wi, ri;
uint32_t word;
uint16_t sample;
words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
- acq->mem_addr_done;
in_p = &acq->xfer_buf_in[acq->in_index];
for (wi = 0;; wi++) {
/* Calculate number of samples to write into packet. */
max_samples = MIN(acq->samples_max - acq->samples_done,
PACKET_SIZE / UNIT_SIZE - acq->out_index);
run_samples = MIN(max_samples, acq->run_len);
/* Expand run-length samples into session packet. */
sample = acq->sample;
out_p = &((uint16_t *)acq->out_packet)[acq->out_index];
for (ri = 0; ri < run_samples; ri++)
out_p[ri] = GUINT16_TO_LE(sample);
acq->run_len -= run_samples;
acq->out_index += run_samples;
acq->samples_done += run_samples;
if (run_samples == max_samples)
break; /* packet full or sample limit reached */
if (wi >= words_left)
break; /* done with current transfer */
word = GUINT32_FROM_LE(in_p[wi]);
acq->sample = word >> 16;
acq->run_len = (word & 0xFFFF) + 1;
}
acq->in_index += wi;
acq->mem_addr_done += wi;
}
/* Select and transfer FPGA bitstream for the current configuration.
*/
static int apply_fpga_config(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct drv_context *drvc;
int config;
int ret;
devc = sdi->priv;
drvc = sdi->driver->context;
if (sdi->status == SR_ST_INACTIVE)
return SR_OK; /* the LWLA1016 has no off state */
config = (devc->cfg_rle) ? FPGA_100_TS : FPGA_100;
if (config == devc->active_fpga_config)
return SR_OK; /* no change */
ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
bitstream_map[config]);
devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
return ret;
}
/* Perform initialization self test.
*/
static int device_init_check(const struct sr_dev_inst *sdi)
{
uint32_t value;
int ret;
ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
if (ret != SR_OK)
return ret;
/* Ignore the value returned by the first read. */
ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
if (ret != SR_OK)
return ret;
if (value != 0x12345678) {
sr_err("Received invalid test word 0x%08X.", value);
return SR_ERR;
}
return SR_OK;
}
static int setup_acquisition(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct acquisition_state *acq;
uint32_t divider_count;
int ret;
devc = sdi->priv;
usb = sdi->conn;
acq = devc->acquisition;
acq->reg_seq_pos = 0;
acq->reg_seq_len = 0;
lwla_queue_regval(acq, REG_CHAN_MASK, devc->channel_mask);
if (devc->samplerate > 0 && devc->samplerate < SR_MHZ(100))
divider_count = SR_MHZ(100) / devc->samplerate - 1;
else
divider_count = 0;
lwla_queue_regval(acq, REG_DIV_COUNT, divider_count);
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
lwla_queue_regval(acq, REG_DURATION, 0);
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
lwla_queue_regval(acq, REG_MEM_CTRL, 0);
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_WRITE);
lwla_queue_regval(acq, REG_CAP_CTRL,
CAP_CTRL_FIFO32_FULL | CAP_CTRL_FIFO64_FULL);
lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_FIFO_EMPTY);
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
lwla_queue_regval(acq, REG_CAP_COUNT, MEMORY_DEPTH - 5);
lwla_queue_regval(acq, REG_TRG_SEL,
((devc->trigger_edge_mask & 0xFFFF) << 16)
| (devc->trigger_values & 0xFFFF));
ret = lwla_write_regs(usb, acq->reg_sequence, acq->reg_seq_len);
acq->reg_seq_len = 0;
return ret;
}
static int prepare_request(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
size_t count;
devc = sdi->priv;
acq = devc->acquisition;
acq->xfer_out->length = 0;
acq->reg_seq_pos = 0;
acq->reg_seq_len = 0;
switch (devc->state) {
case STATE_START_CAPTURE:
lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_TRG_EN
| ((devc->trigger_mask & 0xFFFF) << 16));
break;
case STATE_STOP_CAPTURE:
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
lwla_queue_regval(acq, REG_DIV_COUNT, 0);
break;
case STATE_READ_PREPARE:
lwla_queue_regval(acq, REG_MEM_CTRL, 0);
break;
case STATE_READ_FINISH:
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
lwla_queue_regval(acq, REG_MEM_CTRL, 0);
break;
case STATE_STATUS_REQUEST:
lwla_queue_regval(acq, REG_CAP_CTRL, 0);
lwla_queue_regval(acq, REG_MEM_WR_PTR, 0);
lwla_queue_regval(acq, REG_DURATION, 0);
break;
case STATE_LENGTH_REQUEST:
lwla_queue_regval(acq, REG_CAP_COUNT, 0);
break;
case STATE_READ_REQUEST:
/* Always read a multiple of 8 device words. */
count = MIN(READ_CHUNK_LEN32,
acq->mem_addr_stop - acq->mem_addr_next);
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM32);
acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
acq->xfer_buf_out[3] = LWLA_WORD_0(count);
acq->xfer_buf_out[4] = LWLA_WORD_1(count);
acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
acq->mem_addr_next += count;
break;
default:
sr_err("BUG: unhandled request state %d.", devc->state);
return SR_ERR_BUG;
}
return SR_OK;
}
static int handle_response(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
int expect_len;
devc = sdi->priv;
acq = devc->acquisition;
switch (devc->state) {
case STATE_STATUS_REQUEST:
acq->status = acq->reg_sequence[0].val & 0x7F;
acq->mem_addr_fill = acq->reg_sequence[1].val;
acq->duration_now = acq->reg_sequence[2].val;
break;
case STATE_LENGTH_REQUEST:
acq->mem_addr_next = READ_START_ADDR;
acq->mem_addr_stop = acq->reg_sequence[0].val + READ_START_ADDR - 1;
break;
case STATE_READ_REQUEST:
expect_len = (acq->mem_addr_next - acq->mem_addr_done
+ acq->in_index) * sizeof(acq->xfer_buf_in[0]);
if (acq->xfer_in->actual_length != expect_len) {
sr_err("Received size %d does not match expected size %d.",
acq->xfer_in->actual_length, expect_len);
devc->transfer_error = TRUE;
return SR_ERR;
}
if (acq->rle_enabled)
read_response_rle(acq);
else
read_response(acq);
break;
default:
sr_err("BUG: unhandled response state %d.", devc->state);
return SR_ERR_BUG;
}
return SR_OK;
}
/* Model descriptor for the LWLA1016.
*/
SR_PRIV const struct model_info lwla1016_info = {
.name = "LWLA1016",
.num_channels = NUM_CHANNELS,
.num_devopts = 5,
.devopts = {
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_RLE | SR_CONF_GET | SR_CONF_SET,
},
.num_samplerates = 19,
.samplerates = {
SR_MHZ(100),
SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
SR_HZ(500), SR_HZ(200), SR_HZ(100),
},
.apply_fpga_config = &apply_fpga_config,
.device_init_check = &device_init_check,
.setup_acquisition = &setup_acquisition,
.prepare_request = &prepare_request,
.handle_response = &handle_response,
};

View File

@ -0,0 +1,544 @@
/*
* This file is part of the libsigrok project.
*
* Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include "lwla.h"
#include "protocol.h"
/* Number of logic channels.
*/
#define NUM_CHANNELS 34
/* Bit mask covering all logic channels.
*/
#define ALL_CHANNELS_MASK ((UINT64_C(1) << NUM_CHANNELS) - 1)
/* Unit size for the sigrok logic datafeed.
*/
#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
/* Size of the acquisition buffer in device memory units.
*/
#define MEMORY_DEPTH (256 * 1024) /* 256k x 36 bit */
/* Capture memory read start address.
*/
#define READ_START_ADDR 4
/* Number of device memory units (36 bit) to read at a time. Slices of 8
* consecutive 36-bit words are mapped to 9 32-bit words each, so the chunk
* length should be a multiple of 8 to ensure alignment to slice boundaries.
*
* Experimentation has shown that reading chunks larger than about 1024 bytes
* is unreliable. The threshold seems to relate to the buffer size on the FX2
* USB chip: The configured endpoint buffer size is 512, and with double or
* triple buffering enabled a multiple of 512 bytes can be kept in fly.
*
* The vendor software limits reads to 120 words (15 slices, 540 bytes) at
* a time. So far, it appears safe to increase this to 224 words (28 slices,
* 1008 bytes), thus making the most of two 512 byte buffers.
*/
#define READ_CHUNK_LEN36 (28 * 8)
/* Bit mask for the RLE repeat-count-follows flag. */
#define RLE_FLAG_LEN_FOLLOWS (UINT64_C(1) << 35)
/** LWLA1034 register addresses.
*/
enum reg_addr {
REG_MEM_CTRL = 0x1074, /* capture buffer control */
REG_MEM_FILL = 0x1078, /* capture buffer fill level */
REG_MEM_START = 0x107C, /* capture buffer start address */
REG_CLK_BOOST = 0x1094, /* logic clock boost flag */
REG_LONG_STROBE = 0x10B0, /* long register read/write strobe */
REG_LONG_ADDR = 0x10B4, /* long register address */
REG_LONG_LOW = 0x10B8, /* long register low word */
REG_LONG_HIGH = 0x10BC, /* long register high word */
};
/** Flag bits for REG_MEM_CTRL.
*/
enum mem_ctrl_flag {
MEM_CTRL_WRITE = 1 << 0, /* "wr1rd0" bit */
MEM_CTRL_CLR_IDX = 1 << 1, /* "clr_idx" bit */
};
/* LWLA1034 long register addresses.
*/
enum long_reg_addr {
LREG_CHAN_MASK = 0, /* channel enable mask */
LREG_DIV_COUNT = 1, /* clock divider max count */
LREG_TRG_VALUE = 2, /* trigger level/slope bits */
LREG_TRG_TYPE = 3, /* trigger type bits (level or edge) */
LREG_TRG_ENABLE = 4, /* trigger enable mask */
LREG_MEM_FILL = 5, /* capture memory fill level or limit */
LREG_DURATION = 7, /* elapsed time in ms (0.8 ms at 125 MS/s) */
LREG_CHAN_STATE = 8, /* current logic levels at the inputs */
LREG_STATUS = 9, /* capture status flags */
LREG_CAP_CTRL = 10, /* capture control bits */
LREG_TEST_ID = 100, /* constant test ID */
};
/** Flag bits for LREG_CAP_CTRL.
*/
enum cap_ctrl_flag {
CAP_CTRL_TRG_EN = 1 << 0, /* "trg_en" bit */
CAP_CTRL_CLR_TIMEBASE = 1 << 2, /* "do_clr_timebase" bit */
CAP_CTRL_FLUSH_FIFO = 1 << 4, /* "flush_fifo" bit */
CAP_CTRL_CLR_FIFOFULL = 1 << 5, /* "clr_fifo32_ful" bit */
CAP_CTRL_CLR_COUNTER = 1 << 6, /* "clr_cntr0" bit */
};
/* Available FPGA configurations.
*/
enum fpga_config {
FPGA_OFF = 0, /* FPGA shutdown config */
FPGA_INT, /* internal clock config */
FPGA_EXTPOS, /* external clock, rising edge config */
FPGA_EXTNEG, /* external clock, falling edge config */
};
/* FPGA bitstream resource filenames.
*/
static const char bitstream_map[][32] = {
[FPGA_OFF] = "sysclk-lwla1034-off.rbf",
[FPGA_INT] = "sysclk-lwla1034-int.rbf",
[FPGA_EXTPOS] = "sysclk-lwla1034-extpos.rbf",
[FPGA_EXTNEG] = "sysclk-lwla1034-extneg.rbf",
};
/* Read 64-bit long register.
*/
static int read_long_reg(const struct sr_usb_dev_inst *usb,
uint32_t addr, uint64_t *value)
{
uint32_t low, high, dummy;
int ret;
ret = lwla_write_reg(usb, REG_LONG_ADDR, addr);
if (ret != SR_OK)
return ret;
ret = lwla_read_reg(usb, REG_LONG_STROBE, &dummy);
if (ret != SR_OK)
return ret;
ret = lwla_read_reg(usb, REG_LONG_HIGH, &high);
if (ret != SR_OK)
return ret;
ret = lwla_read_reg(usb, REG_LONG_LOW, &low);
if (ret != SR_OK)
return ret;
*value = ((uint64_t)high << 32) | low;
return SR_OK;
}
/* Queue access sequence for a long register write.
*/
static void queue_long_regval(struct acquisition_state *acq,
uint32_t addr, uint64_t value)
{
lwla_queue_regval(acq, REG_LONG_ADDR, addr);
lwla_queue_regval(acq, REG_LONG_LOW, value & 0xFFFFFFFF);
lwla_queue_regval(acq, REG_LONG_HIGH, value >> 32);
lwla_queue_regval(acq, REG_LONG_STROBE, 0);
}
/* Helper to fill in the long register bulk write command.
*/
static inline void bulk_long_set(struct acquisition_state *acq,
size_t idx, uint64_t value)
{
acq->xfer_buf_out[4 * idx + 3] = LWLA_WORD_0(value);
acq->xfer_buf_out[4 * idx + 4] = LWLA_WORD_1(value);
acq->xfer_buf_out[4 * idx + 5] = LWLA_WORD_2(value);
acq->xfer_buf_out[4 * idx + 6] = LWLA_WORD_3(value);
}
/* Helper for dissecting the response to a long register bulk read.
*/
static inline uint64_t bulk_long_get(const struct acquisition_state *acq,
size_t idx)
{
uint64_t low, high;
low = LWLA_TO_UINT32(acq->xfer_buf_in[2 * idx]);
high = LWLA_TO_UINT32(acq->xfer_buf_in[2 * idx + 1]);
return (high << 32) | low;
}
/* Demangle and decompress incoming sample data from the transfer buffer.
* The data chunk is taken from the acquisition state, and is expected to
* contain a multiple of 8 packed 36-bit words.
*/
static void read_response(struct acquisition_state *acq)
{
uint64_t sample, high_nibbles, word;
uint32_t *slice;
uint8_t *out_p;
size_t words_left;
size_t max_samples, run_samples;
size_t wi, ri, si;
/* Number of 36-bit words remaining in the transfer buffer. */
words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
- acq->mem_addr_done;
for (wi = 0;; wi++) {
/* Calculate number of samples to write into packet. */
max_samples = MIN(acq->samples_max - acq->samples_done,
PACKET_SIZE / UNIT_SIZE - acq->out_index);
run_samples = MIN(max_samples, acq->run_len);
/* Expand run-length samples into session packet. */
sample = acq->sample;
out_p = &acq->out_packet[acq->out_index * UNIT_SIZE];
for (ri = 0; ri < run_samples; ri++) {
out_p[0] = sample & 0xFF;
out_p[1] = (sample >> 8) & 0xFF;
out_p[2] = (sample >> 16) & 0xFF;
out_p[3] = (sample >> 24) & 0xFF;
out_p[4] = (sample >> 32) & 0xFF;
out_p += UNIT_SIZE;
}
acq->run_len -= run_samples;
acq->out_index += run_samples;
acq->samples_done += run_samples;
if (run_samples == max_samples)
break; /* packet full or sample limit reached */
if (wi >= words_left)
break; /* done with current transfer */
/* Get the current slice of 8 packed 36-bit words. */
slice = &acq->xfer_buf_in[(acq->in_index + wi) / 8 * 9];
si = (acq->in_index + wi) % 8; /* word index within slice */
/* Extract the next 36-bit word. */
high_nibbles = LWLA_TO_UINT32(slice[8]);
word = LWLA_TO_UINT32(slice[si]);
word |= (high_nibbles << (4 * si + 4)) & (UINT64_C(0xF) << 32);
if (acq->rle == RLE_STATE_DATA) {
acq->sample = word & ALL_CHANNELS_MASK;
acq->run_len = ((word >> NUM_CHANNELS) & 1) + 1;
acq->rle = ((word & RLE_FLAG_LEN_FOLLOWS) != 0)
? RLE_STATE_LEN : RLE_STATE_DATA;
} else {
acq->run_len += word << 1;
acq->rle = RLE_STATE_DATA;
}
}
acq->in_index += wi;
acq->mem_addr_done += wi;
}
/* Select and transfer FPGA bitstream for the current configuration.
*/
static int apply_fpga_config(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct drv_context *drvc;
int config;
int ret;
devc = sdi->priv;
drvc = sdi->driver->context;
if (sdi->status == SR_ST_INACTIVE)
config = FPGA_OFF;
else if (devc->cfg_clock_source == CLOCK_INTERNAL)
config = FPGA_INT;
else if (devc->cfg_clock_edge == EDGE_POSITIVE)
config = FPGA_EXTPOS;
else
config = FPGA_EXTNEG;
if (config == devc->active_fpga_config)
return SR_OK; /* no change */
ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
bitstream_map[config]);
devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
return ret;
}
/* Perform initialization self test.
*/
static int device_init_check(const struct sr_dev_inst *sdi)
{
uint64_t value;
int ret;
ret = read_long_reg(sdi->conn, LREG_TEST_ID, &value);
if (ret != SR_OK)
return ret;
/* Ignore the value returned by the first read. */
ret = read_long_reg(sdi->conn, LREG_TEST_ID, &value);
if (ret != SR_OK)
return ret;
if (value != UINT64_C(0x1234567887654321)) {
sr_err("Received invalid test word 0x%016" PRIX64 ".", value);
return SR_ERR;
}
return SR_OK;
}
/* Set up the device in preparation for an acquisition session.
*/
static int setup_acquisition(const struct sr_dev_inst *sdi)
{
uint64_t divider_count;
uint64_t trigger_mask;
struct dev_context *devc;
struct sr_usb_dev_inst *usb;
struct acquisition_state *acq;
int ret;
devc = sdi->priv;
usb = sdi->conn;
acq = devc->acquisition;
acq->reg_seq_pos = 0;
acq->reg_seq_len = 0;
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_CLR_IDX);
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_WRITE);
queue_long_regval(acq, LREG_CAP_CTRL,
CAP_CTRL_CLR_TIMEBASE | CAP_CTRL_FLUSH_FIFO |
CAP_CTRL_CLR_FIFOFULL | CAP_CTRL_CLR_COUNTER);
lwla_queue_regval(acq, REG_CLK_BOOST, acq->clock_boost);
ret = lwla_write_regs(usb, acq->reg_sequence, acq->reg_seq_len);
acq->reg_seq_len = 0;
if (ret != SR_OK)
return ret;
acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_LREGS);
acq->xfer_buf_out[1] = LWLA_WORD(0);
acq->xfer_buf_out[2] = LWLA_WORD(LREG_STATUS + 1);
bulk_long_set(acq, LREG_CHAN_MASK, devc->channel_mask);
if (devc->samplerate > 0 && devc->samplerate <= SR_MHZ(100)
&& !acq->clock_boost)
divider_count = SR_MHZ(100) / devc->samplerate - 1;
else
divider_count = 0;
bulk_long_set(acq, LREG_DIV_COUNT, divider_count);
bulk_long_set(acq, LREG_TRG_VALUE, devc->trigger_values);
bulk_long_set(acq, LREG_TRG_TYPE, devc->trigger_edge_mask);
trigger_mask = devc->trigger_mask;
/* Set bits to select external TRG input edge. */
if (devc->cfg_trigger_source == TRIGGER_EXT_TRG)
switch (devc->cfg_trigger_slope) {
case EDGE_POSITIVE:
trigger_mask |= UINT64_C(1) << 35;
break;
case EDGE_NEGATIVE:
trigger_mask |= UINT64_C(1) << 34;
break;
}
bulk_long_set(acq, LREG_TRG_ENABLE, trigger_mask);
/* Set the capture memory full threshold. This is slightly less
* than the actual maximum, most likely in order to compensate for
* pipeline latency.
*/
bulk_long_set(acq, LREG_MEM_FILL, MEMORY_DEPTH - 16);
/* Fill remaining words with zeroes. */
bulk_long_set(acq, 6, 0);
bulk_long_set(acq, LREG_DURATION, 0);
bulk_long_set(acq, LREG_CHAN_STATE, 0);
bulk_long_set(acq, LREG_STATUS, 0);
return lwla_send_command(sdi->conn, acq->xfer_buf_out,
3 + (LREG_STATUS + 1) * 4);
}
static int prepare_request(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
size_t count;
devc = sdi->priv;
acq = devc->acquisition;
acq->xfer_out->length = 0;
acq->reg_seq_pos = 0;
acq->reg_seq_len = 0;
switch (devc->state) {
case STATE_START_CAPTURE:
queue_long_regval(acq, LREG_CAP_CTRL, CAP_CTRL_TRG_EN);
break;
case STATE_STOP_CAPTURE:
queue_long_regval(acq, LREG_CAP_CTRL, 0);
lwla_queue_regval(acq, REG_CLK_BOOST, 0);
break;
case STATE_READ_PREPARE:
lwla_queue_regval(acq, REG_CLK_BOOST, 1);
lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_CLR_IDX);
lwla_queue_regval(acq, REG_MEM_START, READ_START_ADDR);
break;
case STATE_READ_FINISH:
lwla_queue_regval(acq, REG_CLK_BOOST, 0);
break;
case STATE_STATUS_REQUEST:
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_LREGS);
acq->xfer_buf_out[1] = LWLA_WORD(0);
acq->xfer_buf_out[2] = LWLA_WORD(LREG_STATUS + 1);
acq->xfer_out->length = 3 * sizeof(acq->xfer_buf_out[0]);
break;
case STATE_LENGTH_REQUEST:
lwla_queue_regval(acq, REG_MEM_FILL, 0);
break;
case STATE_READ_REQUEST:
/* Always read a multiple of 8 device words. */
count = MIN(READ_CHUNK_LEN36, acq->mem_addr_stop
- acq->mem_addr_next + 7) / 8 * 8;
acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM36);
acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
acq->xfer_buf_out[3] = LWLA_WORD_0(count);
acq->xfer_buf_out[4] = LWLA_WORD_1(count);
acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
acq->mem_addr_next += count;
break;
default:
sr_err("BUG: unhandled request state %d.", devc->state);
return SR_ERR_BUG;
}
return SR_OK;
}
static int handle_response(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct acquisition_state *acq;
int expect_len;
devc = sdi->priv;
acq = devc->acquisition;
switch (devc->state) {
case STATE_STATUS_REQUEST:
if (acq->xfer_in->actual_length != (LREG_STATUS + 1) * 8) {
sr_err("Received size %d doesn't match expected size %d.",
acq->xfer_in->actual_length, (LREG_STATUS + 1) * 8);
return SR_ERR;
}
acq->mem_addr_fill = bulk_long_get(acq, LREG_MEM_FILL) & 0xFFFFFFFF;
acq->duration_now = bulk_long_get(acq, LREG_DURATION);
/* Shift left by one so the bit positions match the LWLA1016. */
acq->status = (bulk_long_get(acq, LREG_STATUS) & 0x3F) << 1;
/*
* It seems that the 125 MS/s mode is implemented simply by
* running the FPGA logic at a 25% higher clock rate. As a
* result, the millisecond counter for the capture duration
* is also off by 25%, and thus needs to be corrected here.
*/
if (acq->clock_boost)
acq->duration_now = acq->duration_now * 4 / 5;
break;
case STATE_LENGTH_REQUEST:
acq->mem_addr_next = READ_START_ADDR;
acq->mem_addr_stop = acq->reg_sequence[0].val;
break;
case STATE_READ_REQUEST:
/* Expect a multiple of 8 36-bit words packed into 9 32-bit
* words. */
expect_len = (acq->mem_addr_next - acq->mem_addr_done
+ acq->in_index + 7) / 8 * 9 * sizeof(acq->xfer_buf_in[0]);
if (acq->xfer_in->actual_length != expect_len) {
sr_err("Received size %d does not match expected size %d.",
acq->xfer_in->actual_length, expect_len);
devc->transfer_error = TRUE;
return SR_ERR;
}
read_response(acq);
break;
default:
sr_err("BUG: unhandled response state %d.", devc->state);
return SR_ERR_BUG;
}
return SR_OK;
}
/** Model descriptor for the LWLA1034.
*/
SR_PRIV const struct model_info lwla1034_info = {
.name = "LWLA1034",
.num_channels = NUM_CHANNELS,
.num_devopts = 8,
.devopts = {
SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
SR_CONF_EXTERNAL_CLOCK | SR_CONF_GET | SR_CONF_SET,
SR_CONF_CLOCK_EDGE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
},
.num_samplerates = 20,
.samplerates = {
SR_MHZ(125), SR_MHZ(100),
SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
SR_HZ(500), SR_HZ(200), SR_HZ(100),
},
.apply_fpga_config = &apply_fpga_config,
.device_init_check = &device_init_check,
.setup_acquisition = &setup_acquisition,
.prepare_request = &prepare_request,
.handle_response = &handle_response,
};

File diff suppressed because it is too large Load Diff

View File

@ -25,242 +25,139 @@
#include <stdint.h>
#include <glib.h>
#include <libsigrok/libsigrok.h>
#include "libsigrok-internal.h"
#include "lwla.h"
#include <libsigrok-internal.h>
/* For now, only the LWLA1034 is supported.
*/
#define VENDOR_NAME "SysClk"
#define MODEL_NAME "LWLA1034"
#define USB_VID_PID "2961.6689"
#define USB_CONFIG 1
#define USB_INTERFACE 0
#define USB_TIMEOUT_MS 3000
#define NUM_CHANNELS 34
/* Bit mask covering all 34 channels.
/* Maximum configurable sample count limit.
* Due to compression, there is no meaningful hardware limit the driver
* could report. So this value is less than 2^64-1 for no reason other
* than to safeguard against integer overflows.
*/
#define ALL_CHANNELS_MASK (((uint64_t)1 << NUM_CHANNELS) - 1)
#define MAX_LIMIT_SAMPLES (UINT64_C(1000) * 1000 * 1000 * 1000)
/** Unit and packet size for the sigrok logic datafeed.
/* Maximum configurable acquisition time limit.
* Due to compression, there is no hardware limit that would be meaningful
* in practice. However, the LWLA1016 reports the elapsed time as a 32-bit
* value, so keep this below 2^32.
*/
#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
#define PACKET_LENGTH (10 * 1000) /* units */
#define MAX_LIMIT_MSEC (1000 * 1000 * 1000)
/** Size of the acquisition buffer in device memory units.
*/
#define MEMORY_DEPTH (256 * 1024) /* 256k x 36 bit */
struct acquisition_state;
/** Number of device memory units (36 bit) to read at a time. Slices of 8
* consecutive 36-bit words are mapped to 9 32-bit words each, so the chunk
* length should be a multiple of 8 to ensure alignment to slice boundaries.
*
* Experimentation has shown that reading chunks larger than about 1024 bytes
* is unreliable. The threshold seems to relate to the buffer size on the FX2
* USB chip: The configured endpoint buffer size is 512, and with double or
* triple buffering enabled a multiple of 512 bytes can be kept in fly.
*
* The vendor software limits reads to 120 words (15 slices, 540 bytes) at
* a time. So far, it appears safe to increase this to 224 words (28 slices,
* 1008 bytes), thus making the most of two 512 byte buffers.
/* USB vendor and product IDs.
*/
#define READ_CHUNK_LEN (28 * 8)
/** Calculate the required buffer size in 32-bit units for reading a given
* number of device memory words. Rounded to a multiple of 8 device words.
*/
#define LWLA1034_MEMBUF_LEN(count) (((count) + 7) / 8 * 9)
/** Maximum number of 16-bit words sent at a time during acquisition.
* Used for allocating the libusb transfer buffer.
*/
#define MAX_ACQ_SEND_WORDS 8 /* 5 for memory read request plus stuffing */
/** Maximum number of 32-bit words received at a time during acquisition.
* Round to the next multiple of the endpoint buffer size to avoid nasty
* transfer overflow conditions on hiccups.
*/
#define MAX_ACQ_RECV_LEN ((READ_CHUNK_LEN / 8 * 9 + 127) / 128 * 128)
/** Maximum length of a register write sequence.
*/
#define MAX_REG_WRITE_SEQ_LEN 5
/** Default configured samplerate.
*/
#define DEFAULT_SAMPLERATE SR_MHZ(125)
/** Maximum configurable sample count limit.
*/
#define MAX_LIMIT_SAMPLES (UINT64_C(1) << 48)
/** Maximum configurable capture duration in milliseconds.
*/
#define MAX_LIMIT_MSEC (UINT64_C(1) << 32)
/** LWLA1034 FPGA clock configurations.
*/
enum clock_config {
CONF_CLOCK_NONE,
CONF_CLOCK_INT,
CONF_CLOCK_EXT_RISE,
CONF_CLOCK_EXT_FALL,
enum {
USB_VID_SYSCLK = 0x2961,
USB_PID_LWLA1016 = 0x6688,
USB_PID_LWLA1034 = 0x6689,
};
/** Available clock sources.
/* USB device characteristics.
*/
enum {
USB_CONFIG = 1,
USB_INTERFACE = 0,
USB_TIMEOUT_MS = 3000,
};
/** LWLA1034 clock sources.
*/
enum clock_source {
CLOCK_INTERNAL,
CLOCK_INTERNAL = 0,
CLOCK_EXT_CLK,
};
/** Available trigger sources.
/** LWLA1034 trigger sources.
*/
enum trigger_source {
TRIGGER_CHANNELS = 0,
TRIGGER_EXT_TRG,
};
/** Available edge choices for the external clock and trigger inputs.
/** Edge choices for the LWLA1034 external clock and trigger inputs.
*/
enum signal_edge {
EDGE_POSITIVE = 0,
EDGE_NEGATIVE,
};
/** LWLA device states.
/* Common indicator for no or unknown FPGA config. */
enum {
FPGA_NOCONF = -1,
};
/** Acquisition protocol states.
*/
enum device_state {
enum protocol_state {
/* idle states */
STATE_IDLE = 0,
STATE_START_CAPTURE,
STATE_STATUS_WAIT,
STATE_STATUS_REQUEST,
STATE_STATUS_RESPONSE,
/* device command states */
STATE_START_CAPTURE,
STATE_STOP_CAPTURE,
STATE_LENGTH_REQUEST,
STATE_LENGTH_RESPONSE,
STATE_READ_PREPARE,
STATE_READ_FINISH,
/* command followed by response */
STATE_EXPECT_RESPONSE = 1 << 3,
STATE_STATUS_REQUEST = STATE_EXPECT_RESPONSE,
STATE_LENGTH_REQUEST,
STATE_READ_REQUEST,
STATE_READ_RESPONSE,
STATE_READ_END,
};
/** LWLA run-length encoding states.
*/
enum rle_state {
RLE_STATE_DATA,
RLE_STATE_LEN
};
/** LWLA sample acquisition and decompression state.
*/
struct acquisition_state {
uint64_t sample;
uint64_t run_len;
/** Maximum number of samples to process. */
uint64_t samples_max;
/** Number of samples sent to the session bus. */
uint64_t samples_done;
/** Maximum duration of capture, in milliseconds. */
uint64_t duration_max;
/** Running capture duration since trigger event. */
uint64_t duration_now;
/** Capture memory fill level. */
size_t mem_addr_fill;
size_t mem_addr_done;
size_t mem_addr_next;
size_t mem_addr_stop;
size_t out_index;
struct libusb_transfer *xfer_in;
struct libusb_transfer *xfer_out;
unsigned int capture_flags;
enum rle_state rle;
/** Whether to bypass the clock divider. */
gboolean bypass_clockdiv;
/* Payload data buffers for incoming and outgoing transfers. */
uint32_t xfer_buf_in[MAX_ACQ_RECV_LEN];
uint16_t xfer_buf_out[MAX_ACQ_SEND_WORDS];
/* Payload buffer for sigrok logic packets. */
uint8_t out_packet[PACKET_LENGTH * UNIT_SIZE];
};
/** Private, per-device-instance driver context.
*/
struct dev_context {
/** The samplerate selected by the user. */
uint64_t samplerate;
uint64_t samplerate; /* requested samplerate */
/** The maximum sampling duration, in milliseconds. */
uint64_t limit_msec;
uint64_t limit_msec; /* requested capture duration in ms */
uint64_t limit_samples; /* requested capture length in samples */
/** The maximum number of samples to acquire. */
uint64_t limit_samples;
uint64_t channel_mask; /* bit mask of enabled channels */
/** Channels to use. */
uint64_t channel_mask;
uint64_t trigger_mask; /* trigger enable mask */
uint64_t trigger_edge_mask; /* trigger type mask */
uint64_t trigger_values; /* trigger level/slope bits */
uint64_t trigger_mask;
uint64_t trigger_edge_mask;
uint64_t trigger_values;
const struct model_info *model; /* device model descriptor */
struct acquisition_state *acquisition; /* running capture state */
int active_fpga_config; /* FPGA configuration index */
struct acquisition_state *acquisition;
enum protocol_state state; /* async protocol state */
gboolean cancel_requested; /* stop after current transfer */
gboolean transfer_error; /* error during device communication */
struct regval_pair reg_write_seq[MAX_REG_WRITE_SEQ_LEN];
int reg_write_pos;
int reg_write_len;
gboolean cfg_rle; /* RLE compression setting */
enum clock_source cfg_clock_source; /* clock source setting */
enum signal_edge cfg_clock_edge; /* ext clock edge setting */
enum trigger_source cfg_trigger_source; /* trigger source setting */
enum signal_edge cfg_trigger_slope; /* ext trigger slope setting */
enum device_state state;
/** The currently active clock configuration of the device. */
enum clock_config cur_clock_config;
/** Clock source configuration setting. */
enum clock_source cfg_clock_source;
/** Clock edge configuration setting. */
enum signal_edge cfg_clock_edge;
/** Trigger source configuration setting. */
enum trigger_source cfg_trigger_source;
/** Trigger slope configuration setting. */
enum signal_edge cfg_trigger_slope;
/** Whether a running acquisition should be canceled. */
gboolean cancel_requested;
/* Indicates that stopping the acquisition is currently in progress. */
gboolean stopping_in_progress;
/* Indicates whether a transfer failed. */
gboolean transfer_error;
};
SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void);
SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq);
/** LWLA model descriptor.
*/
struct model_info {
char name[12];
int num_channels;
unsigned int num_devopts;
uint32_t devopts[8];
unsigned int num_samplerates;
uint64_t samplerates[20];
int (*apply_fpga_config)(const struct sr_dev_inst *sdi);
int (*device_init_check)(const struct sr_dev_inst *sdi);
int (*setup_acquisition)(const struct sr_dev_inst *sdi);
int (*prepare_request)(const struct sr_dev_inst *sdi);
int (*handle_response)(const struct sr_dev_inst *sdi);
};
SR_PRIV const struct model_info lwla1016_info;
SR_PRIV const struct model_info lwla1034_info;
SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi);
SR_PRIV int lwla_set_clock_config(const struct sr_dev_inst *sdi);
SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi);
SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi);
SR_PRIV int lwla_abort_acquisition(const struct sr_dev_inst *sdi);
SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data);
#endif