saleae-logicpro: Initial implementation.

The driver currently support only digital channels and a limited set of
sample rates.
This commit is contained in:
Jan Luebbe 2017-06-25 20:38:05 +02:00 committed by Uwe Hermann
parent a8e913c452
commit ca7d19b5c8
4 changed files with 919 additions and 38 deletions

View File

@ -264,7 +264,7 @@ SR_DRIVER([Pipistrello-OLS], [pipistrello-ols], [libftdi])
SR_DRIVER([Rigol DS], [rigol-ds])
SR_DRIVER([Rohde&Schwarz SME-0x], [rohde-schwarz-sme-0x], [libserialport])
SR_DRIVER([Saleae Logic16], [saleae-logic16], [libusb])
SR_DRIVER([saleae-logicpro], [saleae-logicpro])
SR_DRIVER([Saleae Logic Pro], [saleae-logicpro], [libusb])
SR_DRIVER([SCPI PPS], [scpi-pps])
SR_DRIVER([serial DMM], [serial-dmm], [libserialport])
SR_DRIVER([serial LCR], [serial-lcr], [libserialport])

View File

@ -18,25 +18,166 @@
*/
#include <config.h>
#include <glib.h>
#include <string.h>
#include "protocol.h"
#define BUF_COUNT (8)
#define BUF_SIZE (16*1024)
#define BUF_TIMEOUT (1000*1000)
SR_PRIV struct sr_dev_driver saleae_logicpro_driver_info;
static const uint32_t drvopts[] = {
SR_CONF_LOGIC_ANALYZER,
};
static const uint32_t scanopts[] = {
SR_CONF_CONN,
};
static const uint32_t devopts[] = {
SR_CONF_CONTINUOUS,
SR_CONF_CONN | SR_CONF_GET,
SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
};
static const char *channel_names[] = {
"0", "1", "2", "3", "4", "5", "6", "7",
"8", "9", "10", "11", "12", "13", "14", "15",
};
static const uint64_t samplerates[] = {
SR_MHZ(1),
SR_MHZ(2),
SR_KHZ(2500),
SR_MHZ(10),
SR_MHZ(25),
SR_MHZ(50),
};
static gboolean scan_firmware(libusb_device *dev)
{
struct libusb_device_descriptor des;
struct libusb_device_handle *hdl;
gboolean ret;
unsigned char strdesc[64];
hdl = NULL;
ret = FALSE;
libusb_get_device_descriptor(dev, &des);
if (libusb_open(dev, &hdl) != 0)
goto out;
if (libusb_get_string_descriptor_ascii(hdl,
des.iManufacturer, strdesc, sizeof(strdesc)) < 0)
goto out;
if (strcmp((const char *)strdesc, "Saleae"))
goto out;
if (libusb_get_string_descriptor_ascii(hdl,
des.iProduct, strdesc, sizeof(strdesc)) < 0)
goto out;
if (strcmp((const char *)strdesc, "Logic Pro"))
goto out;
ret = TRUE;
out:
if (hdl)
libusb_close(hdl);
return ret;
}
static GSList *scan(struct sr_dev_driver *di, GSList *options)
{
struct drv_context *drvc;
GSList *devices;
(void)options;
struct dev_context *devc;
struct sr_dev_inst *sdi;
GSList *devices, *conn_devices;
libusb_device **devlist;
struct libusb_device_descriptor des;
const char *conn;
char connection_id[64];
devices = NULL;
drvc = di->context;
drvc->instances = NULL;
/* TODO: scan for devices, either based on a SR_CONF_CONN option
* or on a USB scan. */
conn = NULL;
for (GSList *l = options; l; l = l->next) {
struct sr_config *src = l->data;
return devices;
switch (src->key) {
case SR_CONF_CONN:
conn = g_variant_get_string(src->data, NULL);
break;
}
}
if (conn)
conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
else
conn_devices = NULL;
libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
for (unsigned int i = 0; devlist[i]; i++) {
if (conn) {
struct sr_usb_dev_inst *usb = NULL;
GSList *l;
for (l = conn_devices; l; l = l->next) {
usb = l->data;
if (usb->bus == libusb_get_bus_number(devlist[i])
&& usb->address == libusb_get_device_address(devlist[i]))
break;
}
if (!l)
/* This device matched none of the ones that
* matched the conn specification. */
continue;
}
libusb_get_device_descriptor(devlist[i], &des);
usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
if (des.idVendor != 0x21a9 || des.idProduct != 0x1006)
continue;
if (!scan_firmware(devlist[i])) {
sr_err("Found a Logic Pro device, but firmware is not loaded (use Saleae application).");
continue;
}
sdi = g_malloc0(sizeof(struct sr_dev_inst));
sdi->status = SR_ST_INITIALIZING;
sdi->vendor = g_strdup("Saleae");
sdi->model = g_strdup("Logic Pro 16");
sdi->connection_id = g_strdup(connection_id);
for (unsigned int j = 0; j < ARRAY_SIZE(channel_names); j++)
sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
channel_names[j]);
sr_dbg("Found a Logic Pro 16 device.");
sdi->status = SR_ST_INACTIVE;
sdi->inst_type = SR_INST_USB;
sdi->conn = sr_usb_dev_inst_new(libusb_get_bus_number(devlist[i]),
libusb_get_device_address(devlist[i]), NULL);
devc = g_malloc0(sizeof(struct dev_context));
sdi->priv = devc;
devices = g_slist_append(devices, sdi);
}
libusb_free_device_list(devlist, 1);
g_slist_free_full(conn_devices, (GDestroyNotify)sr_usb_dev_inst_free);
return std_scan_complete(di, devices);
}
static int dev_clear(const struct sr_dev_driver *di)
@ -46,9 +187,23 @@ static int dev_clear(const struct sr_dev_driver *di)
static int dev_open(struct sr_dev_inst *sdi)
{
(void)sdi;
struct sr_dev_driver *di = sdi->driver;
struct drv_context *drvc = di->context;
struct dev_context *devc = sdi->priv;
struct sr_usb_dev_inst *usb = sdi->conn;
int ret;
/* TODO: get handle from sdi->conn and open it. */
if (sr_usb_open(drvc->sr_ctx->libusb_ctx, usb) != SR_OK)
return SR_ERR;
if ((ret = libusb_claim_interface(usb->devhdl, 0))) {
sr_err("Failed to claim interface: %s.", libusb_error_name(ret));
return SR_ERR;
}
/* configure default samplerate */
if (devc->dig_samplerate == 0)
devc->dig_samplerate = samplerates[3];
sdi->status = SR_ST_ACTIVE;
@ -57,9 +212,9 @@ static int dev_open(struct sr_dev_inst *sdi)
static int dev_close(struct sr_dev_inst *sdi)
{
(void)sdi;
struct sr_usb_dev_inst *usb = sdi->conn;
/* TODO: get handle from sdi->conn and close it. */
sr_usb_close(usb);
sdi->status = SR_ST_INACTIVE;
@ -67,17 +222,28 @@ static int dev_close(struct sr_dev_inst *sdi)
}
static int config_get(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
struct sr_usb_dev_inst *usb;
struct dev_context *devc;
int ret;
(void)sdi;
(void)data;
(void)cg;
ret = SR_OK;
switch (key) {
/* TODO */
case SR_CONF_CONN:
if (!sdi || !sdi->conn)
return SR_ERR_ARG;
usb = sdi->conn;
*data = g_variant_new_printf("%d.%d", usb->bus, usb->address);
break;
case SR_CONF_SAMPLERATE:
if (!sdi)
return SR_ERR;
devc = sdi->priv;
*data = g_variant_new_uint64(devc->dig_samplerate);
break;
default:
return SR_ERR_NA;
}
@ -86,19 +252,22 @@ static int config_get(uint32_t key, GVariant **data,
}
static int config_set(uint32_t key, GVariant *data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
struct dev_context *devc;
int ret;
(void)data;
(void)cg;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
devc = sdi->priv;
ret = SR_OK;
switch (key) {
/* TODO */
case SR_CONF_SAMPLERATE:
devc->dig_samplerate = g_variant_get_uint64(data);
break;
default:
ret = SR_ERR_NA;
}
@ -107,17 +276,43 @@ static int config_set(uint32_t key, GVariant *data,
}
static int config_list(uint32_t key, GVariant **data,
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
const struct sr_dev_inst *sdi, const struct sr_channel_group *cg)
{
GVariant *gvar;
GVariantBuilder gvb;
int ret;
(void)sdi;
(void)data;
(void)cg;
ret = SR_OK;
switch (key) {
/* TODO */
case SR_CONF_SCAN_OPTIONS:
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
scanopts,
ARRAY_SIZE(scanopts),
sizeof(uint32_t));
break;
case SR_CONF_DEVICE_OPTIONS:
if (!sdi) {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
drvopts,
ARRAY_SIZE(drvopts),
sizeof(uint32_t));
} else {
*data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
devopts,
ARRAY_SIZE(devopts),
sizeof(uint32_t));
}
break;
case SR_CONF_SAMPLERATE:
g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
samplerates, ARRAY_SIZE(samplerates), sizeof(uint64_t));
g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
*data = g_variant_builder_end(&gvb);
break;
default:
return SR_ERR_NA;
}
@ -125,23 +320,101 @@ static int config_list(uint32_t key, GVariant **data,
return ret;
}
static void dev_acquisition_abort(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
unsigned int i;
for (i = 0; i < devc->num_transfers; i++) {
if (devc->transfers[i])
libusb_cancel_transfer(devc->transfers[i]);
}
}
static int dev_acquisition_handle(int fd, int revents, void *cb_data)
{
struct sr_dev_inst *sdi = cb_data;
struct drv_context *drvc = sdi->driver->context;
struct timeval tv = {};
(void)fd;
(void)revents;
libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
return TRUE;
}
static int dev_acquisition_start(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
struct drv_context *drvc = sdi->driver->context;
struct libusb_transfer *transfer;
struct sr_usb_dev_inst *usb;
uint8_t *buf;
unsigned int i, ret;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
/* TODO: configure hardware, reset acquisition state, set up
* callbacks and send header packet. */
ret = saleae_logicpro_init(sdi);
if (ret != SR_OK)
return ret;
ret = saleae_logicpro_prepare(sdi);
if (ret != SR_OK)
return ret;
usb = sdi->conn;
devc->conv_buffer = g_malloc(CONV_BUFFER_SIZE);
devc->num_transfers = BUF_COUNT;
devc->transfers = g_malloc0(sizeof(*devc->transfers) * BUF_COUNT);
for (i = 0; i < devc->num_transfers; i++) {
buf = g_malloc(BUF_SIZE);
transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(transfer, usb->devhdl,
2 | LIBUSB_ENDPOINT_IN, buf, BUF_SIZE,
saleae_logicpro_receive_data, (void *)sdi, BUF_TIMEOUT);
if ((ret = libusb_submit_transfer(transfer)) != 0) {
sr_err("Failed to submit transfer: %s.",
libusb_error_name(ret));
libusb_free_transfer(transfer);
g_free(buf);
dev_acquisition_abort(sdi);
return SR_ERR;
}
devc->transfers[i] = transfer;
devc->submitted_transfers++;
}
usb_source_add(sdi->session, drvc->sr_ctx, BUF_TIMEOUT, dev_acquisition_handle, (void *)sdi);
std_session_send_df_header(sdi);
saleae_logicpro_start(sdi);
if (ret != SR_OK)
return ret;
return SR_OK;
}
static int dev_acquisition_stop(struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
struct drv_context *drvc = sdi->driver->context;
if (sdi->status != SR_ST_ACTIVE)
return SR_ERR_DEV_CLOSED;
/* TODO: stop acquisition. */
saleae_logicpro_stop(sdi);
std_session_send_df_end(sdi);
usb_source_remove(sdi->session, drvc->sr_ctx);
g_free(devc->conv_buffer);
return SR_OK;
}

View File

@ -18,24 +18,610 @@
*/
#include <config.h>
#include <string.h>
#include "protocol.h"
SR_PRIV int saleae_logicpro_receive_data(int fd, int revents, void *cb_data)
#define COMMAND_START_CAPTURE 0x01
#define COMMAND_STOP_CAPTURE 0x02
#define COMMAND_READ_EEPROM 0x07
#define COMMAND_WRITE_REG 0x80
#define COMMAND_READ_REG 0x81
#define COMMAND_WRITE_I2C 0x87
#define COMMAND_READ_I2C 0x88
#define COMMAND_WAKE_I2C 0x89
#define COMMAND_READ_FW_VER 0x8b
#define REG_LED_RED 0x0f
#define REG_LED_GREEN 0x10
#define REG_LED_BLUE 0x11
static void iterate_lfsr(const struct sr_dev_inst *sdi)
{
const struct sr_dev_inst *sdi;
struct dev_context *devc;
struct dev_context *devc = sdi->priv;
uint32_t lfsr = devc->lfsr;
int i, max;
(void)fd;
max = (lfsr & 0x1f) + 34;
for (i = 0; i <= max; i++) {
lfsr = (lfsr >> 1) | \
((lfsr ^ \
(lfsr >> 1) ^ \
(lfsr >> 21) ^ \
(lfsr >> 31) \
) << 31);
}
sr_dbg("Iterate 0x%08x -> 0x%08x", devc->lfsr, lfsr);
devc->lfsr = lfsr;
}
if (!(sdi = cb_data))
return TRUE;
static void encrypt(const struct sr_dev_inst *sdi, const uint8_t *in, uint8_t *out, uint8_t len)
{
struct dev_context *devc = sdi->priv;
uint32_t lfsr = devc->lfsr;
uint8_t value, mask;
int i;
if (!(devc = sdi->priv))
return TRUE;
for (i = 0; i < len; i++) {
value = in[i];
mask = lfsr >> (i%4*8);
if (i == 0)
value = (value & 0x28) | ((value ^ mask) & ~0x28);
else
value = value ^ mask;
out[i] = value;
}
iterate_lfsr(sdi);
}
if (revents == G_IO_IN) {
/* TODO */
static void decrypt(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t len)
{
struct dev_context *devc = sdi->priv;
uint32_t lfsr = devc->lfsr;
int i;
for (i = 0; i < len; i++) {
data[i] ^= (lfsr >> (i%4*8));
}
iterate_lfsr(sdi);
}
static int transact(const struct sr_dev_inst *sdi,
const uint8_t *req, uint8_t req_len,
uint8_t *rsp, uint8_t rsp_len)
{
struct sr_usb_dev_inst *usb = sdi->conn;
uint8_t *req_enc;
uint8_t rsp_dummy[1] = {};
int ret, xfer;
if (req_len < 2 || req_len > 64 || rsp_len > 128 ||
!req || (rsp_len > 0 && !rsp))
return SR_ERR_ARG;
req_enc = g_malloc(req_len);
encrypt(sdi, req, req_enc, req_len);
ret = libusb_bulk_transfer(usb->devhdl, 1, req_enc, req_len, &xfer, 1000);
if (ret != 0) {
sr_dbg("Failed to send request 0x%02x: %s.",
req[1], libusb_error_name(ret));
return SR_ERR;
}
if (xfer != req_len) {
sr_dbg("Failed to send request 0x%02x: incorrect length "
"%d != %d.", req[1], xfer, req_len);
return SR_ERR;
}
return TRUE;
if (req[0] == 0x20) { // reseed
return SR_OK;
} else if (rsp_len == 0) {
rsp = rsp_dummy;
rsp_len = sizeof(rsp_dummy);
}
ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, rsp, rsp_len,
&xfer, 1000);
if (ret != 0) {
sr_dbg("Failed to receive response to request 0x%02x: %s.",
req[1], libusb_error_name(ret));
return SR_ERR;
}
if (xfer != rsp_len) {
sr_dbg("Failed to receive response to request 0x%02x: "
"incorrect length %d != %d.", req[1], xfer, rsp_len);
return SR_ERR;
}
decrypt(sdi, rsp, rsp_len);
return SR_OK;
}
static int reseed(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
uint8_t req[] = {0x20, 0x24, 0x4b, 0x35, 0x8e};
devc->lfsr = 0;
return transact(sdi, req, sizeof(req), NULL, 0);
}
static int write_regs(const struct sr_dev_inst *sdi, uint8_t (*regs)[2], uint8_t cnt)
{
uint8_t req[64];
int i;
if (cnt < 1 || cnt > 30)
return SR_ERR_ARG;
req[0] = 0x00;
req[1] = COMMAND_WRITE_REG;
req[2] = cnt;
for (i = 0; i < cnt; i++) {
req[3 + 2 * i] = regs[i][0];
req[4 + 2 * i] = regs[i][1];
}
return transact(sdi, req, 3 + 2*cnt, NULL, 0);
}
static int write_reg(const struct sr_dev_inst *sdi,
uint8_t address, uint8_t value)
{
uint8_t regs[2] = {address, value};
return write_regs(sdi, &regs, 1);
}
static int get_firmware_version(const struct sr_dev_inst *sdi)
{
uint8_t req[2] = {0x00, COMMAND_READ_FW_VER};
uint8_t rsp[128] = {};
int ret;
ret = transact(sdi, req, sizeof(req), rsp, sizeof(rsp));
if (ret == SR_OK) {
rsp[63] = 0;
sr_dbg("fw-version: %s", rsp);
}
return ret;
}
static int read_i2c(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t len)
{
uint8_t req[5];
uint8_t rsp[1+128];
int ret;
if (len < 1 || len > 128 || !data)
return SR_ERR_ARG;
req[0] = 0x00;
req[1] = COMMAND_READ_I2C;
req[2] = 0xc0; // fixed address
req[3] = len;
req[4] = 0; // len msb?
ret = transact(sdi, req, sizeof(req), rsp, 1 + len);
if (ret != SR_OK) {
return ret;
}
if (rsp[0] != 0x02) {
sr_dbg("Failed to do I2C read (0x%02x).", rsp[0]);
return SR_ERR;
}
memcpy(data, rsp+1, len);
return SR_OK;
}
static int write_i2c(const struct sr_dev_inst *sdi, const uint8_t *data, uint8_t len)
{
uint8_t req[5 + 128];
uint8_t rsp[1];
int ret;
if (len < 1 || len > 128 || !data)
return SR_ERR_ARG;
req[0] = 0x00;
req[1] = COMMAND_WRITE_I2C;
req[2] = 0xc0; // fixed address
req[3] = len;
req[4] = 0; // len msb?
memcpy(req + 5, data, len);
ret = transact(sdi, req, 5 + len, rsp, sizeof(rsp));
if (ret != SR_OK) {
return ret;
}
if (rsp[0] != 0x02) {
sr_dbg("Failed to do I2C write (0x%02x).", rsp[0]);
return SR_ERR;
}
return SR_OK;
}
static int wake_i2c(const struct sr_dev_inst *sdi)
{
uint8_t req[] = {0x00, COMMAND_WAKE_I2C};
uint8_t rsp[1] = {};
uint8_t i2c_rsp[1+1+2] = {};
int ret;
ret = transact(sdi, req, sizeof(req), rsp, sizeof(rsp));
if (ret != SR_OK) {
return ret;
}
if (rsp[0] != 0x00) {
sr_dbg("Failed to do I2C wake trigger (0x%02x).", rsp[0]);
return SR_ERR;
}
ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
if (ret != SR_OK) {
return ret;
}
if (i2c_rsp[1] != 0x11) {
sr_dbg("Failed to do I2C wake read (0x%02x).", i2c_rsp[0]);
return SR_ERR;
}
return SR_OK;
}
static int crypto_random(const struct sr_dev_inst *sdi, uint8_t *data)
{
uint8_t i2c_req[8] = {0x03, 0x07, 0x1b, 0x00, 0x00, 0x00, 0x24, 0xcd};
uint8_t i2c_rsp[1+32+2] = {};
int ret;
ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
if (ret != SR_OK) {
return ret;
}
g_usleep(100000); // TODO: poll instead
ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
if (ret != SR_OK) {
return ret;
}
if (data) {
memcpy(data, i2c_rsp+1, 32);
}
return SR_OK;
}
static int crypto_nonce(const struct sr_dev_inst *sdi, uint8_t *data)
{
uint8_t i2c_req[6+20+2] = {0x03, 0x1b, 0x16, 0x00, 0x00, 0x00};
uint8_t i2c_rsp[1+32+2] = {};
int ret;
// CRC
i2c_req[26] = 0x7d;
i2c_req[27] = 0xe0;
ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
if (ret != SR_OK) {
return ret;
}
g_usleep(100000); // TODO: poll instead
ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
if (ret != SR_OK) {
return ret;
}
if (data) {
memcpy(data, i2c_rsp+1, 32);
}
return SR_OK;
}
static int crypto_sign(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t *crc)
{
uint8_t i2c_req[8] = {0x03, 0x07, 0x41, 0x80, 0x00, 0x00, 0x28, 0x05};
uint8_t i2c_rsp[1+64+2] = {};
int ret;
ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
if (ret != SR_OK) {
return ret;
}
g_usleep(100000); // TODO: poll instead
ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
if (ret != SR_OK) {
return ret;
}
memcpy(data, i2c_rsp+1, 64);
memcpy(crc, i2c_rsp+1+64, 2);
return SR_OK;
}
static int authenticate(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
uint8_t random[32] = {};
uint8_t nonce[32] = {};
uint8_t sig[64] = {};
uint8_t sig_crc[64] = {};
uint32_t lfsr;
int i, ret;
ret = wake_i2c(sdi);
if (ret != SR_OK)
return ret;
ret = crypto_random(sdi, random);
if (ret != SR_OK)
return ret;
sr_dbg("random: 0x%02x 0x%02x 0x%02x 0x%02x", random[0], random[1], random[2], random[3]);
ret = crypto_nonce(sdi, nonce);
if (ret != SR_OK)
return ret;
sr_dbg("nonce: 0x%02x 0x%02x 0x%02x 0x%02x", nonce[0], nonce[1], nonce[2], nonce[3]);
ret = crypto_nonce(sdi, nonce);
if (ret != SR_OK)
return ret;
sr_dbg("nonce: 0x%02x 0x%02x 0x%02x 0x%02x", nonce[0], nonce[1], nonce[2], nonce[3]);
ret = crypto_sign(sdi, sig, sig_crc);
if (ret != SR_OK)
return ret;
sr_dbg("sig: 0x%02x 0x%02x 0x%02x 0x%02x", sig[0], sig[1], sig[2], sig[3]);
sr_dbg("sig crc: 0x%02x 0x%02x", sig_crc[0], sig_crc[1]);
lfsr = 0;
for (i = 0; i < 28; i++)
lfsr ^= nonce[i] << (8*(i%4));
lfsr ^= sig_crc[0] | sig_crc[1] << 8;
sr_dbg("Authenticate 0x%08x -> 0x%08x", devc->lfsr, lfsr);
devc->lfsr = lfsr;
return SR_OK;
}
static int set_led(const struct sr_dev_inst *sdi, uint8_t r, uint8_t g, uint8_t b)
{
uint8_t regs[][2] = {
{REG_LED_RED, r},
{REG_LED_GREEN, g},
{REG_LED_BLUE, b},
};
authenticate(sdi);
return write_regs(sdi, regs, G_N_ELEMENTS(regs));
}
static int configure_channels(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
const struct sr_channel *c;
const GSList *l;
uint16_t mask;
devc->dig_channel_cnt = 0;
devc->dig_channel_mask = 0;
for (l = sdi->channels; l; l = l->next) {
c = l->data;
if (!c->enabled)
continue;
mask = 1 << c->index;
devc->dig_channel_masks[devc->dig_channel_cnt++] = mask;
devc->dig_channel_mask |= mask;
}
sr_dbg("%d channels enabled (0x%04x)",
devc->dig_channel_cnt,
devc->dig_channel_mask);
return SR_OK;
}
SR_PRIV int saleae_logicpro_init(const struct sr_dev_inst *sdi)
{
reseed(sdi);
get_firmware_version(sdi);
/* setting the LED doesn't work yet */
/* set_led(sdi, 0x00, 0x00, 0xff); */
return SR_OK;
}
SR_PRIV int saleae_logicpro_prepare(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
uint8_t regs_unknown[][2] = {
{0x03, 0x0f},
{0x04, 0x00},
{0x05, 0x00},
};
uint8_t regs_config[][2] = {
{0x00, 0x00},
{0x08, 0x00}, /* analog channel mask (LSB) */
{0x09, 0x00}, /* analog channel mask (MSB) */
{0x06, 0x01}, /* digital channel mask (LSB) */
{0x07, 0x00}, /* digital channel mask (MSB) */
{0x0a, 0x00}, /* analog sample rate? */
{0x0b, 0x64}, /* digital sample rate? */
{0x0c, 0x00},
{0x0d, 0x00}, /* analog mux rate? */
{0x0e, 0x01}, /* digital mux rate? */
{0x12, 0x04},
{0x13, 0x00},
{0x14, 0xff}, /* pre-divider? */
};
uint8_t start_req[] = {0x00, 0x01};
uint8_t start_rsp[2] = {};
configure_channels(sdi);
/* digital channel mask and muxing */
regs_config[3][1] = devc->dig_channel_mask;
regs_config[4][1] = devc->dig_channel_mask >> 8;
regs_config[9][1] = devc->dig_channel_cnt;
/* samplerate */
switch (devc->dig_samplerate) {
case SR_MHZ(1):
regs_config[6][1] = 0x64;
break;
case SR_MHZ(2):
regs_config[6][1] = 0x32;
break;
case SR_KHZ(2500):
regs_config[6][1] = 0x28;
break;
case SR_MHZ(10):
regs_config[6][1] = 0x0a;
break;
case SR_MHZ(25):
regs_config[6][1] = 0x04;
regs_config[12][1] = 0x80;
break;
case SR_MHZ(50):
regs_config[6][1] = 0x02;
regs_config[12][1] = 0x40;
break;
default:
return SR_ERR_ARG;
}
authenticate(sdi);
write_reg(sdi, 0x15, 0x03);
write_regs(sdi, regs_unknown, G_N_ELEMENTS(regs_unknown));
write_regs(sdi, regs_config, G_N_ELEMENTS(regs_config));
transact(sdi, start_req, sizeof(start_req), start_rsp, sizeof(start_rsp));
return SR_OK;
}
SR_PRIV int saleae_logicpro_start(const struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
devc->conv_size = 0;
devc->batch_index = 0;
write_reg(sdi, 0x00, 0x01);
return SR_OK;
}
SR_PRIV int saleae_logicpro_stop(const struct sr_dev_inst *sdi)
{
uint8_t stop_req[] = {0x00, 0x02};
uint8_t stop_rsp[2] = {};
write_reg(sdi, 0x00, 0x00);
transact(sdi, stop_req, sizeof(stop_req), stop_rsp, sizeof(stop_rsp));
return SR_OK;
}
static void saleae_logicpro_send_data(const struct sr_dev_inst *sdi,
void *data, size_t length, size_t unitsize)
{
const struct sr_datafeed_logic logic = {
.length = length,
.unitsize = unitsize,
.data = data
};
const struct sr_datafeed_packet packet = {
.type = SR_DF_LOGIC,
.payload = &logic
};
sr_session_send(sdi, &packet);
}
/*
* One batch from the device consists of 32 samples per active digital channel.
* This stream of batches is packed into USB packets with 16384 bytes each.
*/
static void saleae_logicpro_convert_data(const struct sr_dev_inst *sdi,
const uint32_t *src, size_t srccnt)
{
struct dev_context *devc = sdi->priv;
uint8_t *dst = devc->conv_buffer;
uint32_t samples;
uint16_t channel_mask;
unsigned int sample_index, batch_index;
uint16_t *dst_batch;
/* copy partial batch to the beginning */
memcpy(dst, dst+devc->conv_size, CONV_BATCH_SIZE);
/* reset converted size */
devc->conv_size = 0;
batch_index = devc->batch_index;
while (srccnt--) {
samples = *src++;
dst_batch = (uint16_t*)dst;
/* first index of the batch */
if (batch_index == 0)
memset(dst, 0, CONV_BATCH_SIZE);
/* convert one channel */
channel_mask = devc->dig_channel_masks[batch_index];
for (sample_index = 0; sample_index <= 31; sample_index++)
if ((samples >> (31-sample_index)) & 1)
dst_batch[sample_index] |= channel_mask;
/* last index of the batch */
if (++batch_index == devc->dig_channel_cnt) {
devc->conv_size += CONV_BATCH_SIZE;
batch_index = 0;
dst += CONV_BATCH_SIZE;
}
}
devc->batch_index = batch_index;
}
SR_PRIV void LIBUSB_CALL saleae_logicpro_receive_data(struct libusb_transfer *transfer)
{
const struct sr_dev_inst *sdi = transfer->user_data;
struct dev_context *devc = sdi->priv;
int ret;
switch (transfer->status) {
case LIBUSB_TRANSFER_NO_DEVICE:
sr_dbg("FIXME no device");
return;
case LIBUSB_TRANSFER_COMPLETED:
case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
break;
default:
// FIXME
return;
}
saleae_logicpro_convert_data(sdi, (uint32_t*)transfer->buffer, 16*1024/4);
saleae_logicpro_send_data(sdi, devc->conv_buffer, devc->conv_size, 2);
if ((ret = libusb_submit_transfer(transfer)) != LIBUSB_SUCCESS)
sr_dbg("FIXME resubmit failed");
}

View File

@ -27,18 +27,40 @@
#define LOG_PREFIX "saleae-logicpro"
/* 16 channels * 32 samples */
#define CONV_BATCH_SIZE (2*32)
/* one packet + one partial conversion:
* worst case is only one active channel converted to 2 bytes per sample, with
* 8*16384 samples per packet
*/
#define CONV_BUFFER_SIZE (2*8*16384 + CONV_BATCH_SIZE)
/** Private, per-device-instance driver context. */
struct dev_context {
/* Model-specific information */
/* Acquisition settings */
unsigned int dig_channel_cnt;
uint16_t dig_channel_mask;
uint16_t dig_channel_masks[16];
uint64_t dig_samplerate;
/* Operational state */
uint32_t lfsr;
/* Temporary state across callbacks */
unsigned int num_transfers;
unsigned int submitted_transfers;
struct libusb_transfer **transfers;
/* Conversion buffer */
uint8_t *conv_buffer;
unsigned int conv_size;
unsigned int batch_index;
};
SR_PRIV int saleae_logicpro_receive_data(int fd, int revents, void *cb_data);
SR_PRIV int saleae_logicpro_init(const struct sr_dev_inst *sdi);
SR_PRIV int saleae_logicpro_prepare(const struct sr_dev_inst *sdi);
SR_PRIV int saleae_logicpro_start(const struct sr_dev_inst *sdi);
SR_PRIV int saleae_logicpro_stop(const struct sr_dev_inst *sdi);
SR_PRIV void LIBUSB_CALL saleae_logicpro_receive_data(struct libusb_transfer *transfer);
#endif