ASIX SIGMA: Coding style fixes (via indent mostly).

Also, end all/most comments with full stop and avoid variable/array
definitions in the middle of functions.
This commit is contained in:
Uwe Hermann 2010-04-28 00:17:28 +02:00
parent 204b1629bd
commit fefa18001a
2 changed files with 126 additions and 155 deletions

View File

@ -26,8 +26,7 @@
#include <ftdi.h> #include <ftdi.h>
#include <string.h> #include <string.h>
#include <zlib.h> #include <zlib.h>
#include <sigrok.h>
#include "sigrok.h"
#include "asix-sigma.h" #include "asix-sigma.h"
#define USB_VENDOR 0xa600 #define USB_VENDOR 0xa600
@ -67,27 +66,44 @@ static int capabilities[] = {
0, 0,
}; };
static int sigma_read(void* buf, size_t size) /* Force the FPGA to reboot. */
static uint8_t suicide[] = {
0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
};
/* Prepare to upload firmware (FPGA specific). */
static uint8_t init[] = {
0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
};
/* Initialize the logic analyzer mode. */
static uint8_t logic_mode_start[] = {
0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
};
static int sigma_read(void *buf, size_t size)
{ {
int ret; int ret;
ret = ftdi_read_data(&ftdic, (unsigned char*) buf, size);
ret = ftdi_read_data(&ftdic, (unsigned char *)buf, size);
if (ret < 0) { if (ret < 0) {
g_warning("ftdi_read_data failed: %s", g_warning("ftdi_read_data failed: %s",
ftdi_get_error_string(&ftdic)); ftdi_get_error_string(&ftdic));
} }
return ret; return ret;
} }
static int sigma_write(void* buf, size_t size) static int sigma_write(void *buf, size_t size)
{ {
int ret; int ret;
ret = ftdi_write_data(&ftdic, (unsigned char*) buf, size);
ret = ftdi_write_data(&ftdic, (unsigned char *)buf, size);
if (ret < 0) { if (ret < 0) {
g_warning("ftdi_write_data failed: %s", g_warning("ftdi_write_data failed: %s",
ftdi_get_error_string(&ftdic)); ftdi_get_error_string(&ftdic));
} } else if ((size_t) ret != size) {
else if ((size_t) ret != size) {
g_warning("ftdi_write_data did not complete write\n"); g_warning("ftdi_write_data did not complete write\n");
} }
@ -103,7 +119,7 @@ static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len)
buf[idx++] = REG_ADDR_LOW | (reg & 0xf); buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
buf[idx++] = REG_ADDR_HIGH | (reg >> 4); buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
for (i=0; i<len; ++i) { for (i = 0; i < len; ++i) {
buf[idx++] = REG_DATA_LOW | (data[i] & 0xf); buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4); buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
} }
@ -119,9 +135,9 @@ static int sigma_set_register(uint8_t reg, uint8_t value)
static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len) static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len)
{ {
uint8_t buf[3]; uint8_t buf[3];
buf[0] = REG_ADDR_LOW | (reg & 0xf); buf[0] = REG_ADDR_LOW | (reg & 0xf);
buf[1] = REG_ADDR_HIGH | (reg >> 4); buf[1] = REG_ADDR_HIGH | (reg >> 4);
buf[2] = REG_READ_ADDR; buf[2] = REG_READ_ADDR;
sigma_write(buf, sizeof(buf)); sigma_write(buf, sizeof(buf));
@ -132,6 +148,7 @@ static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len)
static uint8_t sigma_get_register(uint8_t reg) static uint8_t sigma_get_register(uint8_t reg)
{ {
uint8_t value; uint8_t value;
if (1 != sigma_read_register(reg, &value, 1)) { if (1 != sigma_read_register(reg, &value, 1)) {
g_warning("Sigma_get_register: 1 byte expected"); g_warning("Sigma_get_register: 1 byte expected");
return 0; return 0;
@ -152,7 +169,6 @@ static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos)
REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG,
REG_READ_ADDR | NEXT_REG, REG_READ_ADDR | NEXT_REG,
}; };
uint8_t result[6]; uint8_t result[6];
sigma_write(buf, sizeof(buf)); sigma_write(buf, sizeof(buf));
@ -171,23 +187,23 @@ static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data)
uint8_t buf[4096]; uint8_t buf[4096];
int idx = 0; int idx = 0;
/* Send the startchunk. Index start with 1 */ /* Send the startchunk. Index start with 1. */
buf[0] = startchunk >> 8; buf[0] = startchunk >> 8;
buf[1] = startchunk & 0xff; buf[1] = startchunk & 0xff;
sigma_write_register(WRITE_MEMROW, buf, 2); sigma_write_register(WRITE_MEMROW, buf, 2);
/* Read the DRAM */ /* Read the DRAM. */
buf[idx++] = REG_DRAM_BLOCK; buf[idx++] = REG_DRAM_BLOCK;
buf[idx++] = REG_DRAM_WAIT_ACK; buf[idx++] = REG_DRAM_WAIT_ACK;
for (i = 0; i < numchunks; ++i) { for (i = 0; i < numchunks; ++i) {
/* Alternate bit to copy from dram to cache */ /* Alternate bit to copy from DRAM to cache. */
if (i != numchunks-1) if (i != (numchunks - 1))
buf[idx++] = REG_DRAM_BLOCK | (((i+1) % 2) << 4); buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4); buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
if (i != numchunks-1) if (i != (numchunks - 1))
buf[idx++] = REG_DRAM_WAIT_ACK; buf[idx++] = REG_DRAM_WAIT_ACK;
} }
@ -196,12 +212,11 @@ static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data)
return sigma_read(data, numchunks * CHUNK_SIZE); return sigma_read(data, numchunks * CHUNK_SIZE);
} }
/* Generate the bitbang stream for programming the FPGA. */
/* Generate the bitbang stream for programming the FPGA */
static int bin2bitbang(const char *filename, static int bin2bitbang(const char *filename,
unsigned char **buf, size_t* buf_size) unsigned char **buf, size_t *buf_size)
{ {
FILE *f = fopen(filename, "r"); FILE *f;
long file_size; long file_size;
unsigned long offset = 0; unsigned long offset = 0;
unsigned char *p; unsigned char *p;
@ -209,8 +224,10 @@ static int bin2bitbang(const char *filename,
uLongf csize, fwsize; uLongf csize, fwsize;
const int buffer_size = 65536; const int buffer_size = 65536;
size_t i; size_t i;
int c, ret; int c, ret, bit, v;
uint32_t imm = 0x3f6df2ab;
f = fopen(filename, "r");
if (!f) { if (!f) {
g_warning("fopen(\"%s\", \"r\")", filename); g_warning("fopen(\"%s\", \"r\")", filename);
return -1; return -1;
@ -226,7 +243,6 @@ static int bin2bitbang(const char *filename,
fseek(f, 0, SEEK_SET); fseek(f, 0, SEEK_SET);
compressed_buf = g_malloc(file_size); compressed_buf = g_malloc(file_size);
firmware = g_malloc(buffer_size); firmware = g_malloc(buffer_size);
@ -235,7 +251,6 @@ static int bin2bitbang(const char *filename,
return -1; return -1;
} }
uint32_t imm = 0x3f6df2ab;
csize = 0; csize = 0;
while ((c = getc(f)) != EOF) { while ((c = getc(f)) != EOF) {
imm = (imm + 0xa853753) % 177 + (imm * 0x8034052); imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
@ -256,7 +271,7 @@ static int bin2bitbang(const char *filename,
*buf_size = fwsize * 2 * 8; *buf_size = fwsize * 2 * 8;
*buf = p = (unsigned char*) g_malloc(*buf_size); *buf = p = (unsigned char *)g_malloc(*buf_size);
if (!p) { if (!p) {
g_warning("Error allocating buffers"); g_warning("Error allocating buffers");
@ -264,9 +279,8 @@ static int bin2bitbang(const char *filename,
} }
for (i = 0; i < fwsize; ++i) { for (i = 0; i < fwsize; ++i) {
int bit;
for (bit = 7; bit >= 0; --bit) { for (bit = 7; bit >= 0; --bit) {
int v = firmware[i] & 1 << bit ? 0x40 : 0x00; v = firmware[i] & 1 << bit ? 0x40 : 0x00;
p[offset++] = v | 0x01; p[offset++] = v | 0x01;
p[offset++] = v; p[offset++] = v;
} }
@ -277,8 +291,8 @@ static int bin2bitbang(const char *filename,
if (offset != *buf_size) { if (offset != *buf_size) {
g_free(*buf); g_free(*buf);
g_warning("Error reading firmware %s " g_warning("Error reading firmware %s "
"offset=%ld, file_size=%ld, buf_size=%zd\n", "offset=%ld, file_size=%ld, buf_size=%zd\n",
filename, offset, file_size, *buf_size); filename, offset, file_size, *buf_size);
return -1; return -1;
} }
@ -294,11 +308,12 @@ static int hw_init(char *deviceinfo)
ftdi_init(&ftdic); ftdi_init(&ftdic);
/* Look for SIGMAs */ /* Look for SIGMAs. */
if (ftdi_usb_open_desc(&ftdic, USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL) < 0) if (ftdi_usb_open_desc(&ftdic, USB_VENDOR, USB_PRODUCT,
USB_DESCRIPTION, NULL) < 0)
return 0; return 0;
/* Register SIGMA device */ /* Register SIGMA device. */
sdi = sigrok_device_instance_new(0, ST_INITIALIZING, sdi = sigrok_device_instance_new(0, ST_INITIALIZING,
USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION); USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
if (!sdi) if (!sdi)
@ -306,13 +321,12 @@ static int hw_init(char *deviceinfo)
device_instances = g_slist_append(device_instances, sdi); device_instances = g_slist_append(device_instances, sdi);
/* We will open the device again when we need it */ /* We will open the device again when we need it. */
ftdi_usb_close(&ftdic); ftdi_usb_close(&ftdic);
return 1; return 1;
} }
static int hw_opendev(int device_index) static int hw_opendev(int device_index)
{ {
int ret; int ret;
@ -322,101 +336,81 @@ static int hw_opendev(int device_index)
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
unsigned char result[32]; unsigned char result[32];
/* Make sure it's an ASIX SIGMA */ /* Make sure it's an ASIX SIGMA. */
if ((ret = ftdi_usb_open_desc(&ftdic, if ((ret = ftdi_usb_open_desc(&ftdic,
USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) { USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
g_warning("ftdi_usb_open failed: %s", g_warning("ftdi_usb_open failed: %s",
ftdi_get_error_string(&ftdic)); ftdi_get_error_string(&ftdic));
return 0; return 0;
} }
if ((ret = ftdi_set_bitmode(&ftdic, 0xdf, BITMODE_BITBANG)) < 0) { if ((ret = ftdi_set_bitmode(&ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
g_warning("ftdi_set_bitmode failed: %s", g_warning("ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&ftdic)); ftdi_get_error_string(&ftdic));
return 0; return 0;
} }
/* Four times the speed of sigmalogan - Works well */ /* Four times the speed of sigmalogan - Works well. */
if ((ret = ftdi_set_baudrate(&ftdic, 750000)) < 0) { if ((ret = ftdi_set_baudrate(&ftdic, 750000)) < 0) {
g_warning("ftdi_set_baudrate failed: %s", g_warning("ftdi_set_baudrate failed: %s",
ftdi_get_error_string(&ftdic)); ftdi_get_error_string(&ftdic));
return 0; return 0;
} }
/* Force the FPGA to reboot */ /* Force the FPGA to reboot. */
unsigned char suicide[] = {
0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
};
sigma_write(suicide, sizeof(suicide)); sigma_write(suicide, sizeof(suicide));
sigma_write(suicide, sizeof(suicide)); sigma_write(suicide, sizeof(suicide));
sigma_write(suicide, sizeof(suicide)); sigma_write(suicide, sizeof(suicide));
sigma_write(suicide, sizeof(suicide)); sigma_write(suicide, sizeof(suicide));
/* Prepare to upload firmware (FPGA specific) */ /* Prepare to upload firmware (FPGA specific). */
unsigned char init[] = {
0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01
};
sigma_write(init, sizeof(init)); sigma_write(init, sizeof(init));
ftdi_usb_purge_buffers(&ftdic); ftdi_usb_purge_buffers(&ftdic);
/* Wait until the FPGA asserts INIT_B */ /* Wait until the FPGA asserts INIT_B. */
while (1) { while (1) {
ret = sigma_read(result, 1); ret = sigma_read(result, 1);
if (result[0] & 0x20) if (result[0] & 0x20)
break; break;
} }
/* Prepare firmware */ /* Prepare firmware. */
if (-1 == bin2bitbang(FIRMWARE, &buf, &buf_size)) { if (-1 == bin2bitbang(FIRMWARE, &buf, &buf_size)) {
g_warning("An error occured while reading the firmware: %s", g_warning("An error occured while reading the firmware: %s",
FIRMWARE); FIRMWARE);
return SIGROK_ERR; return SIGROK_ERR;
} }
/* Upload firmare */ /* Upload firmare. */
sigma_write(buf, buf_size); sigma_write(buf, buf_size);
g_free(buf); g_free(buf);
if ((ret = ftdi_set_bitmode(&ftdic, 0x00, BITMODE_RESET)) < 0) { if ((ret = ftdi_set_bitmode(&ftdic, 0x00, BITMODE_RESET)) < 0) {
g_warning("ftdi_set_bitmode failed: %s", g_warning("ftdi_set_bitmode failed: %s",
ftdi_get_error_string(&ftdic)); ftdi_get_error_string(&ftdic));
return SIGROK_ERR; return SIGROK_ERR;
} }
ftdi_usb_purge_buffers(&ftdic); ftdi_usb_purge_buffers(&ftdic);
/* Discard garbage */ /* Discard garbage. */
while (1 == sigma_read(&pins, 1)) while (1 == sigma_read(&pins, 1))
; ;
/* Initialize the logic analyzer mode */ /* Initialize the logic analyzer mode. */
unsigned char logic_mode_start[] = {
0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38
};
sigma_write(logic_mode_start, sizeof(logic_mode_start)); sigma_write(logic_mode_start, sizeof(logic_mode_start));
/* Expect a 3 byte reply */ /* Expect a 3 byte reply. */
ret = sigma_read(result, 3); ret = sigma_read(result, 3);
if (ret != 3 || if (ret != 3 ||
result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) { result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
g_warning("Configuration failed. Invalid reply received.");
g_warning("Sigma configuration failed. Invalid reply received.");
return SIGROK_ERR; return SIGROK_ERR;
} }
/* Works like a charm */ /* Works like a charm... */
if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
return SIGROK_ERR; return SIGROK_ERR;
@ -428,7 +422,6 @@ static int hw_opendev(int device_index)
return SIGROK_OK; return SIGROK_OK;
} }
static void hw_closedev(int device_index) static void hw_closedev(int device_index)
{ {
device_index = device_index; device_index = device_index;
@ -436,12 +429,10 @@ static void hw_closedev(int device_index)
ftdi_usb_close(&ftdic); ftdi_usb_close(&ftdic);
} }
static void hw_cleanup(void) static void hw_cleanup(void)
{ {
} }
static void *hw_get_device_info(int device_index, int device_info_id) static void *hw_get_device_info(int device_index, int device_info_id)
{ {
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
@ -463,7 +454,7 @@ static void *hw_get_device_info(int device_index, int device_info_id)
info = &samplerates; info = &samplerates;
break; break;
case DI_TRIGGER_TYPES: case DI_TRIGGER_TYPES:
info = 0;//TRIGGER_TYPES; info = 0; //TRIGGER_TYPES;
break; break;
case DI_CUR_SAMPLERATE: case DI_CUR_SAMPLERATE:
info = &cur_samplerate; info = &cur_samplerate;
@ -473,7 +464,6 @@ static void *hw_get_device_info(int device_index, int device_info_id)
return info; return info;
} }
static int hw_get_status(int device_index) static int hw_get_status(int device_index)
{ {
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
@ -485,7 +475,6 @@ static int hw_get_status(int device_index)
return ST_NOT_FOUND; return ST_NOT_FOUND;
} }
static int *hw_get_capabilities(void) static int *hw_get_capabilities(void)
{ {
return capabilities; return capabilities;
@ -501,7 +490,7 @@ static int hw_set_configuration(int device_index, int capability, void *value)
return SIGROK_ERR; return SIGROK_ERR;
if (capability == HWCAP_SAMPLERATE) { if (capability == HWCAP_SAMPLERATE) {
tmp_u64 = (uint64_t*) value; tmp_u64 = (uint64_t *) value;
/* Only 200 MHz implemented */ /* Only 200 MHz implemented */
ret = SIGROK_OK; ret = SIGROK_OK;
} else if (capability == HWCAP_PROBECONFIG) { } else if (capability == HWCAP_PROBECONFIG) {
@ -516,67 +505,65 @@ static int hw_set_configuration(int device_index, int capability, void *value)
return ret; return ret;
} }
/* /*
Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster. * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
Each event is 20ns apart, and can contain multiple samples. * Each event is 20ns apart, and can contain multiple samples.
For 200 MHz, an event contains 4 samples for each channel, spread 5 ns apart * For 200 MHz, an event contains 4 samples for each channel,
* spread 5 ns apart.
*/ */
static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts, static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
uint8_t *lastsample, void *user_data) uint8_t *lastsample, void *user_data)
{ {
const int samples_per_event = 4; const int samples_per_event = 4;
uint16_t tsdiff; uint16_t tsdiff, ts;
uint16_t ts;
uint8_t samples[65536 * samples_per_event]; uint8_t samples[65536 * samples_per_event];
struct datafeed_packet packet; struct datafeed_packet packet;
int i, j, k, numpad, tosend;
int i, j, k; size_t n = 0, sent = 0;
size_t n = 0;
int clustersize = EVENTS_PER_CLUSTER * samples_per_event; /* 4 for 200 MHz */ int clustersize = EVENTS_PER_CLUSTER * samples_per_event; /* 4 for 200 MHz */
uint16_t *event;
/* For each ts */ /* For each ts */
for (i = 0; i < 64; ++i) { for (i = 0; i < 64; ++i) {
ts = *(uint16_t*) &buf[i*16]; ts = *(uint16_t *) &buf[i * 16];
tsdiff = ts - *lastts; tsdiff = ts - *lastts;
*lastts = ts; *lastts = ts;
/* Pad last sample up to current point */ /* Pad last sample up to current point. */
int numpad = tsdiff * samples_per_event - clustersize; numpad = tsdiff * samples_per_event - clustersize;
if (numpad > 0) { if (numpad > 0) {
memset(samples, *lastsample, memset(samples, *lastsample,
tsdiff*samples_per_event - clustersize); tsdiff * samples_per_event - clustersize);
n = tsdiff*samples_per_event - clustersize; n = tsdiff * samples_per_event - clustersize;
} }
uint16_t *event = (uint16_t*) &buf[i*16+2]; event = (uint16_t *) &buf[i * 16 + 2];
/* For each sample in cluster */ /* For each sample in cluster. */
for (j = 0; j < 7; ++j) { for (j = 0; j < 7; ++j) {
for (k = 0; k < samples_per_event; ++k) { for (k = 0; k < samples_per_event; ++k) {
/* Extract samples from bytestream. /*
Samples are packed together in a short */ * Extract samples from bytestream.
* Samples are packed together in a short.
*/
samples[n++] = samples[n++] =
((!!(event[j] & (1 << (k+0x0)))) << 0) | ((!!(event[j] & (1 << (k + 0x0)))) << 0) |
((!!(event[j] & (1 << (k+0x4)))) << 1) | ((!!(event[j] & (1 << (k + 0x4)))) << 1) |
((!!(event[j] & (1 << (k+0x8)))) << 2) | ((!!(event[j] & (1 << (k + 0x8)))) << 2) |
((!!(event[j] & (1 << (k+0xc)))) << 3); ((!!(event[j] & (1 << (k + 0xc)))) << 3);
} }
} }
*lastsample = samples[n-1]; *lastsample = samples[n - 1];
/* Send to sigrok */ /* Send to sigrok. */
size_t sent = 0; sent = 0;
while (sent < n) { while (sent < n) {
int tosend = MIN(4096, n-sent); tosend = MIN(4096, n - sent);
packet.type = DF_LOGIC8; packet.type = DF_LOGIC8;
packet.length = tosend; packet.length = tosend;
packet.payload = samples+sent; packet.payload = samples + sent;
session_bus(user_data, &packet); session_bus(user_data, &packet);
sent += tosend; sent += tosend;
@ -589,59 +576,52 @@ static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
static int receive_data(int fd, int revents, void *user_data) static int receive_data(int fd, int revents, void *user_data)
{ {
struct datafeed_packet packet; struct datafeed_packet packet;
const int chunks_per_read = 32; const int chunks_per_read = 32;
unsigned char buf[chunks_per_read * CHUNK_SIZE]; unsigned char buf[chunks_per_read * CHUNK_SIZE];
int bufsz; int bufsz, numchunks, curchunk, i, newchunks;
uint32_t triggerpos, stoppos, running_msec;
uint32_t triggerpos, stoppos;
int numchunks;
struct timeval tv; struct timeval tv;
uint32_t running_msec;
uint16_t lastts = 0; uint16_t lastts = 0;
uint8_t lastsample = 0; uint8_t lastsample = 0;
int curchunk, i;
fd = fd; fd = fd;
revents = revents; revents = revents;
/* Get the current position */ /* Get the current position. */
sigma_read_pos(&stoppos, &triggerpos); sigma_read_pos(&stoppos, &triggerpos);
numchunks = stoppos / 512; numchunks = stoppos / 512;
/* Check if the has expired, or memory is full */ /* Check if the has expired, or memory is full. */
gettimeofday(&tv, 0); gettimeofday(&tv, 0);
running_msec = (tv.tv_sec - start_tv.tv_sec) * 1000 + running_msec = (tv.tv_sec - start_tv.tv_sec) * 1000 +
(tv.tv_usec - start_tv.tv_usec) / 1000; (tv.tv_usec - start_tv.tv_usec) / 1000;
if (running_msec < limit_msec && numchunks < 32767) if (running_msec < limit_msec && numchunks < 32767)
return FALSE; return FALSE;
/* Stop Acqusition */ /* Stop acqusition. */
sigma_set_register(WRITE_MODE, 0x11); sigma_set_register(WRITE_MODE, 0x11);
/* Set SDRAM Read Enable */ /* Set SDRAM Read Enable. */
sigma_set_register(WRITE_MODE, 0x02); sigma_set_register(WRITE_MODE, 0x02);
/* Get the current position */ /* Get the current position. */
sigma_read_pos(&stoppos, &triggerpos); sigma_read_pos(&stoppos, &triggerpos);
/* Download sample data */ /* Download sample data. */
for (curchunk = 0; curchunk < numchunks;) { for (curchunk = 0; curchunk < numchunks;) {
int newchunks = MIN(chunks_per_read, numchunks - curchunk); newchunks = MIN(chunks_per_read, numchunks - curchunk);
g_message("Downloading sample data: %.0f %%", g_message("Downloading sample data: %.0f %%",
100.0 * curchunk / numchunks); 100.0 * curchunk / numchunks);
bufsz = sigma_read_dram(curchunk, newchunks, buf); bufsz = sigma_read_dram(curchunk, newchunks, buf);
/* Find first ts */ /* Find first ts. */
if (curchunk == 0) { if (curchunk == 0)
lastts = *(uint16_t*) buf - 1; lastts = *(uint16_t *) buf - 1;
}
/* Decode chunks and send them to sigrok */ /* Decode chunks and send them to sigrok. */
for (i = 0; i < newchunks; ++i) { for (i = 0; i < newchunks; ++i) {
decode_chunk_ts(buf + (i * CHUNK_SIZE), decode_chunk_ts(buf + (i * CHUNK_SIZE),
&lastts, &lastsample, user_data); &lastts, &lastsample, user_data);
@ -663,6 +643,7 @@ static int hw_start_acquisition(int device_index, gpointer session_device_id)
struct sigrok_device_instance *sdi; struct sigrok_device_instance *sdi;
struct datafeed_packet packet; struct datafeed_packet packet;
struct datafeed_header header; struct datafeed_header header;
uint8_t trigger_option[2] = { 0x38, 0x00 };
session_device_id = session_device_id; session_device_id = session_device_id;
@ -671,29 +652,27 @@ static int hw_start_acquisition(int device_index, gpointer session_device_id)
device_index = device_index; device_index = device_index;
/* Setup trigger (by trigger-in) */ /* Setup trigger (by trigger-in). */
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20); sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20);
/* More trigger setup */ /* More trigger setup. */
uint8_t trigger_option[2] = { 0x38, 0x00 };
sigma_write_register(WRITE_TRIGGER_OPTION, sigma_write_register(WRITE_TRIGGER_OPTION,
trigger_option, sizeof(trigger_option)); trigger_option, sizeof(trigger_option));
/* Trigger normal (falling edge) */ /* Trigger normal (falling edge). */
sigma_set_register(WRITE_TRIGGER_SELECT1, 0x08); sigma_set_register(WRITE_TRIGGER_SELECT1, 0x08);
/* Enable pins (200 MHz, 4 pins) */ /* Enable pins (200 MHz, 4 pins). */
sigma_set_register(WRITE_CLOCK_SELECT, 0xf0); sigma_set_register(WRITE_CLOCK_SELECT, 0xf0);
/* Setup maximum post trigger time */ /* Setup maximum post trigger time. */
sigma_set_register(WRITE_POST_TRIGGER, 0xff); sigma_set_register(WRITE_POST_TRIGGER, 0xff);
/* Start Acqusition (Software trigger start) */ /* Start acqusition (software trigger start). */
gettimeofday(&start_tv, 0); gettimeofday(&start_tv, 0);
sigma_set_register(WRITE_MODE, 0x0d); sigma_set_register(WRITE_MODE, 0x0d);
/* Add capture source. */
/* Add capture source */
source_add(0, G_IO_IN, 10, receive_data, session_device_id); source_add(0, G_IO_IN, 10, receive_data, session_device_id);
receive_data(0, 1, session_device_id); receive_data(0, 1, session_device_id);
@ -712,27 +691,23 @@ static int hw_start_acquisition(int device_index, gpointer session_device_id)
return SIGROK_OK; return SIGROK_OK;
} }
static void hw_stop_acquisition(int device_index, gpointer session_device_id) static void hw_stop_acquisition(int device_index, gpointer session_device_id)
{ {
device_index = device_index; device_index = device_index;
session_device_id = session_device_id; session_device_id = session_device_id;
/* Stop Acqusition */ /* Stop acquisition. */
sigma_set_register(WRITE_MODE, 0x11); sigma_set_register(WRITE_MODE, 0x11);
// XXX Set some state to indicate that data should be sent to sigrok // XXX Set some state to indicate that data should be sent to sigrok
// Now, we just wait for timeout // Now, we just wait for timeout
} }
struct device_plugin asix_sigma_plugin_info = { struct device_plugin asix_sigma_plugin_info = {
"asix-sigma", "asix-sigma",
1, 1,
hw_init, hw_init,
hw_cleanup, hw_cleanup,
hw_opendev, hw_opendev,
hw_closedev, hw_closedev,
hw_get_device_info, hw_get_device_info,
@ -742,5 +717,3 @@ struct device_plugin asix_sigma_plugin_info = {
hw_start_acquisition, hw_start_acquisition,
hw_stop_acquisition hw_stop_acquisition
}; };
// vim:noexpandtab:ts=8 sts=8 sw=8

View File

@ -22,8 +22,7 @@
#ifndef ASIX_SIGMA_H #ifndef ASIX_SIGMA_H
#define ASIX_SIGMA_H #define ASIX_SIGMA_H
enum sigma_write_register enum sigma_write_register {
{
WRITE_CLOCK_SELECT = 0, WRITE_CLOCK_SELECT = 0,
WRITE_TRIGGER_SELECT0 = 1, WRITE_TRIGGER_SELECT0 = 1,
WRITE_TRIGGER_SELECT1 = 2, WRITE_TRIGGER_SELECT1 = 2,
@ -33,11 +32,10 @@ enum sigma_write_register
WRITE_TRIGGER_OPTION = 6, WRITE_TRIGGER_OPTION = 6,
WRITE_PIN_VIEW = 7, WRITE_PIN_VIEW = 7,
WRITE_TEST = 15 WRITE_TEST = 15,
}; };
enum sigma_read_register enum sigma_read_register {
{
READ_ID = 0, READ_ID = 0,
READ_TRIGGER_POS_LOW = 1, READ_TRIGGER_POS_LOW = 1,
READ_TRIGGER_POS_HIGH = 2, READ_TRIGGER_POS_HIGH = 2,
@ -52,7 +50,7 @@ enum sigma_read_register
READ_BLOCK_LAST_TS_HIGH = 11, READ_BLOCK_LAST_TS_HIGH = 11,
READ_PIN_VIEW = 12, READ_PIN_VIEW = 12,
READ_TEST = 15 READ_TEST = 15,
}; };
#define REG_ADDR_LOW (0 << 4) #define REG_ADDR_LOW (0 << 4)