On MinGW, two implementations of printf() are available: either
the Microsoft native one or a standard-conforming replacement from
gnulib. Since we build in C99 mode, headers such as <inttypes.h>
already select the standard-conforming variant. However, MinGW's
GCC does not seem to know about this and assumes MS-style format
syntax by default, which triggers a lot of wrong warnings.
Thus, on MinGW, explicitly decorate sr_log() with the gnu_printf
format flavor attribute. Also use GLib's printf replacements in
the logging implementation to make sure we link to a conforming
printf on any platform, independently of the compiler flags.
This gets rid of the mistaken -Wformat warnings for sr_log(), but
does not cover functions such as g_strdup_printf() which do not
explicitly specify the gnu_printf flavor in the format attribute.
This can be overcome by adding "-D__printf__=__gnu_printf__" to
CPPFLAGS, but it would be inappropriate for libsigrok to define
this on its own.
The confusingly named sr_log_logdomain_set() simply set a global
string prefixed to the log message by the default log callback.
This is pretty much useless, misleadingly named, and not used by
either sigrok-cli or PulseView.
A few of these were pretty serious, like missing arguments,
passing integers where a string was expected, and so on.
In some places, change the types used by the code rather than
just the format strings.
SR_LOG_DBG and above are targeted at developers, so it makes sense
to extend timestamp output to that. Also sanitize the calculation
of the timestamp components a bit.
Get rid of the specicialized sr_err(), sr_warn(), etc. functions.
Instead, define the logging helper macros in terms of sr_log(),
and remove the sr_log() helper macro so that no function is hidden
by a macro anymore.
Decorate sr_log() with G_GNUC_PRINTF to detect varargs errors. This
unearthed a gazillion warnings all over the place which will have
to be fixed.
Also convert the helper macros to ISO C99 __VA_ARGS__ style instead
of relying on a GNU C extension. Paste the log prefix directly into
the format string to make this work.
Some drivers, such as zeroplus-logic-cube, run everything they do
right away in dev_acquisition_start(), never installing any event
sources. Handle that evilness by returning from sr_session_run()
immediately if there are no sources.
Replace the custom session main loop with the GLib main loop.
This is phase one of the port, which leaves the session and
driver APIs unchanged while replacing the internals.
The Hung-Chang DSO-2100 is a parallel port PC oscilloscope sold back
in 1999 under brand names like Protek and Voltcraft.
This inital version of the driver has the following limitations:
- Hardcoded calibration values. All parameters are set to 50%.
- No support for auto triggering
- No support for TV sync trigger modes
- No support for the "scroll acquisition" mode
In scroll acquisition mode the device behaves more like a multimeter
and reports the current voltage of a probe on request. While in this
mode the sample rate is limited by the parallel port interface, it is
the only way to capture both channels at the same time (well, sort of).
Calibration would need auto triggering. The calibration values are very
temperature dependent and the device takes literally hours to reach its
final temperature. Every vdiv setting needs its own set of calibration
values. Without hardware modifications, the calibration settings wear
of in less than a second while waiting for a trigger because the
capacitors storing those values are not recharged in state 0x21.
This is set to | (or left empty) by SR_PROG_MAKE_ORDER_ONLY for
portability reasons, since not all Make implementations support
order-only prerequisites.
This is intended to make people notice when libusb is too old
for the new Windows code. However, this is not foolproof, since
the libusb version may be different at runtime.
Introduce new internal session API for changing the set of polled
file descriptors for an already installed event source. Use the
new API to apply changes to the USB poll FDs when requested to do
so by libusb. Doing so is necessary to make the generic USB code
work on Windows.
Provide SR_ARG_OPT_CHECK, a generalized variant of SRG_ARG_OPT_PKG
that can be used with custom check commands. Implement the latter
in terms of SR_ARG_OPT_CHECK.
There was a problem in scpi_serial.c in the scpi_serial_read_data()
function. Incoming data was written at the read position in the buffer,
although it should be written at the count position in the buffer.
This is another attempt at getting the mess that is libusb event
handling on Windows under control. Until libusb makes its HANDLEs
available for polling, we have no choice but to block while waiting
for libusb events. Since we do not want to force drivers to deal
with multi-threading issues, that means we have to block in the
session main loop.
Fortunately, it turns out that our drivers aren't using multiple
event sources, so it is actually possible to block the main loop
without disrupting too much. This also gets rid of the USB thread
on Windows. Thankfully, libusb does not seem to care that we are
now calling libusb_handle_events_timeout_completed() twice per
iteration: first a blocking call (with timeout) in the callback
wrapper, followed by the non-blocking call in the driver-supplied
callback.
Turns out that having one event source per libusb poll FD is
a bad idea. There is only a single callback for all poll FDs,
and libusb expects to be called only once per poll iteration,
no matter how many FDs triggered.
Also, they should all share the same timeout, which should get
reset on events from any polled FD. The new timeout handling made
this problem apparent, as it caused the callback to be invoked
multiple times on timeouts, once for each separate event source.
In order to fix this, change the implementation to allow for an
arbitrary number of poll FDs per event source. This number is
zero for timer FDs, one for normal I/O sources, and one or more
for libusb sources (Unix only).
Also, on Windows, do not get an additional timeout from libusb
in the event loop. This is only appropriate when polling the
libusb FDs directly, which we aren't doing on Windows.
Handle I/O sources and timer ("dummy") sources within the same
polling loop, so that both may be used together. Slightly change
the API to improve consistency: a timeout value of -1 now disables
the timeout, and 0 makes the source always time out immediately.
The "dummy" sources already behaved that way, although it wasn't
documented as such.
Make sure that I/O events are processed preferentially: Skip any
timeout callbacks if an I/O event occurred within the same poll
iteration. This applies to both timer/idle sources and timeouts
of I/O sources.
Do not create dummy GPollFDs for timer/idle sources. Instead,
split the sources array into an I/O section and a timer section,
and create corresponding GPollFDs only for the I/O section. Use
GArray to simplify the handling of the dynamic arrays.
Keep track of when source timeouts are due and properly compare
against accumulated elapsed time between invocations. This prevents
sources with short timeouts from blocking other sources with longer
timeouts indefinitely.