Get rid of the specicialized sr_err(), sr_warn(), etc. functions.
Instead, define the logging helper macros in terms of sr_log(),
and remove the sr_log() helper macro so that no function is hidden
by a macro anymore.
Decorate sr_log() with G_GNUC_PRINTF to detect varargs errors. This
unearthed a gazillion warnings all over the place which will have
to be fixed.
Also convert the helper macros to ISO C99 __VA_ARGS__ style instead
of relying on a GNU C extension. Paste the log prefix directly into
the format string to make this work.
Replace the custom session main loop with the GLib main loop.
This is phase one of the port, which leaves the session and
driver APIs unchanged while replacing the internals.
Introduce new internal session API for changing the set of polled
file descriptors for an already installed event source. Use the
new API to apply changes to the USB poll FDs when requested to do
so by libusb. Doing so is necessary to make the generic USB code
work on Windows.
This is another attempt at getting the mess that is libusb event
handling on Windows under control. Until libusb makes its HANDLEs
available for polling, we have no choice but to block while waiting
for libusb events. Since we do not want to force drivers to deal
with multi-threading issues, that means we have to block in the
session main loop.
Fortunately, it turns out that our drivers aren't using multiple
event sources, so it is actually possible to block the main loop
without disrupting too much. This also gets rid of the USB thread
on Windows. Thankfully, libusb does not seem to care that we are
now calling libusb_handle_events_timeout_completed() twice per
iteration: first a blocking call (with timeout) in the callback
wrapper, followed by the non-blocking call in the driver-supplied
callback.
Turns out that having one event source per libusb poll FD is
a bad idea. There is only a single callback for all poll FDs,
and libusb expects to be called only once per poll iteration,
no matter how many FDs triggered.
Also, they should all share the same timeout, which should get
reset on events from any polled FD. The new timeout handling made
this problem apparent, as it caused the callback to be invoked
multiple times on timeouts, once for each separate event source.
In order to fix this, change the implementation to allow for an
arbitrary number of poll FDs per event source. This number is
zero for timer FDs, one for normal I/O sources, and one or more
for libusb sources (Unix only).
Also, on Windows, do not get an additional timeout from libusb
in the event loop. This is only appropriate when polling the
libusb FDs directly, which we aren't doing on Windows.
Handle I/O sources and timer ("dummy") sources within the same
polling loop, so that both may be used together. Slightly change
the API to improve consistency: a timeout value of -1 now disables
the timeout, and 0 makes the source always time out immediately.
The "dummy" sources already behaved that way, although it wasn't
documented as such.
Make sure that I/O events are processed preferentially: Skip any
timeout callbacks if an I/O event occurred within the same poll
iteration. This applies to both timer/idle sources and timeouts
of I/O sources.
Do not create dummy GPollFDs for timer/idle sources. Instead,
split the sources array into an I/O section and a timer section,
and create corresponding GPollFDs only for the I/O section. Use
GArray to simplify the handling of the dynamic arrays.
Keep track of when source timeouts are due and properly compare
against accumulated elapsed time between invocations. This prevents
sources with short timeouts from blocking other sources with longer
timeouts indefinitely.
This requires sr_hw_cleanup_all() and sanity_check_all_drivers()
to also take a context.
The (runtime) generation of the driver list now happens in sr_init()
and sr_driver_list() always returns that pre-generated list. This fixes
a segfault when (correctly) invoking multiple sr_init() and sr_exit()
calls with different contexts (caught by the unit tests).
This fixes bug #565.
This is a partial fix for bug #343, which lead to a large amount of
handles being created, and eventually to a frontend "hang".
It's not yet a "full" fix as some issues are still observable,
but it successfully improves the situation on Windows to the extent
that frontend hangs due to large amounts of handles no longer seem
to happen.
Thanks to Boris Gjenero <boris.gjenero@gmail.com> for the debugging
efforts, testing, and updating of this patch!
Additionally, this seems to also fix a "SysClk LWLA hanging" bug
and apparently not receiving any samples during an acquisition
(tested on an LWLA1034).
This closes bug #328.
It fills the fields with reasonable default values that should suit
most of the drivers. Drivers are obviously free to override the fields
they want after initializing.
Add a protocol decoder for the Cyrustek ES51919 LCR meter chip.
This chipset (together with ES51920 front-end) is supposedly used
by multiple different portable LCR meters including at least
DER EE DE-5000, Yihua V&A VA520, Mastech MS5308, Uni-T UT612,
CEM DT-9935 and various OEM rebadges of them.
The communication protocol seems to be implemented on the Cyrustek
chip itself so all the different models are expected to use the
same protocol if they implement a host connection. Unfortunately
the protocol is not available in the public documentation of the
chipset, so this implementation is based on reverse engineering it
from traffic captures.
The actual connection between the meter and the host computer may be
different from meter to meter even when based on the same chip. This
module implements a decoder for the protocol and some common helper
functions for interfacing with the meter via an RS-232 serial port.
This calculates a proper timeout value for blocking writes on the
given serial port, for the given number of bytes. Timeout is based
on a fixed 10ms OS overhead, baud rate, data bits and stop bits.
Set this new parameter to 0 (no timeout) at every call site. This is
consistent with previous behaviour, so cannot cause any regressions.
Waiting forever for a serial operation is clearly always wrong. Without
specific knowledge of each device and driver however, I can't choose
appropriate timeouts for each call. The maintainers of these drivers
will need to do so, and also add appropriate handling of timeouts.
When this commit is merged, a bug should be entered for each driver
that is touched by it.
This signifies to the module instance no more input will come. This
will cause the module to process any data it may have buffered. The
SR_DF_END packet will also typically be sent at this time.
When an input module instance has received enough input to fully
populate the struct sr_dev_inst, sdi_ready is set to TRUE and its
receive() method returns immediately. Any remaining received data
is buffered until the next time the function is called.