Introduce the dmm/eev121gw.c source file with parse routines for the
EEVblog 121GW meter's 19-bytes binary packets. Get the values and MQ
properties of the device's several displays (main, sub, bar) in several
individual parse calls.
This commit introduces initial support for the device. Some of the modes
and features are untested, as are some of the device's ranges.
Use "ipdbg-la" everywhere to refer to the driver, including
in function name prefixes etc. There's no need to encode
website details (.org) into the driver/function name(s).
This ensures that SCPI read/write/write+read operations are thread safe.
F.e.: If a write operation expects a return value (in other words: a
read operation), it is not allowed to be interrupted by another write
operation.
To simplify things, the SCPI helper functions are moved from
scpi/helpers.c to scpi/scpi.c and also are renamed to fit the naming
scheme.
libgpib in particular will abort the program execution in case of
concurrent operations.
Implement an input module for .lpf files, the "LogicPort File" format of
the Intronix LA1034 vendor software. This version supports wires with
enabled and inverted state, compressed samples, signal names, signal
groups (but not multiple assignment), and automatic format detection.
The logic which determines whether "the file header" was completely
received, and sample data can get sent to the session, implements an
assumption in the absence of a better and more reliable condition.
Invalid input gets rejected, but diagnostics is rather limited. Since
all channels get to be the member of a channel group, either specified
by the user in the input file, or arranged for in the input module, the
"missing separator" part of bug 1186 has become obsolete.
[Note: This patch is basically a squashed version of the initial driver
commits by Andreas Zschunke <andreas.zschunke@gmx.net>, two fixes by
Andrej Valek <andy@skyrain.eu>, and various coding style / cosmetic
fixes by Uwe Hermann <uwe@hermann-uwe.de> to make the driver a lot more
consistent with the rest of the libsigrok code-base.]
BeagleLogic now supports two modes of interface - one being the
native mode running on an ARM system like the BeagleBone Black
and the other mode acting like a TCP client for the BeagleLogic
server running off a BeagleBone compatible system. This makes it
convenient for desktop users to retrieve samples from BeagleLogic,
no more copying files and SSHing into the BeagleBone hardware in
order to use BeagleLogic.
Signed-off-by: Kumar Abhishek <abhishek@theembeddedkitchen.net>
The code earlier was in a single .h file, so it's now separated into a C file
and H file
Signed-off-by: Kumar Abhishek <abhishek@theembeddedkitchen.net>
Previously the USB communication code was split between api.ci,
dslogic.c and protocol.c, with protocol internals split between
both. This patch puts all the protocol handling code into one
source file reducing the number of internal interfaces and making
the code more readable.
File template by Stefan Brüns, thanks!
This fixes bug #857.
(the XML file is moved from PulseView to libsigrok since this is not
PulseView-specific)
Add a 48x48 PNG and a scalable SVG for the MIME type as well.
Install the XML file and in the icons in the respective standard paths.
This is more specific and prevents any potential issues e.g. when
multiple distro packages might ship with a generic file like
sigrok-logo-notext.png that's supposed to be installed in the same place.
Change uninstall-local to uninstall-hook, since the latter is guaranteed
to run last (order is apparently not guaranteed for uninstall-local).
This fixes bug #861.
It appears that the symmetry changes of setting CC and CFLAGS correctly
for C code compilation in commit 104f02f broke things for people using
some other version of setuptools which uses those vars instead of
CXX and CXXFLAGS when compiling C++ code. In order to make this work
everywhere, set _both_ sets of variables as required for C++ compilation.
No C code is compiled by the python binding module anyway.
The former DER EE DE-5000 driver was a very thin wrapper around the
ES51919 LCR meter chipset. None of its source was specific to the
deree-de5000 device. In fact it contained code for all currently
supported LCR meters, and it's expected that all LCR meters which
will get added in the future will fit in as well.
Follow the serial-dmm model. Rename the src/hardware/deree-de5000/
directory to serial-lcr/. Update the configure logic. Although the
source directory and the configure option are named serial-lcr, the
LCR meter still is used by specifying the "deree-de5000" device driver
(which just happens to reside in the serial-lcr driver sources, among
others).
Introduce an asycii.c source file (modelled after metex14.c) which
implements support for the 16-byte protocol of the ASYC-II multimeter
chipset (RX only, when the PRINT button was pressed).
Buildsystem wants CXX to be defined as $(CXX).
Otherwise it fallbacks to default value, which does not contain
"-std=c++11" statement.
Other changes (like CC=$(CC) and CFLAGS=$(CFLAGS) instead of CXX ones)
is not directly fix the issue, but fix cases, where CFLAGS (and CC)
differs from CXX* ones, so it could lead to similar errors in the future.
This single object also contains the sr_drivers_init function, that will
always be referenced. That ensures that the drivers object files won't
be optimized out during static linking due to the fact that they are
not referenced directly.
This addresses (parts of) bug #802.
The sigrok core needs a list of all available drivers. Currently this list
is manually maintained by updating a global list whenever a driver is added
or removed.
Introduce a new special section that contains the list of all drivers. The
SR_REGISTER_DEV_DRIVER() and SR_REGISTER_DEV_DRIVER_LIST() macro is used to
add drivers to this new list. This is done by placing the pointers to the
driver into a special section. Since nothing else is in this section it is
known that it is simply a list of driver pointers and the core can iterate
over it as if it was an array.
The advantage of this approach is that the code necessary to add a driver
to the list is completely contained to the driver source and it is no
longer necessary to maintain a global list. If a driver is built it will
automatically appear in the list, if it is not built in won't. This means
that the list is always correct, whereas the previous approach used ifdefs
in the global driver list file which could get out-of-sync with the actual
condition when the driver was built.
Any sr_dev_driver structs that are no longer used outside the driver module
are marked as static.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>