Handle I/O sources and timer ("dummy") sources within the same
polling loop, so that both may be used together. Slightly change
the API to improve consistency: a timeout value of -1 now disables
the timeout, and 0 makes the source always time out immediately.
The "dummy" sources already behaved that way, although it wasn't
documented as such.
Make sure that I/O events are processed preferentially: Skip any
timeout callbacks if an I/O event occurred within the same poll
iteration. This applies to both timer/idle sources and timeouts
of I/O sources.
Do not create dummy GPollFDs for timer/idle sources. Instead,
split the sources array into an I/O section and a timer section,
and create corresponding GPollFDs only for the I/O section. Use
GArray to simplify the handling of the dynamic arrays.
Keep track of when source timeouts are due and properly compare
against accumulated elapsed time between invocations. This prevents
sources with short timeouts from blocking other sources with longer
timeouts indefinitely.
Looking at the g_poll() implementations for various systems, it
appears that on Windows the return value is 0 if the wait was
interrupted, and errno is never set. Also, the MacOS X wrapper
around select() does not clear revents on timeout.
To deal with these issues, check for EINTR only on Unices, and
assume revents to be invalid unless g_poll() returned a positive
value.
If the call to g_poll() in sr_session_iteration() fails, report
the error back to the caller. Do not treat EINTR as error though.
Check for session abort only if a source callback was actually
invoked, or at least once if none of the callbacks are invoked.
Stop checking for abort if the session has already been stopped,
just in case a callback sets abort_session again.
Also change the documentation to match the actual behavior.
In sr_session_iteration(), remove the inverted evaluation of the
block parameter if a USB source is present. This stops the deluge
of USB event callbacks due to the timeout always being zero.
Also, just for cleanliness, initialize the revents member of each
GPollFD instance to zero.
After the packet has been passed through the transformation modules,
the transformed data is in packet_in but the following code uses
the packet variable which still points to the original input.
This fixes bug #631.
Move the include flags for files in the source tree from
configure.ac to Makefile.am where they belong. Also use
AM_CPPFLAGS instead of CFLAGS/CXXFLAGS to make sure the
files in the build/source tree are always picked up first.
Also, remove the include/libsigrok sub-directory from the
search path, thereby making the <libsigrok/> prefix mandatory
when building libsigrok itself. This matches the convention
already imposed on users of the library.
We should have been doing this all along, but we get away with it
on Linux where libusb can do everything with fds, and we get away
with it for many drivers that have a short timeout on their events.
On Windows though, handling this correctly is essential.
Fixes bug #343.
Commit 5801d558 replaced g_slist_copy_deep() by some incorrect code
that actually leaks the newly allocated memory, instead of doing
a deep copy.
This new version should be more correct, more concise, and it fixes
the following warning:
src/session.c: In function 'sr_packet_copy':
src/session.c:1025:38: warning: passing argument 2 of 'g_slist_foreach' from incompatible pointer type [-Wincompatible-pointer-types]
g_slist_foreach(meta_copy->config, (GCopyFunc)copy_src, NULL);
^
In file included from /usr/include/glib-2.0/glib/gmain.h:26:0,
from /usr/include/glib-2.0/glib/giochannel.h:33,
from /usr/include/glib-2.0/glib.h:54,
from src/session.c:24:
/usr/include/glib-2.0/glib/gslist.h:125:10: note: expected 'GFunc {aka void (*)(void *, void *)}' but argument is of type 'void * (*)(const void *, void *)'
void g_slist_foreach (GSList *list,
^
By avoiding g_slist_copy_deep() for now, we can easily allow libsigrok
to build against glib 2.32 (less hassle for users of stable/older
distros or OSes).
Use g_malloc0() for small allocations and assume they always
succeed. Simplify error handling in a few places accordingly.
Don't always sanity-check parameters for non-public (SR_PRIV)
functions, we require the developers to invoke them correctly.
This allows further error handling simplifications.