Since Autoconf places some important feature flags only into the
configuration header, it is necessary to include it globally to
guarantee a consistent build.
Move the include flags for files in the source tree from
configure.ac to Makefile.am where they belong. Also use
AM_CPPFLAGS instead of CFLAGS/CXXFLAGS to make sure the
files in the build/source tree are always picked up first.
Also, remove the include/libsigrok sub-directory from the
search path, thereby making the <libsigrok/> prefix mandatory
when building libsigrok itself. This matches the convention
already imposed on users of the library.
- Don't #include <errno.h> in files that don't actually need it.
- Don't use strerror() on error codes from functions that don't set
errno. Replace strerror() with sr_strerror() for libsigrok functions.
Use g_malloc0() for small allocations and assume they always
succeed. Simplify error handling in a few places accordingly.
Don't always sanity-check parameters for non-public (SR_PRIV)
functions, we require the developers to invoke them correctly.
This allows further error handling simplifications.
Every driver now publishes its device option config keys, i.e. the
list fetched with sr_config_list(SR_CONF_DEVICE_OPTIONS), with a
set of flags indicating which methods are implemented by the driver
for that key.
The config keys are OR'ed with any combination of SR_CONF_GET,
SR_CONF_SET and SR_CONF_LIST. These are defined as the high bits
of the uint32_t config key. Clients can OR config keys with
SR_CONF_MASK to strip out these bits. This mask will be kept up to
date if other bits are added to the capabilities list; clients MUST
therefore use SR_CONF_MASK for this.
Some keys don't have capability bits added, such as the informative
device type keys (SR_CONF_MULTIMETER, SR_CONF_OSCILLOSCOPE, ...) and
SR_CONF_CONTINUOUS.
Scan options do not have capabilities bits.
The Brymen BM25x series supports the BC-20X that is an opto-isolated
serial cable. The link seems to be unidirectional i.e. when activated
the DMM periodically sends updates to the host while the host cannot
control the DMM in any way.
The protocol is documented in "6000-count-digital-multimeters-r1.pdf"
that is available from the manufacturer. Every 15 byte packet consists
of a bitmap where the bits correspond to segments or symbols on the
LCD display i.e. the DMM essentially sends the contents of its screen
to the host in every update. This driver then decodes the measured
quantity, unit and its value from the bitmap.