Instead of >= 44 Makefile.am's we now only have one top-level
Makefile.am, and use the 'subdir-objects' automake option to
handle the build via non-recursive (auto)make.
This has the advantage of fewer (boilerplate or other) files and less
clutter in general, as well as performance advantages since the new
setup can build many files in parallel (with 'make -j'), not only 2 or 3
files within the same (e.g. hardware/xxxx/* subdirectory) and also since
we no longer need to build intermediate libtool helper libs per subdirectory.
A quick, non-scientific test build on a quad-core laptop with 'make -j 4'
yields a build time reduction from 35s to 19s.
All autotools features that worked before are still intact without any
regressions, including the Make targets 'install', 'uninstall', 'check',
'dist', 'clean', 'distclean' and so on, as well as all the usual portability
handling (build works on any OS, with any Make implementation such as
GNU Make or BSD Make, with any shell such as sh/ksh/zsh/bash/dash, etc. etc.)
and features such as out-of-tree build support, cross-compile support,
testsuite support (also with colored output), "silent make rules", etc. etc.
(parse_contents): Do not call sr_dbg() on every signal change.
This would be excessive even for sr_spew().
(read_until): Do not call ftell() just to be able to show some
number in a debug message later on.
This is essential if a format contains e.g. the number of probes; the
init() function needs to initialize the sr_dev_inst struct, but needs
access to the file to properly add the probes to it.
This is a small helper function which sends the SR_DF_HEADER packet that
drivers usually emit in their hw_dev_acquisition_start() API callback.
It simplifies and shortens the hw_dev_acquisition_start() functions
quite a bit.
It also simplifies the input modules which send an SR_DF_HEADER packet, too.
This patch also automatically removes some unneeded malloc/free in some
drivers for the 'packet' and 'header' structs used for SR_DF_HEADER.
Since input modules determine a samplerate by reading from their
file format (or having it overridden with an option), they need
to pass this up to the frontend.
I had a binary file that I needed to decode using UART decoder. UART
decoder needs to know the sample rate for the data, but currently it's
not possible to pass parameters to input formats and so the "binary"
file format always sets the samplerate to 0.
This patch adds the possibility to append a colon-separated list of
key=value options to the -I argument, in the same way -d supports it.
Also, it makes the "binary" format support the "samplerate" option.
I included the GHashTable containing input format options directly in
the sr_input struct. I'm not sure if that's the right way to do it. I
saw that -d uses a much more elaborate system with device capabilities
and typed options, but that seemed like an overkill for input formats.
All frontends will have to include <libsigrok/libsigrok.h> from now on.
This header includes proto.h and version.h, both installed from the
distribution into $INCLUDE/libsigrok/ as well.
The only dynamically changed header is now version.h, which has both
libsigrok and libtool compile-time versions in it.
All ChronoVu LA8 files (*.kdt extension usually) are exactly 8388613
bytes in size (8MB + 5 bytes). Check this, when trying to autodetect the
file format, to reduce the likelihood of 'chronovu-la8' being
autodetected on all binary files (instead of 'binary').
Avoid plain malloc()/free() in sr/srd, especially in the API calls.
Also avoid g_malloc*() in favor of g_try_malloc*().
Use g_strdup() instead of strdup() so that we can use g_free()
consistently everywhere.
Exceptions: Stuff that is allocated via other libs (not using glib),
should also be properly free'd using the respective free-ing function
(instead of g_free()). Examples: Stuff allocated by libusb, libftdi, etc.
Also, use sr_err() instead of sr_warn() for actual errors. sr_warn() is
meant for non-fatal/uncritical warnings.
This will come back in some form or another later, but for now
don't clutter the API with non-working stuff. Removing stuff from APIs
is not possible without breaking the API, adding stuff later is simpler.