Make the list of supported samplerates an internal detail of the
protocol.c source file. Have the api.c source file retrieve the list
as well as the currently configured value by means of query routines.
Ideally the current rate could get retrieved from hardware at runtime.
A future driver implementation could do that. This version sticks with
the lowest supported rate, as in the previous version.
Move all of the FTDI connection handling from api.c to protocol.c, and
prepare "forced" and "optional" open/close. This allows future driver
code to gracefully handle situations where FPGA registers need to get
accessed, while the caller may be inside or outside the "opened" period
of the session. This is motivated by automatic netlist type and sample
rate detection, to avoid the cost of repeated firmware uploads.
Detect more error conditions, and unbreak those code paths where wrong
data was forwarded. It's essential to tell the USB communication layer,
sigrok API error codes, and glib mainloop receive callbacks apart. Since
the compiler won't notice, maintainers have to be extra careful.
Rephrase diagnostics messages. The debug and spew levels are intended
for developers, but the error/warn/info levels will get presented to
users, should read more fluently and speak from the application's POV.
Allow long text lines in source code, to not break string literals which
users will report and developers need to search for (this matches Linux
kernel coding style).
This commit also combines the retrieval of sample memory fill level,
trigger position, and status flags. Since these values span an adjacent
set of FPGA registers. Which reduces USB communication overhead, and
simplifies error handling. The helper routine considers the retrieval
of each of these values as optional from the caller's perspective, to
simplify other use cases (mode check during acquisition, before sample
download after acquisition has stopped).
INIT pin sensing after PROG pin pulsing was reworked, to handle the
technicalities of the FTDI chip and its USB communication and the FTDI
library which is an external dependency of this device driver. Captures
of USB traffic suggest that pin state is communicated at arbitrary times.
Address minor style nits to improve readability and simplify review. The
sizeof() expressions need not duplicate data type details. Concentrate
the assignment to, update of, and evaluation of variables in closer
proximity to reduce potential for errors during maintenance. Separate
the gathering of input data and the check for their availability from
each other, to simplify expressions and better reflect the logic's flow.
Keep application data in its logical presentation in C language struct
fields. Explicitly convert to raw byte streams by means of endianess
aware conversion helpers. Don't assume a specific memory layout for
C language variables any longer. This improves portability, and
reliability of hardware access across compiler versions and build
configurations.
This change also unobfuscates the "disabled channels" arithmetics in
the sample rate dependent logic. Passes read-only pointers to write
routines. Improves buffer size checks. Reduces local buffer size for
DRAM reads. Rewords comments on "decrement then subtract 64" during
trigger/stop position gathering. Unobfuscates access to sample data
after download (timestamps, and values). Covers a few more occurances
of magic numbers for memory organization.
Prefer masks over shift counts for hardware register bit fields, to
improve consistency of the declaration block and code instructions.
Improve maintenability of the LA mode initiation after FPGA netlist
configuration (better match written data and read-back expectation,
eliminate magic literals that are hidden in nibbles).
Move the 'devc' parameter to the front in routine signatures for the
remaining locations which were not adjusted yet. Reduce indentation of
continuation lines, especially in long routine signatures. Try to not
break string literals in diagnostics messages, rephrase some of the
messages. Massage complex formulae for the same reason.
Whitespace changes a lot, word positions move on text lines. See a
corresponding whitespace ignoring and/or word diff for the essence of
the change.
Use symbolic identifiers to select firmware images, which eliminates
magic 0/1/2 position numbers in the list of files, improves readability
and also improves robustness. Move 'devc' to 'ctx' and before other
arguments in routine signatures while we are here.
Use common support for SW limits, and untangle the formerly convoluted
logic for sample count or time limits. Accept user provided samplerate
values when the hardware supports them, also those which are not listed.
The previous implementation mapped sample count limits to timeout specs
which depend on the samplerate. The order of applications' calls into
the config set routines is unspecified, the use of one common storage
space led to an arbitrary resulting value for the msecs limit, and loss
of user specified values for read-back.
Separate the input which was specified by applications, from limits
which were derived from this input and determine the acquisition phase's
duration, from sample count limits which apply to sample data download
and session feed submission after the acquisition finished. This allows
to configure the values in any order, to read back previously configured
values, and to run arbitrary numbers of acquisition and download cycles
without losing input specs.
This commit also concentrates all the limits related computation in a
single location at the start of the acquisition. Moves the submission
buffer's count limit container to the device context where the other
limits are kept as well. Renames the samplerate variable, and drops an
aggressive check for supported rates (now uses hardware constraints as
the only condition). Removes an unused variable in the device context.
Stick with the FTDI library for data acquisition, and most of all for
firmware upload (bitbang is needed during FPGA configuration). Removing
this dependency is more complex, and needs to get addressed later.
Re-use common USB support during scan before open, which also allows to
select devices if several of them are connected. Either of "conn=vid.pid"
or "conn=bus.addr" formats are supported and were tested.
This implementation detects and displays SIGMA and SIGMA2 devices. Though
their function is identical, users may want to see the respective device
name. Optionally detect OMEGA devices, too (compile time option, off by
default), though they currently are not supported beyond detection. They
just show up during scans for ASIX logic analyzers, and users may want to
have them listed, too, for awareness.
This implementation also improves robustness when devices get disconnected
between scan and use. The open and close routines now always create the
FTDI contexts after the code has moved out of the scan phase, where common
USB support code is used.
This resolves bug #841.
Example:
In file included from src/hardware/kecheng-kc-330b/protocol.h:26,
from src/hardware/kecheng-kc-330b/api.c:22:
src/hardware/kecheng-kc-330b/api.c: In function ‘config_list’:
src/libsigrok-internal.h:51:34: warning: division ‘sizeof (void *) / sizeof (void)’ does not compute the number of array elements [-Wsizeof-pointer-div]
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
^
src/libsigrok-internal.h:55:32: note: in expansion of macro ‘ARRAY_SIZE’
#define ARRAY_AND_SIZE(a) (a), ARRAY_SIZE(a)
^~~~~~~~~~
src/libsigrok-internal.h:964:43: note: in expansion of macro ‘ARRAY_AND_SIZE’
std_opts_config_list(key, data, sdi, cg, ARRAY_AND_SIZE(scanopts), \
^~~~~~~~~~~~~~
src/hardware/kecheng-kc-330b/api.c:296:10: note: in expansion of macro ‘STD_CONFIG_LIST’
return STD_CONFIG_LIST(key, data, sdi, cg, NULL, drvopts, devopts);
^~~~~~~~~~~~~~~
When the acquisition was stopped before a configured limit was reached,
no sample data was retrieved. This is because the api.c stop routine did
unregister the receive callback.
Pass the stop request to the receive routine instead when stop is called
while the acquisition is still running. Have sample data downloaded very
much like it's done for reached limits, and existing logic will run the
stop routine again after state was advanced to "idle".
Extend the 'state' tracking while we are here, mark sample download as
well (that was omitted in the previous implementation). Though the
omission was non-fatal. Move the release of 'dram_line' to some earlier
location (as soon as the resource is not needed any longer), before some
rather complex calls to other routines will execute.
Reported-By: Michael Kaplan <M.KAPLAN@evva.com>
Move the check for the capture ratio being 0..100 into the wrappers,
drop unneeded helper functions, fix incorrect variable types, minor
other consistency fixes.
This ensures consistent handling of the SR_CONF_SCAN_OPTIONS and
SR_CONF_DEVICE_OPTIONS (with sdi NULL or non-NULL) config keys
and also reduces copy-pasted boilerplate in the drivers a bit.
This function does not handle channel-group specific items, that's
very driver-specific and thus left to the individual drivers.
Also move some generic checks and error messages from the drivers into
the sr_config_list() wrapper.
Configure the samplerate clock and channel count during acquisition
start in identical ways for 50MHz, 100MHz, and 200MHz modes.
This part was inspired by work done by jry@ yet was addressed in
different ways (no exception, do everything in every mode the same way).
Eliminate a portability issue in the previous implementation. Make sure
to send the configuration bytes in the correct order to the hardware.
Don't typecase a struct reference to a bytepointer and hope that the
internal memory representation might fit the external hardware's idea.
Enhance how the data acquisition is stopped. Wait for the hardware to
flag the successful completion of data retrieval as well as flushing
through hardware pipelines.
Use symbolic identifiers for the mode register's fields (for read as
well as write access).
This commit uses part of a code update to better match the documentation
done by jry@, but not all of it to reduce the size of the commit.
Minor adjustment for improved readability. Don't hide assignments in
variable declarations. Move initialization of some variables closer to
related evaluation or subsequent processing. Break a complicated looking
roundup expression into several short steps.
This works around bug #359. Triggers currently are not operational for
Asix Sigma. Don't claim support in the driver so that UIs won't use the
feature. Yet allow research in this issue, by concentrating the switch
for the feature's support in a central location.
Add/update a comment and unobfuscate an error code path while we are here.
Introduce a separate routine which maps sample counts and sample period
to an elapsed sample time after which acquisition shall get stopped.
Add some more time to make sure the most recent captured data has passed
the hardware pipeline and is available for download.
This commit is based on work done by jry@.
The driver internally implements the "limit samples" feature by means of
the "limit sample period" approach. Determination of the corresponding
period of time for captures depends on the sample rate as well as the
maximum sample count, and thus needs to be re-done when either setting
changes.
Introduce a "limit_samples" variable so that the value is available when
needed later. As a byproduct the parameter can be retrieved now (get).
Add comments to the sigma_set_samplerate() routine's sections, since
quite a bit is happening there, and interacts with other locations.
Signed-off-by: Gerhard Sittig <gerhard.sittig@gmx.net>
Commit 2c9c0df86e removed the sentinel from the samplerates[] array,
but did not adjust the test which checked whether a rate is listed in
the set of supported rates. This could result in an out-of-range access
beyond the array's last item.
Fix the "listed?" check after iterating the table of supported rates.
Cope with either presence or absence of a sentinel in the array.
Address some more style nits while we are here. Rename an identifier
for a local variable which unintentionally might suggest that it would
be a preprocessor macro (all-caps). Reduce redundancy in data type
references as well as in the determination of the array size.
Signed-off-by: Gerhard Sittig <gerhard.sittig@gmx.net>
Some of the standard helper functions take a log prefix parameter that is
used when printing messages. This log prefix is almost always identical to
the name field in the driver's sr_dev_driver struct. The only exception are
drivers which register multiple sr_dev_driver structs.
Instead of passing the log prefix as a parameter simply use the driver's
name. This simplifies the API, gives consistent behaviour between different
drivers and also makes it easier to identify where the message originates
when a driver registers sr_dev_driver structs.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Some driver scan() functions only ever return a single device. For those it
is possible to slightly simplify the handling of the device list by
creating it on demand when the function returns.
Some drivers also have the following expression:
devices = g_slist_append(devices, sdi);
...
if (!devices)
...
This check will never evaluate to false so it is dropped as well.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
A common task during device scan is to add the newly discovered devices to
the instance list of the driver. Currently this is done by each driver on
its own. This patch introduces a new helper function std_scan_complete()
which takes care of this. The function should be called at the end of a
driver's scan() callback before returning the device list.
Doing this with a helper function provides guaranteed consistent behaviour
among drivers and hopefully paves the way to moving more standard
functionality directly into the sigrok core.
Another common task that every driver has to do for each device instance is
to initialize the device's driver field. So this is done in the new helper
function as well.
All drivers that can make use of the new helper are updated.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The sigrok core needs a list of all available drivers. Currently this list
is manually maintained by updating a global list whenever a driver is added
or removed.
Introduce a new special section that contains the list of all drivers. The
SR_REGISTER_DEV_DRIVER() and SR_REGISTER_DEV_DRIVER_LIST() macro is used to
add drivers to this new list. This is done by placing the pointers to the
driver into a special section. Since nothing else is in this section it is
known that it is simply a list of driver pointers and the core can iterate
over it as if it was an array.
The advantage of this approach is that the code necessary to add a driver
to the list is completely contained to the driver source and it is no
longer necessary to maintain a global list. If a driver is built it will
automatically appear in the list, if it is not built in won't. This means
that the list is always correct, whereas the previous approach used ifdefs
in the global driver list file which could get out-of-sync with the actual
condition when the driver was built.
Any sr_dev_driver structs that are no longer used outside the driver module
are marked as static.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Most drivers have a forward declaration to their sr_dev_driver struct at
the beginning of the driver file. This is due to historic reasons and often
no longer required. So remove all the unnecessary forward declarations.
Some drivers still require the forward declaration, but only reference the
driver struct from within the driver scan() callback. Since the driver
struct is passed to the scan callback replace the references to the global
variable with the local parameter. In some cases this requires adding the
parameter to some of the helper functions that are called from the scan()
callback.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Now that the signature of std_init() matches that of the driver init()
callback we can remove all wrapper functions around std_init() and use it
directly as the init() callback.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
std_init() checks if the pass in struct sr_dev_driver is non-NULL and
prints a error message and returns an error if it is NULL.
std_init() is exclusively called from driver init() callbacks for which the
core already checks if the struct sr_dev_driver is non-NULL before invoking
the callback. This means the check in std_init() will always evaluate to
false. So drop this check.
This also means that the prefix parameter that was used in the error
message is no longer needed and can be removed from the function signature.
Doing so will make the std_init() function signature identical to the
init() callback signature which will allow to directly use it as such.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
The std_init() callback has the order of the first two paramters opposite
to the init() callback. This is primarily due to historical development.
Since the std_init() function is usually called from a driver's init()
callback aligning the order will allow direct register pass through rather
than having to swap them around. It also allow to eventually use the
std_init() function directly as the init() callback.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>
Every single hardware driver has the very same implementation of the
dev_list() callback. Put this into a helper function in the standard helper
library and use it throughout the drivers. This reduces boiler-plate code
by quite a bit.
Signed-off-by: Lars-Peter Clausen <lars@metafoo.de>